Skip to main content

funder_partner: United States Agency for International Development (USAID)

Ethiopian wheat farmers adopt quality seed and a vision for a more profitable future

Amarech Desta (left) is the chairwoman of Tembo Awtena, a womens’ seed producer association in the Angacha district of Ethiopia’s Southern Nations, Nationalities, and Peoples’ Region (SNNP). As part of the Wheat Seed Scaling project, the group received early-generation seed and a seed thresher from CIMMYT. “In 2016 we sold more than $7,400 worth of seed,” Desta said. “Our success attracted 30 additional women farmers in 2017, bringing the total membership to 133.” (Photo: Apollo Habtamu/CIMMYT)
Amarech Desta (left) is the chairwoman of Tembo Awtena, a womens’ seed producer association in the Angacha district of Ethiopia’s Southern Nations, Nationalities, and Peoples’ Region (SNNP). As part of the Wheat Seed Scaling project, the group received early-generation seed and a seed thresher from CIMMYT. “In 2016 we sold more than $7,400 worth of seed,” Desta said. “Our success attracted 30 additional women farmers in 2017, bringing the total membership to 133.” (Photo: Apollo Habtamu/CIMMYT)

High-yielding, disease-resistant wheat varieties used by Ethiopian wheat farmers between 2015 and 2018 gave them at least 20% more grain than conventional varieties, profits of nearly $1,000 per hectare when they grew and sold seed, and generally improved food security in participating rural households.

These are the result of a project to rapidly multiply and disperse high-quality seed of new improved varieties, and the work of leading Ethiopian and international research organizations. The outcomes of this project have benefitted nearly 1.6 million people, according to a comprehensive new publication.

“Grown chiefly by smallholders in Ethiopia, wheat supports the livelihoods of 5 million farmers and their families, both as a household food crop and a source of income,” said Bekele Abeyo, wheat scientist of the International Maize and Wheat Improvement Center (CIMMYT), leader of the project, and chief author of the new report. “Improving wheat productivity and production can generate significant income for farmers, as well as helping to reduce poverty and improve the country’s food and nutrition security.”

Wheat production in Ethiopia is continually threatened by virulent and rapidly evolving fungal pathogens that cause “wheat rusts,” age-old and devastating diseases of the crop. Periodic, unpredictable outbreaks of stem and stripe rust have overcome the resistance of popular wheat varieties in recent years, rendering the varieties obsolete and in urgent need of replacement, according to Abeyo.

“The eastern African highlands are a hot spot for rusts’ spread and evolution,” Abeyo explained. “A country-wide stripe rust epidemic in 2010 completely ruined some susceptible wheat crops in Oromia and Amhara regions, leaving small-scale, resource-poor farmers without food or income.”

The Wheat Seed Scaling project identified and developed new rust-resistant wheat varieties, championed the speedy multiplication of their seed, and used field demonstrations and strategic marketing to reach thousands of farmers in 54 districts of Ethiopia’s major wheat growing regions, according to Abeyo. The United States Agency for International Development (USAID) funded the project and the Ethiopian Institute of Agricultural Research (EIAR) was a key partner.

Using parental seed produced by 8 research centers, a total of 27 private farms, farmer cooperative unions, model farmers and farmer seed producer associations — including several women farmer associations — grew 1,728 tons of seed of the new varieties for sale or distribution to farmers. As part of the work, 10 national research centers took part in fast-track variety testing, seed multiplication, demonstrations and training. The USDA Cereal Disease Lab at the University of Minnesota conducted seedling tests, molecular studies and rust race analyses.

A critical innovation has been to link farmer seed producers directly to state and federal researchers who supply the parental seed — known as “early-generation seed”— according to Ayele Badebo, a CIMMYT wheat pathologist and co-author of the new publication. “The project has also involved laboratories that monitor seed production and that test harvested seed, certifying it for marketing,” Badebo said, citing those accomplishments as lasting legacies of the project.

Abeyo said the project built on prior USAID-funded efforts, as well as the Durable Rust Resistance in Wheat (DRRW) and Delivering Genetic Gain in Wheat (DGGW) initiatives, led by Cornell University and supported by the Bill & Melinda Gates Foundation and the UK Department for International Development (DFID).

Protecting crops of wheat, a vital food in eastern Africa, requires the collaboration of farmers, governments and researchers, according to Mandefro Nigussie, Director General of EIAR.

“More than 131,000 rural households directly benefited from this work,” he said. “The project points up the need to identify new resistance genes, develop wheat varieties with durable, polygenic resistance, promote farmers’ use of a genetically diverse mix of varieties, and link farmers to better and profitable markets.”

RELATED RESEARCH PUBLICATIONS:

Achievements in fast-track variety testing, seed multiplication and scaling of rust resistant varieties: Lessons from the wheat seed scaling project, Ethiopia.

INTERVIEW OPPORTUNITIES:

Bekele Abeyo, Senior Scientist, CIMMYT.

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Simret Yasabu, Communications officer, CIMMYT. s.yasabu@cgiar.org, +251 911662511 (cell).

PHOTOS AVAILABLE:

Seed scaling in Ethiopia

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

Asia Regional Resilience to a Changing Climate (ARRCC)

The Asia Regional Resilience to a Changing Climate (ARRCC) program is managed by the UK Met Office, supported by the World Bank and the UK’s Department for International Development (DFID). The four-year program, which started in 2018, aims to strengthen weather forecasting systems across Asia. The program will deliver new technologies and innovative approaches to help vulnerable communities use weather warnings and forecasts to better prepare for climate-related shocks.

Since 2019, as part of ARRCC, CIMMYT has been working with the Met Office and Cambridge University to pilot an early warning system to deliver wheat rust and blast disease predictions directly to farmers’ phones in Bangladesh and Nepal.

The system was first developed in Ethiopia. It uses weather information from the Met Office, the UK’s national meteorological service, along with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge, to construct and deploy a near real-time early warning system.

Phase I: 12-Month Pilot Phase

Around 50,000 smallholder farmers are expected to receive improved disease warnings and appropriate management advisories in the first 12 months as part of a proof-of-concept modeling and pilot advisory extension phase focused on three critical diseases:

  • Wheat stripe rust in Nepal: extend and test the modelling framework developed in Ethiopia to smallholder farmers in Nepal as proof-of concept;
  • Wheat stem rust in Bangladesh and Nepal: while stem rust is currently not widely established in South Asia, models indicate that devastating incursion from neighboring regions is likely. This work will prepare for potential incursions of new rust strains in both countries;
  • Wheat blast in Bangladesh: this disease is now established in Bangladesh. This work will establish the feasibility of adapting the dispersal modelling framework to improve wheat blast predictability and deploy timely preventative management advisories to farmers.

Phase II: Scaling-out wheat rust early warning advisories, introducing wheat blast forecasting and refinement model refinement

Subject to funding approval the second year of the project will lead to validation of the wheat rust early warnings, in which researchers compare predictions with on-the-ground survey results, increasingly supplemented with farmer response on the usefulness of the warnings facilitated by national research and extension partners. Researchers shall continue to introduce and scale-out improved early warning systems for wheat blast. Concomitantly, increasing the reach of the advice to progressively larger numbers of farmers while refining the models in the light of results. We anticipate that with sufficient funding, Phase II activities could reach up to 300,000 more farmers in Nepal and Bangladesh.

Phase III: Demonstrating that climate services can increase farmers’ resilience to crop diseases

As experience is gained and more data is accumulated from validation and scaling-out, researchers will refine and improve the precision of model predictions. They will also place emphasis on efforts to train partners and operationalize efficient communication and advisory dissemination channels using information communication technologies (ICTs) for extension agents and smallholders. Experience from Ethiopia indicates that these activities are essential in achieving ongoing sustainability of early warning systems at scale. Where sufficient investment can be garnered to support the third phase of activities, it is expected that an additional 350,000 farmers will receive disease management warnings and advisories in Nepal and Bangladesh, totaling 1 million farmers over a three-year period.

Objectives

  • Review the feasibility of building resilience to wheat rust through meteorologically informed early warning systems.
  • Adapt and implement epidemiological forecasting protocols for wheat blast in South Asia.
  • Implement processes to institutionalize disease early warning systems in Nepal and Bangladesh.

In the best possible taste

The pursuit for higher and more stable yields, alongside better stress tolerance, has dominated maize breeding in Africa for a long time. Such attributes have been, and still are, essential in safeguarding the food security and livelihoods of smallholder farmers. However, other essential traits have not been the main priority of breeding strategies: how a variety tastes when cooked, its smell, its texture or its appearance.

They are now gradually coming into the mainstream of maize breeding. Researchers are exploring the sensory characteristics consumers prefer and identifying the varieties under development which have the desired qualities. Breeders may then choose to incorporate specific traits that farmers or consumers value in future breeding work. This research is also helping to accelerate varietal turnover in the last mile, as farmers have additional reasons to adopt newer varieties.

In the last five years, the International Maize and Wheat Improvement Center (CIMMYT) has been conducting participatory variety evaluations across East Africa. First, researchers invited farmers and purchasers of improved seed in specific agro-ecologies to visit demonstration plots and share their preferences for plant traits they would like to grow in their own farms.

In 2019 and 2020, researchers also started to facilitate evaluations of the sensory aspects of varieties.

Fresh samples of green maize, from early- to late-maturing maize varieties, were boiled and roasted. Then, people assessed their taste and other qualities. The first evaluations of this kind were conducted in Kenya and Uganda in August and September 2019, and another exercise in Kenya’s Machakos County took place in January 2020.

Similar evaluations have looked at the sensory qualities of maize flour. In March 2020, up to 300 farmers in Kenya’s Kakamega County participated in an evaluation of ugali, or maize flour porridge. Participants assessed a wider range of factors, including the aroma, appearance, taste, texture on the hand, texture in the mouth and overall impression. After tasting each variety, they indicated how likely they would be to buy it.

Participants were asked to rate the texture of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants were asked to rate the texture of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants were asked to rate the smell of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants were asked to rate the smell of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Ugali made with different maize varieties is served to participants of a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants taste ugali at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Cooks prepare ugali, or maize flour porridge, with different maize varieties at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Cooks prepare ugali, or maize flour porridge, with different maize varieties at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
At a sensory evaluation in Kakamega County, Kenya, different types of ugali were cooked using maize flour from several varieties. (Photo: Joshua Masinde/CIMMYT)
At a sensory evaluation in Kakamega County, Kenya, different types of ugali were cooked using maize flour from several varieties. (Photo: Joshua Masinde/CIMMYT)
Ugali made with different maize varieties is served to participants of a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Ugali made with different maize varieties is served to participants of a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)

Tastes differ

“Farmers not only consume maize in various forms but also sell the maize either at green or dry grain markets. What we initially found is green maize consumers prefer varieties that are sweet when roasted. We also noted that seed companies were including the sensory characteristics in the maize varieties’ product profiles,” explained Bernard Munyua, Research Associate with the Socioeconomics program at CIMMYT. “As breeders and socioeconomists engage more and more with farmers, consumers or end-users, it is apparent that varietal profiles for both plant and sensory aspects have become more significant than ever before, and have a role to play in the successful turnover of new varieties.”

For researchers, this is very useful information, to help determine if it is viable to bring a certain variety to market. The varieties shared in these evaluations include those that have passed through CIMMYT’s breeding pipeline and are allocated to partners for potential release after national performance trials, as well as CIMMYT varieties marketed by various seed companies. Popular commercial varieties regions were also included in the evaluations, for comparison.

A total of 819 people participated in the evaluation exercises in Kenya and Uganda, 54% of them female.

“Currently, there is increasing demand by breeders, donors, and other agricultural scientists to understand the modalities of trait preferences of crops by women and men farmers,” said Rahma Adam, Gender and Development Specialist at CIMMYT.

Bags of seeds with a diversity of maize varieties are displayed before being cooked at a sensory sensory evaluation in Kakamega County, Kenya. (Photo: Bernard Munyua/CIMMYT)
Bags of seeds with a diversity of maize varieties are displayed before being cooked at a sensory sensory evaluation in Kakamega County, Kenya. (Photo: Bernard Munyua/CIMMYT)

That’s the way I like it

For Gentrix Ligare, from Kakamega County, maize has always been a staple food in her family. They eat ugali almost daily. The one-acre farm that she and her husband own was one of the sites used to plant the varieties ahead of the evaluation exercise. Just like her husband, Fred Ligare, she prefers ugali that is soft but absorbs more water during preparation. “I also prefer ugali that is neither very sticky nor very sweet. Such ugali would be appropriate to eat with any type of vegetable or sauce,” she said.

Fernandes Ambani prefers ugali that emits a distinct aroma while being cooked and should neither be very sweet nor plain tasting. For him, ugali should not be too soft or too hard. While it should not be very sticky, it should also not have dark spots in it. “When I like the taste, smell, texture and appearance of a particular variety when cooked, I would definitely purchase it if I found it on the market,” he said.

While the task of incorporating all the desired or multiple traits in the breeding pipeline could prove complex and costly, giving consumers what they like is one of the essential steps in enhancing a variety’s commercial success in the market, argues Ludovicus Okitoi, Director of Kenya Agricultural and Livestock Organization’s (KALRO) Kakamega Center.

“Despite continuously breeding and releasing varieties every year, some farmers still buy some older varieties, possibly because they have a preference for a particular taste in some of the varieties they keep buying,” Okitoi said. “It is a good thing that socioeconomists and breeders are talking more and more with the farmers.”

Advancements in breeding techniques may help accelerate the integration of multiple traits, which could eventually contribute to quicker varietal turnover.

“Previously, we did not conduct this type of varietal evaluations at the consumer level. A breeder would, for instance, just breed on-station and conduct national performance trials at specific sites. The relevant authorities would then grant their approval and a variety would be released. Things are different now, as you have to go back to the farmer as an essential part of incorporating end-user feedback in a variety’s breeding process,” explained Hugo de Groote, Agricultural Economist at CIMMYT.

TELA Maize Project

The name TELA is derived from the Latin word tutela, which means “protection.” The TELA Maize Project is a public-private partnership led by the African Agricultural Technology Foundation (AATF) working towards the commercialization of transgenic drought-tolerant and insect-protected (TELA®) maize varieties to enhance food security in sub-Saharan Africa. Launched in 2018, the TELA Maize Project builds on progress made from a decade of breeding work under the Water Efficient Maize for Africa (WEMA) Project.

Africa is a drought-prone continent, making farming risky for millions of smallholders who rely on rainfall to water their crops. Climate change will only worsen the problem. Identifying ways to mitigate drought risk, stabilize yields, and encourage small-scale farmers to adopt best management practices is fundamental to realizing food security and improved livelihoods for the continent. Drought is just one of the many challenges facing sub-Saharan African farmers. Insects pose additional challenges as farmers in the developing world have little or no resources to effectively manage them. Insect protection complements and protects yield made possible through research and development.

Through TELA, AATF and its partners are pursuing the regulatory approval and dissemination of new biotech/genetically-modified maize seeds containing either an insect-resistant trait or the stacked insect-resistant and drought-tolerant traits across seven target countries in Africa (Ethiopia, Kenya, Mozambique, Nigeria, South Africa, Tanzania and Uganda). The transgenic technology, including gene constructs, transformation and other recombinant DNA technologies, and other proprietary information and materials regarding the transgenes, owned by Bayer CropScience LP (formerly Monsanto Company), is licensed royalty-free to the partners for use in the project.

To the extent where their germplasm is transformed/incorporated into finished lines, Bayer and CIMMYT further grant AATF the license to commercially release the transgenic maize varieties within the partner countries, provided that no royalty fee shall be charged by AATF/its sublicensees, and subject to compliance with all regulatory, biosafety and stewardship requirements. CIMMYT’s non-transgenic parental lines which may be used for introgression in this project have been shared under the terms of the Standard Material Transfer Agreement (SMTA) of the Plant Treaty, and remain available to other third parties outside the project in the same way. The partner countries are in different stages of the approval process to test and commercialize TELA® hybrids, which will determine when farmers can access the improved TELA seeds.

Seed companies can receive license rights to produce and commercialize the new TELA® hybrids under their private brand from AATF in due course. Licensed seed companies will access the technology royalty-free for them to produce and sell the seeds to farmers at prevailing market prices. Better yield performance, combined with improved seed quality, will deliver more value to farmers and create more demand and potential for the seed brand.

Smallholder farmers benefit from TELA maize, as it provides better drought tolerance, protection against stem borers, and partial but significant protection against fall armyworm. As a result, smallholders will spend less money on insecticides and reduce their exposure to these chemicals, besides benefiting from improved yields and better grain quality.

CIMMYT and Pakistan: 60 years of collaboration

A new fact sheet captures the impact of CIMMYT after six decades of maize and wheat research in Pakistan.

Dating back to the 1960s, the research partnership between Pakistan and CIMMYT has played a vital role in improving food security for Pakistanis and for the global spread of improved crop varieties and farming practices.

Norman Borlaug, Nobel Peace Prize laureate and first director of CIMMYT wheat research, kept a close relationship with the nation’s researchers and policymakers. CIMMYT’s first training course participant from Pakistan, Manzoor A. Bajwa, introduced the high-yielding wheat variety “Mexi-Pak” from CIMMYT to help address the national food security crisis. Pakistan imported 50 tons of Mexi-Pak seed in 1966, the largest seed purchase of its time, and two years later became the first Asian country to achieve self-sufficiency in wheat, with a national production of 6.7 million tons.

CIMMYT researchers in Pakistan examine maize cobs. (Photo: CIMMYT)
CIMMYT researchers in Pakistan examine maize cobs. (Photo: CIMMYT)

In 2019 Pakistan harvested 26 million tons of wheat, which roughly matches its annual consumption of the crop.

In line with Pakistan’s National Food Security Policy and with national partners, CIMMYT contributes to Pakistan’s efforts to intensify maize- and wheat-based cropping in ways that improve food security, raise farmers’ income, and reduce environmental impacts. This has helped Pakistani farmers to figure among South Asia’s leaders in adopting improved maize and wheat varieties, zero tillage for sowing wheat, precision land leveling, and other innovations.

With funding from USAID, since 2013 CIMMYT has coordinated the work of a broad network of partners, both public and private, to boost the productivity and climate resilience of agri-food systems for wheat, maize, and rice, as well as livestock, vegetable, and fruit production.

Download the fact sheet:
CIMMYT and Pakistan: 60 years of collaboration

Cover photo: A wheat field in Pakistan, ready for harvest. (Photo: Kashif Syed/CIMMYT)

Training, surveillance, and monitoring to mitigate the threat of wheat blast disease in Bangladesh and beyond

Wheat blast (Magnaporthe oryzae pathotype Triticum, or MoT) was first discovered in Brazil in 1985. Since then, it has spread across central and southern Brazil, parts of Bolivia, Paraguay, and Argentina. Grain sterility caused by the disease can significantly reduce wheat yield, with reductions as high as 32% in some parts of Brazil, even with up to two fungicide applications.

The disease appeared in Bangladesh unexpectedly in 2016 and re-emerged in 2017. Wheat area consequently dropped from 62,763 hectares in 2016 to just 14,238 hectares a year later. Suitable climatic conditions in South Asia warn that wheat blast will be a long-term problem.

Some 300 million people in South Asia consume over 100 million tons of wheat annually. Wheat blast therefore presents a significant threat to food security. Compounding these problems, climate change and the evolution of wheat blast – increasing virulence, fungicide resistance and sexual recombination – present further threats.

This project responds to these problems by working to mitigate the effect of wheat blast in South Asia and South America and limit the risk of further spread of this threat, with an emphasis on training, surveillance and monitoring to mitigate the threat of wheat blast disease in Bangladesh and beyond.

Objectives

  • Improve upon a preliminary modeling framework to manage data requirements for automated time- and spatially-explicit wheat blast outbreak early warning systems (EWS)
  • Improve flowering predictability to more accurately gauge disease risk
  • Demonstrate the performance of wheat blast resistant and zinc biofortified variety BARI Gom 33 in farmers’ fields.

Fighting back against fall armyworm in Bangladesh

Fall armyworm is an invasive Lepidopteran pest that favors maize and is native to the Americas. It was identified in Bangladesh for the first time in late 2018 following migration from Africa and southern India.

Supported by the University of Michigan and USAID, this project cooperates with national research and extension partners, CABI and the FAO to strengthen efforts to mitigate impact of the pest on farmers’ income, food security and health.

Objectives

  • Develop educational materials to help reach audiences with information to improve understanding and management of fall armyworm
  • Assist the Department of Agricultural Extension (DAE) in deploying awareness raising and training campaigns
  • Institutional change to improve crop protection and integrated pest management
  • Prepare the private sector for appropriate fall armyworm response
  • Support the standing multi-threat pest emergency taskforce
  • Generate data and evidence to guide integrated fall armyworm management

Blast and rust forecast

An early warning system set to deliver wheat disease predictions directly to farmers’ phones is being piloted in Bangladesh and Nepal by interdisciplinary researchers.

Experts in crop disease, meteorology and computer science are crunching data from multiple countries to formulate models that anticipate the spread of the wheat rust and blast diseases in order to warn farmers of likely outbreaks, providing time for pre-emptive measures, said Dave Hodson, a principal scientist with the International Maize and Wheat Improvement Center (CIMMYT) coordinating the pilot project.

Around 50,000 smallholder farmers are expected to receive improved disease warnings and appropriate management advisories through the one-year proof-of-concept project, as part of the UK Aid-funded Asia Regional Resilience to a Changing Climate (ARRCC) program.

Early action is critical to prevent crop diseases becoming endemic. The speed at which wind-dispersed fungal wheat diseases are spreading through Asia poses a constant threat to sustainable wheat production of the 130 million tons produced in the region each year.

“Wheat rust and blast are caused by fungal pathogens, and like many fungi, they spread from plant to plant — and field to field — in tiny particles called spores,” said Hodson. “Disease strain mutations can overcome resistant varieties, leaving farmers few choices but to rely on expensive and environmentally-damaging fungicides to prevent crop loss.”

“The early warning system combines climate data and epidemiology models to predict how spores will spread through the air and identifies environmental conditions where healthy crops are at risk of infection. This allows for more targeted and optimal use of fungicides.”

The system was first developed in Ethiopia. It uses weather information from the Met Office, the UK’s national meteorological service, along with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge, to construct and deploy a near real-time early warning system.

CIMMYT consultant Madan Bhatta conducts field surveys using Open Data Kit (ODK) in the mid-hills of Nepal. (Photo: D. Hodson/CIMMYT)
CIMMYT consultant Madan Bhatta conducts field surveys using Open Data Kit (ODK) in the mid-hills of Nepal. (Photo: D. Hodson/CIMMYT)

Initial efforts focused on adapting the wheat stripe and stem rust model from Ethiopia to Bangladesh and Nepal have been successful, with field surveillance data appearing to align with the weather-driven disease early warnings, but further analysis is ongoing, said Hodson.

“In the current wheat season we are in the process of comparing our disease forecasting models with on-the-ground survey results in both countries,” the wheat expert said.

“Next season, after getting validation from national partners, we will pilot getting our predictions to farmers through text-based messaging systems.”

CIMMYT’s strong partnerships with governmental extension systems and farmer associations across South Asia are being utilized to develop efficient pathways to get disease predictions to farmers, said Tim Krupnik, a CIMMYT Senior Scientist based in Bangladesh.

“Partnerships are essential. Working with our colleagues, we can validate and test the deployment of model-derived advisories in real-world extension settings,” Krupnik said. “The forecasting and early warning systems are designed to reduce unnecessary fungicide use, advising it only in the case where outbreaks are expected.”

Local partners are also key for data collection to support and develop future epidemiological modelling, the development of advisory graphics and the dissemination of information, he explained.

The second stage of the project concerns the adaptation of the framework and protocols for wheat blast disease to improve existing wheat blast early warning systems already pioneered in Bangladesh.

Example of weekly stripe rust spore deposition forecast in Nepal. Darker colors represent higher predicted number of spores deposited. The early warning system combines weather information from the Met Office with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge. (Graphic: University of Cambridge and Met Office)
Example of weekly stripe rust spore deposition forecast in Nepal. Darker colors represent higher predicted number of spores deposited. The early warning system combines weather information from the Met Office with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge. (Graphic: University of Cambridge and Met Office)

Strong scientific partnership champions diversity to achieve common goals

The meteorological-driven wheat disease warning system is an example of effective international scientific partnership contributing to the UN Sustainable Development Goals, said Sarah Millington, a scientific manager at Atmospheric Dispersion and Air Quality Group with the Met Office.

“Diverse expertise from the Met Office, the University of Cambridge and CIMMYT shows how combined fundamental research in epidemiology and meteorology modelling with field-based disease observation can produce a system that boosts smallholder farmers’ resilience to major agricultural challenges,” she said.

The atmospheric dispersion modeling was originally developed in response to the Chernobyl disaster and since then has evolved to be able to model the dispersion and deposition of a range of particles and gases, including biological particles such as wheat rust spores.

“The framework together with the underpinning technologies are transferable to forecast fungal disease in other regions and can be readily adapted for other wind-dispersed pests and disease of major agricultural crops,” said Christopher Gilligan, head of the Epidemiology and Modelling Group at the University of Cambridge.

Fungal wheat diseases are an increasing threat to farmer livelihoods in Asia

Wheat leaf rust can be spotted on a wheat plant of a highly susceptible variety in Nepal. The symptoms of wheat rust are dusty, reddish-orange to reddish-brown fruiting bodies that appear on the leaf surface. These lesions produce numerous spores, which are spread by wind and splashing water. (Photo: D Hodson/CIMMYT)
Wheat leaf rust can be spotted on a wheat plant of a highly susceptible variety in Nepal. The symptoms of wheat rust are dusty, reddish-orange to reddish-brown fruiting bodies that appear on the leaf surface. These lesions produce numerous spores, which are spread by wind and splashing water. (Photo: D Hodson/CIMMYT)

While there has been a history of wheat rust disease epidemics in South Asia, new emerging strains and changes to climate pose an increased threat to farmers’ livelihoods. The pathogens that cause rust diseases are continually evolving and changing over time, making them difficult to control.

Stripe rust threatens farmers in Afghanistan, India, Nepal and Pakistan, typically in two out of five seasons, with an estimated 43 million hectares of wheat vulnerable. When weather conditions are conducive and susceptible cultivars are grown, farmers can experience losses exceeding 70%.

Populations of stem rust are building at alarming rates and previously unseen scales in neighboring regions. Stem rust spores can spread across regions on the wind; this also amplifies the threat of incursion into South Asia and the ARRCC program’s target countries, underscoring the very real risk that the disease could reemerge within the subcontinent.

The devastating wheat blast disease, originating in the Americas, suddenly appeared in Bangladesh in 2016, causing wheat crop losses as high as 30% on a large area, and continues to threaten South Asia’s vast wheat lands.

In both cases, quick international responses through CIMMYT, the CGIAR research program on Wheat (WHEAT) and the Borlaug Global Rust Initiative have been able to monitor and characterize the diseases and, especially, to develop and deploy resistant wheat varieties.

The UK aid-funded ARRCC program is led by the Met Office and the World Bank and aims to strengthen weather forecasting systems across Asia. The program is delivering new technologies and innovative approaches to help vulnerable communities use weather warnings and forecasts to better prepare for climate-related shocks.

The early warning system uses data gathered from the online Rust Tracker tool, with additional fieldwork support from the Cereal Systems Initiative for South Asia (CSISA), funded by USAID and the Bill & Melinda Gates Foundation, both coordinated by CIMMYT.

Fall Armyworm R4D and Management

The fall armyworm (Spodoptera frugiperda; FAW), an insect-pest native to the Americas, has been a persistent and serious pest of maize for over a century. Public and private sector scientists in the Americas – particularly in Brazil and the United States – have developed and deployed effective strategies to control the pest.

Incidence of fall armyworm was first reported in Nigeria in January 2016, and subsequently in over 40 countries across Africa. In Asia, the pest was first reported in India in mid-2018, and has since emerged in several countries in the Asia-Pacific. Strategies for fall armyworm management in both Africa and the Asia-Pacific can benefit immensely from those already fine-tuned in the Americas, with necessary customization to fit local agroecologies and farming systems. There is also a need to intensively work on various aspects of integrated pest management (IPM) for effective and sustainable fall armyworm management. This includes Research-for-Development (R4D) for discovering, validating and piloting best-bet technological interventions or management practices.

This project brings together the expertise of key institutions with long-standing experience in effectively dealing with transboundary insect-pests to strengthen the capacities of Africa- and Asia-based institutions in fall armyworm management. The goal is to develop and disseminate comprehensive, expert approved, IPM-based fall armyworm pest management practices that will enable various stakeholders – especially farmers, extension agents, and pest control advisors – to effectively scout, determine the need for, and appropriately apply specific interventions to control the fall armyworm in maize and other crops in Africa and Asia.

Objectives

  • Develop, publish and disseminate comprehensive, expert-approved, IPM-based information resources for various stakeholder groups
  • Integrate traits for fall armyworm resistance into the CIMMYT breeding pipeline
  • Establish a fall armyworm Research-for-Development (R4D) Consortium

Don’t forget about the impact of COVID-19 on the rural poor and on food security

A woman sells maize at the market in Sidameika Tura, Arsi Negele, Ethiopia. (Photo: Peter Lowe/CIMMYT)
A woman sells maize at the market in Sidameika Tura, Arsi Negele, Ethiopia. (Photo: Peter Lowe/CIMMYT)

Disclaimer: The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official views or position of the International Maize and Wheat Improvement Center (CIMMYT).

While all eyes are on Lombardy, Madrid, New York and Wuhan, what do we know about the impact of COVID-19 on the rural poor and on food security in developing countries? How can the impact of the crisis be moderated? What positive breakthroughs could be provoked by this shock to move us into a better “new normal”? What can donors and implementing organizations do to support low- and middle-income countries during and beyond this crisis?

Members of the Agriculture and Rural Development working group of the international Scaling Up community of practice held a virtual meeting to discuss these questions and how scaling-up innovations could help to recover from the current crisis and mitigate future ones.

Poor rural communities are particularly vulnerable

When it comes to a highly contagious disease, being in a rural area sounds better than being in a busy city, but that is a deceptive impression. Smallholder farmers often are older than average and hence more vulnerable to the virus, and they have less access to health services.

They also depend on field laborers that are not able to travel from surrounding villages to help with planting, weeding and harvesting. To process crops, smallholder farmers need to transport crops to processing centers, which may be closed, as are the markets where they obtain agricultural inputs or sell farm products. Large international agrobusiness firms, which supply inputs and purchase local famers’ products may withdraw, at least temporarily, from the rural economies. There are already reports of farmers feeding cattle strawberries and broccoli in India, as they are unable to get their goods to the market.

Most farmers also depend on non-farm and off-farm activities for their livelihoods, as they may be field laborers for other farmers, work in the processing industry or work in construction. Interrupted transportation and closures pose serious challenges to maintain safe business continuity throughout the rural economy. The risk is not only that immediate rural production, food deliveries, exports, employment and incomes will collapse, but also that planting for next year’s crops will be disrupted.

It is key to differentiate between global and local supply chains, which will suffer in different ways. For example, in Uganda, supermarkets are open but small, informal markets are closed. In past crises, governments have focused on the survival of global value chains over local ones. Small, rural businesses are more likely to close permanently than large international ones.

Globally, international support for agriculture and rural development has been lagging in recent years.  Today, the international support from aid agencies and NGOs is interrupted, as travels are restricted and community meetings are prohibited. With increased donor attention to a domestic and international health crisis, aid for rural communities may drop precipitously.

Men transport wheat straw on donkey karts in Ethiopia’s Dodula district. (Photo: Peter Lowe/CIMMYT)
Men transport wheat straw on donkey karts in Ethiopia’s Dodula district. (Photo: Peter Lowe/CIMMYT)

Opportunities for an improved “new normal” as we respond to the crisis

The short-term response to help minimize the impact of the COVID-19 crisis on the rural poor is critical, but we also need to support the shaping of a “new normal” where rural food systems are resilient, profitable and inclusive for poor rural communities. Members of the Scaling Up community of practice explored various ideas.

First, the COVID-19 pandemic could present opportunities to break silos and show how closely health and agriculture are related.

“COVID-19 cuts across sectors and jurisdictions in ways that single organizations and established governance structures are ill-equipped to accommodate,” said Larry Cooley, Scaling Expert and Founder and President Emeritus of Management Systems International (MSI)

For example, rural agricultural extension networks could be used to disseminate information on health awareness and education around COVID-19 and collect data on local impacts. This may cause and provide relief in the short term, but may also provide opportunities for collaboration in the long run.

“Our agricultural networks go deep into the rural areas and we are training our agri-entrepreneurs in India to disseminate health messages, products and services to help address COVID-19,” said Simon Winter, Executive Director of the Syngenta Foundation.

“At the African Development Bank we are providing emergency relief finance and re-purposing funding to have a link with COVID-19,” said Atsuko Toda, the bank’s Director of Agricultural Finance and Rural Development.

Second, a “new normal” could also mean an even stronger independence from externally funded projects, experts and solutions to more local ownership and expertise in rural areas, something that the community of practice has been promoting strongly. We could help to support more autonomy of the farmer, a strong local market and scale-up local value chains. Strengthening the capacity of small and medium enterprises linking farmers to urban markets could help ensure stability in future economic shocks.

“Governments and donor ‘projects’ looked too much at export and global value chains. I see great opportunities to scale up local and regional input and output value chains that benefit local farmers and small and medium enterprises,” said Margret Will, expert on value chains.

Third, the COVID-19 pandemic presents an opportunity to accelerate the scaling of innovations.

“Lack of access to labor could be disrupting harvesting and planting in our Feed the Future countries, accelerating an already predominant trend of migration, especially among the young, to urban areas. We see a looming need for mechanization of farms at scale, using mini-tillers, planters, harvesters and other time- and labor-saving equipment,” said Mark Huisenga, Senior Program Manager for the USAID Bureau for Resilience and Food Security.

Masimba Mawire collects bare maize cobs after removing the grain using a mechanized maize sheller in Zimbabwe. (Photo: Matthew O’Leary/CIMMYT)
Masimba Mawire collects bare maize cobs after removing the grain using a mechanized maize sheller in Zimbabwe. (Photo: Matthew O’Leary/CIMMYT)

Rural communities that use more ecological intensive practices, such as conservation agriculture and push-pull farming or safe storage practices are less dependent on external inputs and labor.

The current crisis forces us to use digital communication systems, replace human work with digital tools where possible and use technology to help target interventions. Both the public and private sector could build on this opportunity to invest in increased access to internet, electricity and other digital resources, including in impoverished areas. All these technological innovations can help farmers to better cope with the constraints of COVID-19 and any future crises or stresses to the food system, while also making agriculture more productive and more attractive to the young.

“The pandemic creates an opportunity to accelerate the use of digital technologies in smallholder agriculture, not only for extension advice but to crowdsource information about COVID-19 impacts,” said Julie Howard, Senior Advisor for the Center for Strategic and International Studies (CSIS).

Finally, COVID-19 will change our global governance system, and the agriculture, research and development sector has a role to play in this transformation. A systems change must focus on dietary diversity and food safety and security, paying attention to the rural poor in low- and middle-income countries. We can work together to scale cross-sector platforms to build solid networks and scale-up innovations to strengthen sustainable and resilient food systems.

Systems change beyond the agricultural sector, sustainability through local ownership and uptake of innovations that support profitable and resilient agricultural and related rural activities are key components of how the Scaling Up Community of Practice approaches scaling. A systems change is imminent, and it is important to support a transformation in a direction where local markets, rural labor and regional economies come out stronger in the long term. This requires vision, expertise, mobilization of resources, information sharing and crowdsourced leadership, and the network of scaling experts can contribute to this.

The Agriculture and Rural Development working group of the international Scaling Up community of practice is made up of individuals from more than 100 official donors, foundations, think tanks, research and development organizations united by their interest in scaling the impact of innovations on food security and rural poverty. Areas of particular interest for the group include designing for scale, using scaling frameworks, learning about scaling, responsible scaling, sustainability and system thinking. Members of the working group include professionals with vast experience from the field, and the group explicitly tries to learn from the application of complex concepts such as sustainability, systems change and scaling in real world settings by local actors. In addition to quarterly virtual meetings, the working group encourages and supports exchanges among its members on a variety of subjects. Participation in, and management of, the Agriculture and Rural Development working group is done on a purely voluntary basis.

About the Authors:

Lennart Woltering — Scaling catalyst at CIMMYT and chair of the Agriculture and Rural Development working group.

Johannes Linn — Non-resident Senior Fellow at Brookings and former Vice President of the World Bank.

Maria Boa — Scaling coordinator at CIMMYT and secretary of the Agriculture and Rural Development working group

Mary Donovan — Communications Consultant at CIMMYT.

Collective efforts to fight fall armyworm in Nepal

Three years ago, farmers in the country were combatting the threats of a destructive tomato pest, Tuta Absoluta, and are now battling their way to manage the attack of fall armyworm on maize fields across the country. Since the government’s Plant Quarantine and Pest Management Centre (PQPMC) declared the arrival of fall armyworm on August 2019, this pest is reported to have infested almost half the districts of Nepal and continues to spread further.

“I wasn’t able to gather even half the yields I used to get from my maize field following the fall armyworm outbreak last year,” said Pavitra, a farmer from Sindhupalchowk district, Nepal.

The level of incidence and damage varies from place to place, but farmers have reported up to 80% crop loss in extreme cases. In Nepal, the fall armyworm has the potential to cause maize yield losses of 20-25%, which translates to the loss of more than half a million tons of the annual maize production — estimated at around $200 million. If the pest is left unrestrained, its impact will be huge for farmers and the economy.

This calls for a collective effort and broad mobilization to effectively manage fall armyworm and limit its spread across the country. Since the pest was expected to reach Nepal, partners have conducted workshops and community mobilization initiatives.

Experts at the International Maize and Wheat Improvement Center (CIMMYT) have been working with public and private partners before and after the arrival of the invasive pest in Nepal. The shared efforts have focused on creating awareness, disseminating appropriate technologies and management techniques, and strengthening the capacity of communities, institutions and governments.

The Ministry of Agriculture and Livestock Development has established a national taskforce to fight the pest. Most provinces have established similar taskforces that include researchers, agriculture extension agents, farmers and entrepreneur associations.

Training participants examine a fall armyworm on a maize leaf. (Photo: Bandana Pradhan/CIMMYT)
Training participants examine a fall armyworm on a maize leaf. (Photo: Bandana Pradhan/CIMMYT)
Fall armyworms are found on leaves in a maize field in Nepal. (Photo: Shailaja Thapa/CIMMYT)
Fall armyworms are found on leaves in a maize field in Nepal. (Photo: Shailaja Thapa/CIMMYT)
A pheromone trap is installed next to a maize field in Nepal. (Photo: Bandana Pradhan/CIMMYT)
A pheromone trap is installed next to a maize field in Nepal. (Photo: Bandana Pradhan/CIMMYT)
Participants in one of the trainings learn how to scout and collect data on fall armyworm in a maize field. (Photo: Bandana Pradhan/CIMMYT)
Participants in one of the trainings learn how to scout and collect data on fall armyworm in a maize field. (Photo: Bandana Pradhan/CIMMYT)
Training participants imitate the fall armyworm’s white inverted Y mark visible on the front of the head of the larva. (Photo: Bandana Pradhan/CIMMYT)
Training participants imitate the fall armyworm’s white inverted Y mark visible on the front of the head of the larva. (Photo: Bandana Pradhan/CIMMYT)

Gearing up to fight the very hungry caterpillar

In collaboration with national and provincial governments, CIMMYT has trained 426 agricultural professionals, including lead farmers, on how to identify and manage fall armyworm.

In February 2020, CIMMYT partnered with agricultural development directorates in two provinces to train 130 people on how to scout for fall armyworm and recommended solutions, based on integrated pest management principles.

In late 2019, CIMMYT engaged with the public and private sector through training workshops to disseminate proven practices to control the pest.

“Before, I was unable to recognize the pest that had destroyed my maize field. The hands-on training has been very informative,” said Urmila Banjgayu, a lead farmer who participated in one of the trainings. “I am certain to share the knowledge and practices that I learned with other farmers in my locality. They need to know what to do and what not to.”

Through the Nepal Seed and Fertilizer (NSAF) project, CIMMYT staff is working closely with the Ministry of Agriculture and Livestock Development, the Nepal Agricultural Research Council (NARC), the PQPMC, provincial governments, and other USAID-funded projects and development partners in Nepal. Together, they have developed integrated pest management packages, informative factsheets and surveillance guidelines. CIMMYT researchers have shared experiences on pest management, surveillance and scouting techniques from other countries in Asia and Africa. They have also demonstrated digital tools that will help map the spread of the pest and build accurate interpretation for better management.

Outreach workers use an auto-rickshaw equipped with a sound system and infographics to disseminate information about armyworm in Nepal’s Banke district. (Photo: Darbin Joshi/CIMMYT.)
Outreach workers use an auto-rickshaw equipped with a sound system and infographics to disseminate information about armyworm in Nepal’s Banke district. (Photo: Darbin Joshi/CIMMYT.)
Farmers listen to information about fall armyworm displayed on an auto-rickshaw in Nepal’s Banke district. (Photo: Darbin Joshi/CIMMYT)
Farmers listen to information about fall armyworm displayed on an auto-rickshaw in Nepal’s Banke district. (Photo: Darbin Joshi/CIMMYT)

Fall armyworm awareness campaign

Farmers must learn how to identify and manage this pest. Bijaya Ghimire, a lead farmer from Kanchanpur district, had heard about fall armyworm from a nearby seed company and a few of his friends. He informed the Agriculture Knowledge Center about the symptoms he observed in his maize field, and verification of the larvae and damage confirmed the presence of fall armyworm. Luckily, Ghimire was able to control the pest before severe damage was done.

CIMMYT researchers collaborated with the Prime Minister Agricultural Modernization Project (PMAMP) to implement outreach campaigns in Banke district. This included a mobile information booth, local dissemination of audio messages, and distribution of posters and fact sheets about fall armyworm. The two-day campaign successfully raised awareness about the pest, reaching more than 1,000 farmers from four villages in maize growing areas.

Researchers also worked with Scientific Animations Without Borders (SAWBO) and adapted an educational video on how to identify and scout for fall armyworm in a field into Nepali. In collaboration with the PQPMC, the video was broadcast 42 times on three local TV channels, to an estimated audience of more than one million viewers in June 2019. The video has also received over 2,000 online views. The animated video is being shown to farmers using mobile phones and displayed on big screens during community events and workshops.

“Seamless collaboration is required among the major stakeholders in the country to collectively fight the pest,” said AbduRahman Beshir, CIMMYT seed systems lead for the NSAF project and member of the national fall armyworm taskforce. “The potential impact of fall armyworm poses a fundamental challenge for smallholder farmers in Nepal. If unattended, it is going to be a food security issue and an equally daunting task to safeguard livelihoods.”

Seeing is believing

Nancy Wawira strolls through a small plot of maize at Kithimu, in Kenya’s Embu County. She is charmed by the attributes of a maize variety that can yield 2,700kg per acre or more. The variety can endure drought-like conditions, matures in less than 120 days and has potential for double-cobbing.

Wawira is visiting a demonstration farm to witness the performance of several high yielding, early to medium maturing, drought-tolerant maize varieties.

By coming to this demonstration farm, Wawira hoped to identify a newer maize variety she could plant on her quarter-acre of land to get higher yield. The plot she stood on was the exact replica of what she was looking for. “Occasions such as this field day are very important for me and I always endeavor to attend them, as there is always something new to see or learn,” she says.

On her farm, she has been planting one of the old but popular commercial varieties suitable for this mid-altitude ecology. She normally harvests 4 bags of maize, of 90kg each, every season. However, if there is not enough rain or if there are pests or diseases, which is often the case, she harvests just 2 bags or less. This is hardly enough to meet her family’s food requirements for the year.

Switching to the maize variety she was interested in, and applying recommended farming practices, she could harvest 6 bags per season or more.

“Today, I have learnt how to improve my farming,” says Wawira. “Even when I access the variety that is high yielding, drought-tolerant and can mature in about three and a half months, as I witnessed on one of the plots, I still need to pay attention to proper crop husbandry related to spacing, timing of the planting, seed, fertilizer and pesticide application besides weed control,” she says.

Nancy Wawira examines maize in one of the demo plots. (Photo: Joshua Masinde/CIMMYT)
Nancy Wawira examines maize in one of the demo plots. (Photo: Joshua Masinde/CIMMYT)

Made-to-order

Wawira was one of the more than 400 farmers from nearby Manyatta sub-county visiting the demonstration farm on February 7, 2020. They were able to see varieties and learn about their traits, invited by the Seed Trade Association of Kenya (STAK) with the support of the International Maize and Wheat Improvement Center (CIMMYT).

The demonstration is a continuation of the work started under the Drought Tolerant Maize for Africa Seed Scaling (DTMASS) project and later under the Stress Tolerant Maize for Africa (STMA) project.

Officials from Embu County, led by its minister in charge of agriculture Jamleck Muturi, were present during the farmers’ visit. Ten seed firms, some of which use CIMMYT’s germplasm for seed propagation and marketing, participated as well.

“Several of our member seed companies are showcasing the varieties developed through CIMMYT’s breeding pipeline,” said Duncan Ochieng’, the chief executive officer of STAK. “The maize varieties showcased on these demo farms were designed to be drought-tolerant, high yielding and range from early to medium maturing. These varieties are juxta-posted with other commercial varieties suitable for this region.”

During visits to demonstration farms, farmers give feedback on their variety preferences. Seed companies can then align their breeding, germplasm-access requests, seed production or marketing plans with farmers’ expectations.

Some of the farmers who participated in the field day in Embu County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Some of the farmers who participated in the field day in Embu County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Jackline Wanja in one of the demo plots of the variety she liked. (Photo: Joshua Masinde/CIMMYT)
Jackline Wanja in one of the demo plots of the variety she liked. (Photo: Joshua Masinde/CIMMYT)
A seed company representative shows seeds to a farmer during the visit to the demonstration farm. (Photo: Joshua Masinde/CIMMYT)
A seed company representative shows seeds to a farmer during the visit to the demonstration farm. (Photo: Joshua Masinde/CIMMYT)
STAK chief executive officer Duncan Ochieng' examines a maize cob in one of the demo plots. (Photo: Joshua Masinde/CIMMYT)
STAK chief executive officer Duncan Ochieng’ examines a maize cob in one of the demo plots. (Photo: Joshua Masinde/CIMMYT)

Dire traits

Farming stresses such as pests, diseases, heat and drought have made targeted breeding a critical necessity.

Young farmers are increasingly choosing varieties that can mature faster, typically in less than three months. They also favor varieties that offer higher yield than the popular commercial varieties, many of which have been on the market for at least a decade. Other sought-after traits are good performance in low or erratic rains, tolerance to maize lethal necrosis, reduced lodging, and efficiency in nitrogen use.

Jackline Wanja, 25, relies on her one-acre farm for survival. “On average, I harvest about 25 bags per acre. On the demo farm, I got to know of a variety than can yield at least 30 bags per acre. I also learnt that the variety is not only drought-resilient but can also mature in about three and a half months. This is the variety that I plan to plant my farm next season,” Wanja said.

For John Njiru, 52, a higher-yielding variety with a lot of foliage, which remains green even after the maize cob has dried, is what he came looking for. For this farmer with 12 acres of land, the green maize foliage is a significant source of income when sold to livestock keepers. Njiru feeds his own livestock with it, making substantial savings on animal feed expenditure. “If this variety is as high yielding as I have been made to understand and can offer me at least 30 bags per acre, I would be a happy farmer. My farming would be very profitable,” he says.

John Njiru on a demo plot of the variety he liked. (Photo: Joshua Masinde/CIMMYT)
John Njiru on a demo plot of the variety he liked. (Photo: Joshua Masinde/CIMMYT)

Ready for the seed sector

Nepal’s National Seed Vision 2013-2025 identified the critical skills and knowledge gaps in the seed sector, across the value chain. Seed companies often struggle to find skilled human resources in hybrid product development, improved seed production technology and seed business management. One of the reasons is that graduates from agricultural universities might be missing on recent advancements in seed science and technology, required by the seed industry.

Researchers from the International Maize and Wheat Improvement Center (CIMMYT) have been collaborating with Agriculture and Forestry University (AFU) to review and update the existing curriculum on seed science and technology, for both undergraduate and postgraduate students. This work is part of the Nepal Seed and Fertilizer (NSAF) project, funded by the United States Agency for International Development (USAID) through the Feed the Future initiative.

Realizing the need to increase trained human resources in improved seed technologies, CIMMYT researchers held discussions with representatives from the Department of Agronomy at AFU, to begin revising the curriculum on seed science and technology. Developed four years ago, the current curriculum does not encompass emerging developments in the seed industry. These include, for example, research and product development initiated by local private seed companies engaged in hybrid seed production of various crops, who want to be more competitive in the existing market.

Each year, approximately 200 bachelor’s and 10 master’s students graduate from AFU. In collaboration with CIMMYT, the university identified critical areas that need to be included in the existing curriculum and drafted new courses for endorsement by the academic council. AFU also developed short-term certificate and diploma courses in the subject of seed science and technology.

AbduRahman Beshir, CIMMYT, discusses the importance of linking academic courses with the emerging trends of the seed industry. (Photo: Bandana Pradhan/CIMMYT)
AbduRahman Beshir, CIMMYT, discusses the importance of linking academic courses with the emerging trends of the seed industry. (Photo: Bandana Pradhan/CIMMYT)

Shared knowledge

On November 20, 2019, CIMMYT, AFU and Catholic Relief Services (CRS) organized a consultation workshop with seed stakeholders from the public and private sectors, civil society and academia. Participants discussed emerging needs within Nepal’s seed industry and charted out how higher education can support demand, through a dynamic and responsive program.

Sabry G. Elias, professor at Oregon State University (OSU), discussed recent advances in seed science and technology, and how to improve productivity of smallholder farmers in Nepal. He is supporting the curriculum revision by taking relevant lessons from OSU and adapting them to Nepal’s context. Sabry shared the courses that are to be included in the new program and outlined the importance of linking graduate research with the challenges of the industry. He also stressed the importance of building innovation and the continuous evolution of academic programs.

Sabry Elias, Oregon State University, talks about the importance of critical thinking to bring innovations to the seed sector. (Photo: Bandana Pradhan/CIMMYT)
Sabry Elias, Oregon State University, talks about the importance of critical thinking to bring innovations to the seed sector. (Photo: Bandana Pradhan/CIMMYT)

Professors from AFU, Nepal Polytechnic Institute, Tribhuvan University, and several private colleges introduced the current courses in seed science and technology at their institutions. Santosh Marahatta, head of the Department of Agronomy at AFU, discussed the limitations of the current master’s and doctoral degree programs, and proposed a draft curriculum with integrated courses across the seed value chain. J.P. Dutta, dean of the Faculty of Agriculture at AFU, shared plans to create a curriculum that would reflect advanced practices and experiences in seed science and technology.

Scientists and researchers from Nepal Agricultural Research Council (NARC) presented their activities and suggested key areas to address some of the challenges in the country’s seed sector.

“Our aim is to strengthen local capacity to produce, multiply and manage adequate quality seeds that will help improve domestic seed production and seed self-sufficiency,” said Mitraraj Dawadi, a representative from the Seed Entrepreneurs Association of Nepal (SEAN). “Therefore, we encourage all graduates to get hands-on experience with private companies and become competent future scientists and researchers.”

AbduRahmann Beshir, Seed Systems Lead for the NSAF project at CIMMYT, shared this sentiment. According to him, most current graduates lack practical experience on hybrid seed development, inbred line maintenance and knowledge on the general requirements of a robust seed industry. “It is important that universities can link their students to private seed companies and work together towards a common goal,” he explained. “This human resource development drive is part of CIMMYT’s efforts to help Nepal on its journey to self-reliance.”

Organizers of the stakeholder consultation workshop to enhance the role of higher learning institutions in the Nepal seed sector at AFU, Chitwan. (Photo: Bandana Pradhan/CIMMYT)
Organizers of the stakeholder consultation workshop to enhance the role of higher learning institutions in the Nepal seed sector at AFU, Chitwan. (Photo: Bandana Pradhan/CIMMYT)

Breaking Ground: Aparna Das leads efficient and demand-driven maize research

Getting a good maize harvest, or just enough to feed the family, has always been a challenge for maize small farmers in developing countries. Faced with variable rainfall, heat waves, insect attacks or diseases, they rarely yield more than two tons of maize per hectare, and sometimes lose their crops altogether. Climate change, invasive pests like fall armyworm or new diseases like maize lethal necrosis could jeopardize even further the livelihoods of maize farmers and trigger severe food crises.

In this scenario, the lives and income of maize farmers rely on good seeds: seeds that are climate-resilient, pest- and disease-resistant, and that grow and yield well under local conditions, often with minimum inputs.

“That is where the maize improvement research at the International Maize and Wheat Improvement Center (CIMMYT) plays a crucial role in this challenge of food security. You need to develop the right location-specific varieties that farmers want, that partner seed companies are willing to produce, in a cost- and time-efficient way,” says Aparna Das. She joined CIMMYT’s Global Maize research program in August 2018 as Technical Program Manager.

“My role is to work  with and guide the Breeding and Seed Systems team, so that our research is more client- and product-oriented, efficient, and so that there is a better coordination and monitoring, aligned with the available resources and skills within CIMMYT, and with our numerous public and private partners,” she explains.

Value-for-money farmer impact

An important activity Das coordinated recently is a series of collaborative product profiling workshops with CIMMYT’s partners. Integrating the priorities of the national agricultural research systems and partner seed companies, this exercise reviewed and redefined what maize traits and attributes research should focus on in years to come. After this consultation, partners not only pick up CIMMYT germplasm based on trial data, but they can also verify if it fits with their own profile, to make sure that the traits they want are there. It makes breeding much more targeted and efficient.

“Product profiling has already influenced our research. For instance, all partners mentioned husk cover as a ‘must-have’ trait, because you have less insect attacks and grain spoilage,” Das explains. “Although it was considered a base trait, the breeders did not consider it systematically during their maize line selection and product advancement. Now it is integrated,” she notes.

“Our impact should not be limited to the number of varieties released or the number of papers published, but also how many varieties are picked up by partners, adopted by farmers and scaled up,” Das points out.

Breeders and seed systems specialists have worked together to estimate and track the costs of delivering products. Teams responsible for product profiles can now, through simulation, test different solutions and see what costs could be reduced or adjusted to develop the hybrid.

Das enjoys this type of collaboration. “Managing behavioral change is a key part of my role, being able to work with different teams and cultures, which makes my job so interesting,” she says.

Plates of boiled and roasted maize are displayed for tasting during a farmer participatory varietal selection exercise in Embu, Kenya, in August 2019. Flavors of varieties are very distinct and could explain why some old varieties are still preferably grown by farmers. (Photo: S. Palmas/CIMMYT)
Plates of boiled and roasted maize are displayed for tasting during a farmer participatory varietal selection exercise in Embu, Kenya, in August 2019. Flavors of varieties are very distinct and could explain why some old varieties are still preferably grown by farmers. (Photo: S. Palmas/CIMMYT)

An out-of-the-book thinker in a men’s world

Plant breeding is a male-dominated world but Das is used to fitting in as a minority. Originally from West Bengal, she grew up in Ludhiana, another Indian state and a different culture. She learned genetics and plant breeding at Punjab Agricultural University (PAU) in Ludhiana. Discovering the new field of molecular breeding, at its infancy twenty-five years ago, was an exciting challenge.

At PAU, Das pursued crop improvement research, first in wheat and potato, and later in rice genetics. She received an award from India’s Department of Science and Technology under the Young Scientist Program for her work on jumping genes in basmati rice, aimed at creating shorter and more productive basmati varieties while maintaining the basmati aroma.

Later she joined the International Rice Research Institute (IRRI) to work on the development of Golden Rice, a provitamin A-rich variety, through genetic engineering.

“Being a woman in plant breeding, especially as a breeder, is not that common. Women are not expected to do plant breeding fieldwork, away from the lab and offices. But I did not back off. I did my rice fieldwork in the paddy fields, at 40 degrees, all on my own. I believe that women bring a level of precision that is very important in breeding.”

Bridging public and private sectors

After ten years of public research, she moved to the private seed sector, to learn how seed companies integrate farmers’ needs to their research pipeline, and then channel this research to deliver to millions of farmers. “A big lesson from corporations is the value for money at each stage of their research, and that market research is instrumental to really understand farmers’ needs and guide breeding,” she notes.

After a decade in the private sector, Das was keen to move on and use her experience in the nonprofit sector. Then she joined CIMMYT. “This opportunity of technical program manager was timely. I knew the strengths of CGIAR, having highly educated scientists and the great potential outreach of the research. I knew where crop research could be improved, in converting basic research into demand-driven research.”

“Since my time at IRRI a decade ago, I realized things had moved on in the CGIAR system. Seed systems, product profiling and value chain research are now fully integrated in the Global Maize program. It is a crucial time to be here at CIMMYT. With the CGIAR reform, with the climate emergency, and emerging pests and diseases, we have to be even more inventive and reactive to continue to deliver greater impact,” she concludes.

Crowdsourced data feeds fall armyworm surveillance in Bangladesh

Following the spread of fall armyworm, crowdsourced data is powering a web-based application to help farmers in Bangladesh stay ahead of the crop pest.

The Fall Armyworm Monitor collects population, incidence and severity data, and guides pest management decisions. The web tool relies on information gathered by farmers using smartphones in their fields.

It was developed by the International Maize and Wheat Improvement Center (CIMMYT) in cooperation with Bangladesh’s Department of Agricultural Extension, through the Fighting Back Against Fall Armyworm project, supported by USAID and Michigan State University.

When a foreign caterpillar first munched through Muhammad Hasan Ali’s maize field during the winter 2018-2019 season, he was stumped as to what it was or how to manage it. All he knew was his harvest and the investment he made in growing his crop was at risk.

“I’d never seen this type of insect in previous seasons, but I soon learned from government extension workers it was the fall armyworm,” explained Hasan Ali, a farmer from rural Chuadanga, in western Bangladesh. When poorly managed, fall armyworm can significantly reduce maize productivity.

Hasan Ali asked to join a training program, where he learned how to identify, monitor and control the spread of the invasive and voracious crop pest. The training, mainly tailored to extension staff, was facilitated by CIMMYT and Bangladesh’s Department of Agricultural Extension.

Participants of the Fighting Back Against Fall Armyworm trainings learning to collect field data through the Fall Armyworm Monitor web app in a farmer's field in Chauadanga, Bangladesh. (Photo: Uttam Kumar/CIMMYT)
Participants of the Fighting Back Against Fall Armyworm trainings learning to collect field data through the Fall Armyworm Monitor web app in a farmer’s field in Chauadanga, Bangladesh. (Photo: Uttam Kumar/CIMMYT)
Participants of the Fighting Back Against Fall Armyworm trainings learning to collect field data through the Fall Armyworm Monitor web app in a farmer's field in Chauadanga, Bangladesh. (Photo: Uttam Kumar/CIMMYT)
Participants of the Fighting Back Against Fall Armyworm trainings learning to collect field data through the Fall Armyworm Monitor web app in a farmer’s field in Chauadanga, Bangladesh. (Photo: Uttam Kumar/CIMMYT)
Participants and instructors of the Fighting Back Against Fall Armyworm trainings participate in a field session to work with the Fall Armyworm Monitor web app in Chauadanga, Bangladesh. (Photo: Uttam Kumar/CIMMYT)
Participants and instructors of the Fighting Back Against Fall Armyworm trainings participate in a field session to work with the Fall Armyworm Monitor web app in Chauadanga, Bangladesh. (Photo: Uttam Kumar/CIMMYT)

Equipped to fight the pest

Extension staff and farmers gained valuable insights into different methods of control, including management of small and large patches of insect attack.

“I learned to identify fall armyworms in my field — and how to use hand picking methods and appropriate application of insecticide for control,” said Hasan Ali.

Farmers also learned how to set up pheromone traps to monitor pest populations and to use smartphones to make data-driven integrated pest management decisions using a cloud-based monitoring platform.

Crowdsourced information on the movement of fall armyworm is essential for effectively monitoring its spread and is a pivotal step in its management, said CIMMYT Senior Scientist and Systems Agronomist Timothy Krupnik.

“Farmers in top maize growing regions are working with extension officers to monitor traps and report findings weekly by entering data into smartphones,” Krupnik said.

Pheromones are natural compounds emitted by female moths to attract males for mating. Synthetic compounds that mimic natural fall armyworm pheromones are placed in traps to lure and capture male moths, after which extension agents count moths, enter, and upload data in their districts. At the time of writing, 649 staff from the Department of Agricultural Extension are reporting weekly moth count and pest damage data.

“Pest management practices are best when they are data-driven,” Krupnik explained. “Having information on the geographical location, plant growth stage and severity of infestation provides an informed base from which appropriate decisions can be made, with the ultimate goal of reducing pesticide misuse.”

“We are also excited as the data are open-access, and we are working to share them with FAO and other partners crucial in fall armyworm response,” he added.

The Fall Armyworm Monitor gives moth count and other data at the division, district and upazilla levels. (Photo: CIMMYT)
The Fall Armyworm Monitor gives moth count and other data at the division, district and upazilla levels. (Photo: CIMMYT)

Data for better decisions

“The website hosts real-time data and depicts them graphically and in maps depending on user’s preferences. This information — which was core to the training extension agents participated in — is key for integrated pest management strategies,” explained Mutasim Billah, CIMMYT Data Specialist and the lead developer of the application.

“The department of extension services have employed 253 officers to visit fields with handheld smart devices in 25 districts to upload data,” said Billah. “The online tool stores data entries in its server and calculates the aggregated value for division, district and sub-district level on a weekly basis, and shows the estimated values through charts and in tabular format.”

The Fall Armyworm Monitor has become an essential tool for government officials to aid farmers in managing the pest which so far has been successful, said Bijoy Krishna Halder, additional Deputy Director of Plant Protection with the Bangladesh government.

“CIMMYT’s web portal is a very efficient way to collect data from the field. Anyone can access the page to see the overall condition of infestation across the country,”said Krishna Halder. “I check the portal every week about the fall armyworm condition and now it shows that the infestation is low with the overall field conditions good.”

The pest native to the Americas has become a global menace as it has spread attacking crops through Africa, and Asia, threatening the food and economic security of smallholder farmers.

Visit the Bangladesh Fall Armyworm Monitor.

The Fall Armyworm Monitor was created as part of the new Fighting Back Against Fall Armyworm in Bangladesh project is aligned with Michigan State University’s Borlaug Higher Education for Agricultural Research and Development (BHEARD) program, which supports the long-term training of agricultural researchers in USAID’s Feed the Future priority countries.