Skip to main content

funder_partner: United States Agency for International Development (USAID)

Christopher Ochieng Ojiewo

Christopher Ochieng Ojiewo aims to enhance enhance varietal turnover to mitigate losses from evolving climate patterns, especially in dry areas with the poorest of the poor farmers, while addressing pest and disease complexes, and enabling public-private partnerships for enhanced seed delivery. Core to his sense of purpose is: improving productivity and profitability for smallholder farmers; gender equity; youth empowerment; nutrition security; knowledge sharing; and solving the perpetual problem of food, nutrition and income insecurity of the less privileged in developing countries. He works to establish a robust system that ensures sustainable, timely availability of and access to quality seed of dryland cereals and grain legumes at affordable prices through the participation of multiple stakeholders along the seed value chain. He is committed to gender equity as a guiding principle, considering the critical role women play in choosing legume and cereal varieties and seed sources.

MARPLE reaches South Asia

Workshop participants stand for a group photo. (Photo: Danny Ward/John Innes Centre)
Workshop participants stand for a group photo. (Photo: Danny Ward/John Innes Centre)

On April 26–29, 2022, researchers from Nepal participated in a workshop on the use of MARPLE Diagnostics, the most advanced genetic testing methodology for strain-level diagnostics of the deadly wheat yellow rust fungus. Scientists from the International Maize and Wheat Improvement Center (CIMMYT) and the John Innes Centre trained 21 researchers from the Nepal Agricultural Research Council (NARC) and one from iDE. The workshop took place at NARC’s National Plant Pathology Research Centre in Khumaltar, outside the capital Kathmandu.

“The need for new diagnostic technologies like MARPLE and the critical timing of the workshop was highlighted by the severe yellow rust outbreak observed this season in the western areas of Nepal,” commented Dave Hodson, Senior Scientist at CIMMYT and project co-lead. “Having national capacity to detect the increasing threats from yellow rust using MARPLE will be an important tool to help combat wheat rusts in Nepal”.

The yellow rust fungus can cause grain yield losses of 30–80 % to wheat, Nepal’s third most important food crop.

Current diagnostic methods for wheat rust used in Nepal are slow, typically taking months between collecting the sample and final strain identification. They are also costly and reliant on sending samples overseas to highly specialized labs for analysis.

MARPLE (Mobile and Real-time PLant disEase) Diagnostics is the first method to place strain-level genetic diagnostics capability directly into the hands of Nepali researchers, generating data in-country in near-real time, for immediate integration into early warning systems and disease management decisions.

“This is a fantastic opportunity to bring the latest innovations in plant disease diagnostics for the wheat rust pathogens to where they are needed most, in the hands of researchers in the field working tirelessly to combat these devastating diseases,” commented Diane Saunders, Group Leader at the John Innes Centre and project co-lead.

Diane Saunders (left), Group Leader at the John Innes Centre and project co-lead, observes workshop participants during the use of MARPLE. (Photo: Danny Ward/John Innes Centre)
Diane Saunders (left), Group Leader at the John Innes Centre and project co-lead, observes workshop participants during the use of MARPLE. (Photo: Danny Ward/John Innes Centre)

Suraj Baidya senior scientist and chief of the National Plant Pathology Research Centre at NARC noted the worrying recent geographical expansion of yellow rust in Nepal. “Due to global warming, yellow rust has now moved into the plain and river basin area likely due to evolution of heat tolerant pathotypes. MARPLE Diagnostics now gives us the rapid diagnostics needed to help identify and manage these changes in the rust pathogen population diversity,” he said.

The highly innovative MARPLE Diagnostics approach uses the hand-held MinION nanopore sequencer, built by Oxford Nanopore, to generate genetic data to type strains of the yellow rust fungus directly from field samples.

Beyond MARPLE Diagnostics, Saunders noted that “the workshop has also opened up exciting new possibilities for researchers in Nepal, by providing local genome-sequencing capacity that is currently absent.”

MARPLE (Mobile and Real-time PLant disEase) Diagnostics is a revolutionary mobile lab kit. It uses nanopore sequence technology to rapidly diagnose and monitor wheat rust in farmers’ fields. (Photo: Danny Ward/John Innes Centre)
MARPLE (Mobile and Real-time PLant disEase) Diagnostics is a revolutionary mobile lab kit. It uses nanopore sequence technology to rapidly diagnose and monitor wheat rust in farmers’ fields. (Photo: Danny Ward/John Innes Centre)

What’s next for MARPLE Diagnostics in Nepal?

Following the successful workshop, Nepali researchers will be supported by CIMMYT and the John Innes Centre to undertake MARPLE Diagnostics on field samples collected by NARC. “The current plan includes monitoring of yellow rust on the summer wheat crop planted at high hill areas and then early sampling in the 2022/23 wheat season,” Hodson noted.

“We were struck by the enthusiasm and dedication of our colleagues to embrace the potential offered by MARPLE Diagnostics. Looking forward, we are excited to continue working with our Nepali colleagues towards our united goal of embedding this methodology in their national surveillance program for wheat rusts,” Saunders remarked.

MARPLE Diagnostics is supported by the Feed the Future Innovation Lab for Current and Emerging Threats to Crops, funded by the United States Agency for International Development (USAID), the UK Biotechnology and Biological Sciences Research Council (BBSRC) Innovator of the Year Award, the CGIAR Big Data Platform Inspire Challenge, the Bill & Melinda Gates Foundation and the United Kingdom’s Foreign, Commonwealth and Development Office.

This article was originally published on the JIC website.

MAIZE partners announce a new manual for effectively managing maize lethal necrosis (MLN) disease

For a decade, scientists at the International Maize and Wheat Improvement Center (CIMMYT) have been at the forefront of a multidisciplinary and multi-institutional effort to contain and effectively manage maize lethal necrosis (MLN) disease in Africa.

When the disease was first reported in Kenya 2011 it spread panic among stakeholders. Scientists soon realized that almost all commercial maize varieties in Africa were susceptible. What followed was a superlative effort coordinated by the CGIAR Research Program on Maize (MAIZE) to mobilize “stakeholders, resources and knowledge” that was recently highlighted in an external review of program.

The publication of Maize Lethal Necrosis (MLN): A Technical Manual for Disease Management builds on the partnerships and expertise accrued over the course of this effort to provide a comprehensive “guide on best practices and protocols for sustainable management of the MLN.”

The manual is relevant to stakeholders in countries where MLN is already present, and also aims to offer technical tips to “‘high-risk’ countries globally for proactive implementation of practices that can possibly prevent the incursion and spread of the disease,” writes B.M. Prasanna, director of CIMMYT’s Global Maize Program and MAIZE, in the foreword.

“While intensive multi-disciplinary and multi-institutional efforts over the past decade have helped in containing the spread and impact of MLN in sub-Saharan Africa, we cannot afford to be complacent. We need to continue our efforts to safeguard crops like maize from devastating diseases and insect-pests, and to protect the food security and livelihoods of millions of smallholders,” says Prasanna, who is presently leading the OneCGIAR Plant Health Initiative Design Team.

Inspiring change through agricultural training: Women’s stories from Bangladesh

More than 40% of the global agricultural labor force is made up of women, and in the least developed countries, two in three women are employed in farming. Yet, despite being the largest contributors to this sector, women’s potential as farmers, producers and entrepreneurs is frequently untapped due to gender inequalities, limited access to farming assets and inputs, low participation in decision-making spaces, and lack of financing and capacity-building opportunities.

Tackling these gendered barriers is critical not only to help women achieve their highest economic potential, but also to feed an increasingly hungry world. Before this year’s Women’s History Month comes to an end, read the stories of three Bangladeshi women—Begum, Akter and Rani—to find out how the International Maize and Wheat Improvement Center (CIMMYT) are empowering them to become decision-makers in their communities, learn new skills and knowledge to boost their incomes, and advocate for bending gender norms across the country.

Embracing agricultural mechanization has improved Begum’s family finances

Rina Begum lives in Faridpur, a major commercial hub in southern Bangladesh. Before starting a business, her financial situation was precarious. Her primary source of income was her husband’s work as a day laborer, which brought in very little money. This, coupled with the lack of job security, made it hard to support a family.

Rina Begum started out in business as a service provider, hiring agricultural machines to farmers.

About five years ago, Begum’s interest in agricultural mechanization was ignited by the farmers in her town, who were earning extra money by investing in farm machinery and hiring it out. Her first foray into the business world was buying a shallow irrigation pump and setting herself up as a service provider. Next, she saw her neighbor using a power tiller operated seeder and decided to try one out for herself. Finally, after taking part in a potential machinery buyer program run by CIMMYT under the Cereal Systems Initiative for South Asia – Mechanization and Irrigation (CSISA-MEA) and funded by USAID, she took the bold step of purchasing a seeder and adding it to her inventory of machines available for hire.

While her husband learned to operate the seeder, Begum put her business and accounting skills to good use, taking on an essential role in what ended up being the family business and establishing herself as an entrepreneur. Her work defied the established social norms, as she regularly interacted with the mechanics and farmers who came to her for mechanized services. Moreover, she occasionally stepped up alongside her husband to repair and maintain the machines. All this earned Begum a reputation as an experienced service provider, operator and mechanic, and turned her into a decision-maker and a role model to her family and community.

In 2021, Begum used her business profits to pick up the bill for her daughter’s marriage. “I know this job inside-out now,” she says, “and I’m really proud to have paid for the wedding myself.”

This taste of success fueled Begum’s appetite to expand the business even further, pushing her to take part in another training offered by CIMMYT, this time in mat-seedling production. Moreover, Begum, who plans to grow seedlings to sell on to rice farmers this year, has applied for a government subsidy to buy a rice transplanter, which can be hired out for use with mat-seedlings, and increase her stock of agricultural machinery.

With her new skills, Akter is advancing gender equality in Bangladesh’s light engineering sector

At age 18, Nilufar Akter (pictured top) passed her high school certificate and soon after married Rezaul Karim, the owner of a light engineering workshop in Bogura, a city in northern Bangladesh, that manufactures agricultural machinery parts, with a workforce mainly composed of men. Akter’s ambition was to go out into the workplace and make her own money, so when Karim asked her to work alongside him, she agreed and soon became a valuable part of the business. Her primary responsibilities were inventory management and marketing, as well as business management, which she found more difficult.

Reza Engineering Workshop began working with CIMMYT in 2020 as part of CSISA-MEA, an initiative that supports light engineering workshops in Bangladesh with staff development, access to finance, management, and business growth. Under this project, CIMMYT organized a management training at the Bangladesh Agriculture Research Institute (BARI), which Akter attended. With the confidence these new skills gave her, she went back to the workshop and introduced a few changes, including building a computerized finance management system and updating the stack management. Moreover, she also established a dedicated restroom for female employees.

“We need human resources to maintain things in the business—and women can do a fantastic job”, Akter says. “We had no idea what good source of strength women workers would be for the factory. Therefore, if we provided them with adequate facilities, we could create jobs for many women who really need them”, she adds.

Akter’s current priorities are workshop safety and occupational health, two issues she’s tackling using the knowledge she learned in the CIMMYT training. Recently, she’s created some occupational health and safety posters, and established a series of workshop rules. “I used to think I wasn’t cut out for light engineering because it was primarily male-dominated, but I was mistaken”, Akter confesses. “This industry has a lot to offer to women, and I’m excited at the prospect of hiring more of them”, she adds.

Producing better quality rice has boosted the income of Rani and her family

Monika Rani lives in Khoshalpur, a village located in Dinajpur district in northern Bangladesh, with her husband Liton Chandra Roy and their two-year-old child. They farm just a quarter of a hectare of land, and Liton supplements their income with occasional wages earned as a day laborer.

Monika Rani wanted to increase her family’s income to provide better schooling opportunities for her children.

Rani was looking for ways to increase their income so they could give their children an education and a better life. During last year’s boro rice-growing season (December to May), she and her husband joined the premium grade rice production team of CIMMYT as part of CSISA-MEA. The market value and yield of premium quality rice is greater than other types, so when Rani heard that she could make more money producing that variety, she decided to make a start right away. CIMMYT provided her with five kgs of premium seed for the 2021-22 winter season and trained her in premium quality rice production technology and marketing, which she followed to the letter.

Through hard work and persistence, Rani and her husband avoided the need to hire any additional labor and were rewarded with the maximum yield possible. She dried the premium quality rice grain according to buyer demand and sold 1,600 kgs, in addition to 140 kgs to farmers in her town.

“Knowing about premium quality rice production has tremendously changed my future for the better,” Rani explains. “I had no idea that, through my own hard effort, I could have a better life”, she added.

Cover photo: Nilufar Akter is using the knowledge she gained in CIMMYT training to focus on workshop safety and occupational health in her business.

New CIMMYT maize hybrid available from Eastern Africa highland breeding program

How does CIMMYT’s improved maize get to the farmer?
How does CIMMYT’s improved maize get to the farmer?

CIMMYT is proud to announce a new, improved highland maize hybrid that is now available for uptake by public- and private-sector partners, especially those interested in marketing or disseminating hybrid maize seed across upper altitudes of Eastern Africa and similar agro-ecologies. National agricultural research system (NARS) and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

The deadline to submit applications to be considered during the first round of allocations is 8 April 2022. Applications received after that deadline will be considered during subsequent rounds of product allocations.

The newly available CIMMYT maize hybrid, CIM20EAPP3-01-47, was identified through rigorous trialing and a stage-gate advancement process that culminated in the 2021 Eastern Africa Regional On-Farm Trials for CIMMYT’s eastern Africa highland maize breeding pipeline (EA-PP3). While individual products will vary, the EA-PP3 pipeline aims to develop maize hybrids fitting the product profile described in the following table:

Product profile Basic traits Nice-to-have / Emerging traits
Eastern Africa Product Profile 3 (EA-PP3) Late -maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and rust MLN, fall armyworm, cold tolerance

 

Application instructions, and other relevant material is available via the CIMMYT Maize Product Catalog and in the links provided below.

Download the full text and trial data summary:
CIMMYT Eastern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2019 to 2021 Seasons and Product Announcement.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

New endeavor fast-tracks the power of crop diversity for climate resilience

Shelves filled with maize seed samples make up the maize active collection at the germplasm bank at CIMMYT's global headquarters in Texcoco, Mexico. It contains around 28,000 unique samples of maize seed — including more than 24,000 farmer landraces — and related species. (Photo: Xochiquetzal Fonseca/CIMMYT)
Shelves filled with maize seed samples make up the maize active collection at the germplasm bank at CIMMYT’s global headquarters in Texcoco, Mexico. It contains around 28,000 unique samples of maize seed — including more than 24,000 farmer landraces — and related species. (Photo: Xochiquetzal Fonseca/CIMMYT)

A new $25.7 million project, led by the International Maize and Wheat Improvement Center (CIMMYT), a Research Center part of CGIAR, the world’s largest public sector agriculture research partnership, is expanding the use of biodiversity held in the world’s genebanks to develop new climate-smart crop varieties for millions of small-scale farmers worldwide.

As climate change accelerates, agriculture will be increasingly affected by high temperatures, erratic rainfall, drought, flooding and sea-level rise. Looking to the trove of genetic material in genebanks, scientists believe they can enhance the resilience of food production by incorporating this diversity into new crop varieties — overcoming many of the barriers to fighting malnutrition and hunger around the world.

“Better crops can help small-scale farmers produce more food despite the challenges of climate change. Drought-resistant staple crops, such as maize and wheat, that ensure food amid water scarcity, and faster-growing, early-maturing varieties that produce good harvests in erratic growing seasons can make a world of difference for those who depend on agriculture. This is the potential for climate-adaptive breeding that lies untapped in CGIAR’s genebanks,” said Claudia Sadoff, Managing Director, Research Delivery and Impact, and Executive Management Team Convener, CGIAR.

Over five years, the project, supported by the Bill & Melinda Gates Foundation, aims to identify plant accessions in genebanks that contain alleles, or gene variations, responsible for characteristics such as heat, drought or salt tolerance, and to facilitate their use in breeding climate-resilient crop varieties. Entitled Mining useful alleles for climate change adaptation from CGIAR genebanks, the project will enable breeders to more effectively and efficiently use genebank materials to develop climate-smart versions of important food crops, including cassava, maize, sorghum, cowpea and rice.

Wild rice. (Photo: IRRI)
Wild rice. (Photo: IRRI)

The project is a key component of a broader initiative focused on increasing the value and use of CGIAR genebanks for climate resilience. It is one of a series of Innovation Sprints coordinated by the Agriculture Innovation Mission for Climate (AIM4C) initiative, which is led by the United Arab Emirates and the United States.

“Breeding new resilient crop varieties quickly, economically and with greater precision will be critical to ensure small-scale farmers can adapt to climate change,” said Enock Chikava, interim Director of Agricultural Development at the Bill & Melinda Gates Foundation. “This initiative will contribute to a more promising and sustainable future for the hundreds of millions of Africans who depend on farming to support their families.”

Over the past 40 years, CGIAR Centers have built up the largest and most frequently accessed network of genebanks in the world. The network conserves and makes nearly three-quarters of a million crop accessions available to scientists and governments. CGIAR genebanks hold around 10% of the world’s plant germplasm in trust for humanity, but account for about 94% of the germplasm distributed under the International Treaty on Plant Genetic Resources for Food and Agriculture, which ensures crop breeders globally have access to the fundamental building blocks of new varieties.

“This research to develop climate-smart crop varieties, when scaled, is key to ensuring that those hardest hit by climate shocks have access to affordable staple foods,” said Jeffrey Rosichan, Director of the Crops of the Future Collaborative of the Foundation for Food & Agriculture Research (FFAR). “Further, this initiative benefits US and world agriculture by increasing genetic diversity and providing tools for growers to more rapidly adapt to climate change.”

“We will implement, for the first time, a scalable strategy to identify valuable variations hidden in our genebanks, and through breeding, deploy these to farmers who urgently need solutions to address the threat of climate change,” said Sarah Hearne, CIMMYT principal scientist and leader of the project.

Building on ten years of support to CIMMYT from the Mexican government, CGIAR Trust Fund contributors and the United Kingdom’s Biotechnology and Biological Sciences Research Council (BBSRC), the project combines the use of cutting-edge technologies and approaches, high-performance computing, GIS mapping, and new plant breeding methods, to identify and use accessions with high value for climate-adaptive breeding of varieties needed by farmers and consumers.

INTERVIEW OPPORTUNITIES:

Sarah Hearne – Principal Scientist, International Maize and Wheat Improvement Center (CIMMYT)

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Marcia MacNeil, Head of Communications, CIMMYT. m.macneil@cgiar.org, +52 5558042004 ext. 2070.

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org, +52 5558042004 ext. 1167.

Being the change you wanted to see as a young girl

In the traditional Indian society Madhulika Singh grew up in, girls choosing to study science, technology, engineering or mathematics (STEM) was as radical as choosing a life partner on their own.

“They say women hold up half the sky. I believe they should hold up as much and contribute equally in STEM too,” says Singh, now an agriculture specialist at the International Maize and Wheat Improvement Center (CIMMYT).

In her early teens she saw her mother, a school headmaster, comfortably navigate her career along with her domestic responsibilities without a sweat. She later saw a similar example in her sister-in-law. “I grew up thinking ‘there is so much that a woman is capable of,’ whether at home or her workplace,” Singh recalls.

This strong idea of women’s potential led her to pursue studies in science. “Many women before me, like my mother’s generation, were encouraged to take up [careers in] humanities — become a teacher, or pursue home management courses — to ensure a smooth transition once married,” Singh explains. She hoped this would change during her time and that following a career in STEM would be a matter of choice — not gender.

Singh’s goals and ambitions were very clear from the very beginning. In school, she was interested in biology, particularly plant studies and botany. Her inquisitive nature was reflected in her projects and presentations, scoring her high grades. She demonstrated a thorough understanding of plant physiology and her passion for the subject. The budding scientist always wanted to know more and to do more, which Singh feels resonates with her current research and publications.

A popular quote attributed to Mahatma Gandhi says “Be the change you want to see in the world.” When Singh chose to take up plant science in graduate school and then agriculture science for her doctorate, she became the change she had hoped to see in her home and society as a young girl. With the support from her family but a skeptical society, she went ahead and pursued a career in STEM, beginning her research on maize genotypes and conservation agriculture. In 2013 she joined CIMMYT as a physiologist.

CIMMYT researcher Madhulika Singh takes notes while talking to farmers about their rice-wheat cropping practice in Nalanda, Bihar state, India. (Photo: CIMMYT)
CIMMYT researcher Madhulika Singh takes notes while talking to farmers about their rice-wheat cropping practice in Nalanda, Bihar state, India. (Photo: CIMMYT)

Helping farmers transition to conservation agriculture

Singh currently works in her home state of Bihar for the Cereal Systems Initiative for South Asia (CSISA), led by CIMMYT. She is engaged with over ten thousand farmers from the states of Bihar and Uttar Pradesh, supporting the adoption of  conservation agriculture practices.

Farming is vital for the region, as nearly 70% of the population is engaged in agriculture and extension services. However, food and livelihoods are threatened by the small size of farms, low incomes, and comparatively low levels of agricultural mechanization, irrigation and productivity.

Singh and her colleagues have led the transition from traditional farming to sustainable intensification practices — like early wheat sowing, zero tillage and direct-seeded rice — which have helped smallholder farmers increase their yield potential substantially.

“We believe a project like CSISA, along with the government and partners, can help advance and support in realizing the full agriculture potential of these regions,” Singh explains.

Roots in the soil

Her grandparents were farmers. “To be able to care for the land that provided you nourishment and a living was always admired upon,” she says. As a crop scientist, Singh’s family acknowledges her work as an extension of the services her grandparents practiced.

Sustained by this motivation and encouragement, Singh feels reassured of her role: joining other scientists, partners and farmers to make agriculture sustainable and our communities food-secure.

“The fact that the data we generate from our experiments serve as building blocks in the generation of knowledge and help farmers optimize the cost of inputs and increase their productivity is fulfilling and enriching to me,” Singh expresses.

Apart from working to build the capacity of farmers and extension workers, Singh supports the implementation of field trials and community-based technology demonstrations. She also helps refine key agricultural innovations, through participatory testing, and optimizes cropping systems in the region.

Leading the way for for the next generation

A true representative of the STEM community, Singh is always learning and using her experience to give back to society. She has co-authored numerous books and contributed to journals, sharing her knowledge with others.

Other women leaders in STEM have inspired Singh in her professional life, including CIMMYT’s former deputy director general for research Marianne Banziger. Singh believes Banziger was trailblazing and that young girls today have many female role models in STEM that can serve as inspiration.

The change is already here and many more young women work in STEM, pursuing excellence in agriculture sciences, engineering and research studies contributing to as well as claiming “half the sky.”

Cover photo: CIMMYT researcher Madhulika Singh (center-right) stands with farmers from self-help groups in the village of Nawtanwa, West Champaran, in India’s Bihar state. CIMMYT works on gender inclusion and participation through partnerships with other organizations and self-help groups. (Photo: CIMMYT)

Explore our coverage of International Women’s Day 2022.

CIMMYT scientist receives award for weed research

Ram Kanwar Malik (center) with his team in Bihar, India, during a field visit.
Ram Kanwar Malik (center) with his team in Bihar, India, during a field visit.

Today the Weed Science Society of America (WSSA) announced the Honorary Member award for Ram Kanwar Malik, senior scientist at the International Maize and Wheat Improvement Center (CIMMYT). This award is given every year to a person who has made outstanding contributions to weed science “through their research, teaching, publishing and outreach.”

Malik’s early engagement in agricultural sustainability led to initiatives exploring herbicide resistance evolution and management, zero tillage, and other resource-conservation technologies. At the Cereal Systems Initiative for South Asia (CSISA) — a regional project led by CIMMYT — Malik and his colleagues helped promote the practice of early wheat sowing to beat terminal heat stress, resulting in increased wheat yield in India’s eastern Indo-Gangetic Plains.

“WSSA’s Honorary Member award is one of the highest recognitions bestowed by the Weed Science Society of America,” said Krishna Reddy, Chair of the WSSA 2022 Award Committee. “[The] Honorary Member is selected for meritorious service to weed science, among non-members from North America or any weed scientist from other countries. Only one person per year is awarded this membership. Dr. Malik’s significant research in weed science and his collaborative effort to deliver solutions for farmers in developing countries like India is inspirational.”

The award was presented virtually at the 2022 annual meeting of WSSA, held in Vancouver, Canada.

Transforming rice–wheat systems

<em>Phalaris minor</em> is a pernicious weed that affects crops like wheat and substantially reduces its yield potential.
Phalaris minor is a pernicious weed that affects crops like wheat and substantially reduces its yield potential.

Malik has worked extensively in the Indo-Gangetic Plains, leading many initiatives and innovations over the years, in collaboration with national and international partners. The WSSA award highlights Malik’s inspiring work in tackling herbicide resistance problems, first reported in India by his team in 1993. Malik was instrumental in developing a management solution for herbicide-resistant Phalaris minor, a pernicious weed in wheat crops. The integrated weed management system he helped develop raised wheat yield capacity significantly for farmers in the Indo-Gangetic Plains.

“The WSSA Honorary Member award reiterates the importance of agronomic management for sustained weed control strategies across cropping systems,” Malik said. “CIMMYT and partners, including the Australian Centre for International Agricultural Research (ACIAR), were the first to introduce zero tillage in wheat as part of a strategy to manage weed resistance problems in India. It is an honor that WSSA has recognized this collective work of ours,” he acknowledged.

Malik has devoted more than thirty years to transforming agricultural systems in the Indo-Gangetic Plains, working closely with farmers and partners, and building the capacity of national agricultural and research extension systems. he is a firm believer in farmers’ participation: “Large-scale adoption of sustainable agricultural practices is possible when we work together to leverage technologies which are mutually agreed by partners and meet farmers’ needs.”

Malik is a fellow of the Indian Society of Agronomy and the Indian Society of Weed Science (ISWS), which granted him the Lifetime Achievement Award. He has also received the Outstanding Achievement Award from the International Weed Science Society (IWSS) and the 2015 Derek Tribe Award from the Crawford Fund.

He remains passionate about and invested in changing the lives of farmers through better-bet agronomy and by leading innovative research at CIMMYT.

About the Weed Science Society of America (WSSA)

Founded in 1956, WSSA is a nonprofit scientific society that encourages and promotes the development of knowledge concerning weeds and their impact on the environment.

Md Abdul Matin

Md Abdul Matin is a Mechanization Specialist at the International Maize and Wheat Improvement Center (CIMMYT), SARO, Zimbabwe.

He has over 20 years of R&D experience in design, development, assessment and commercialization of farm machinery for smallholder farmers. He completed his BSc Agri. Engg and MS in Farm Power & Machinery degrees from the Bangladesh Agricultural University and a PhD from the Agricultural Machinery Research & Design Centre, University of South Australia, Adelaide, Australia. Matin has intensive experience working with national agricultural research institutes, other government and private sector partners (including manufacturers) in the mechanization value and supply chains.

Plant breeding innovations

What is plant breeding?

Emerging in the last 120 years, science-based plant breeding begins by creating novel diversity from which useful new varieties can be identified or formed. The most common approach is making targeted crosses between parents with complementary, desirable traits. This is followed by selection among the resulting plants to obtain improved types that combine desired traits and performance. A less common approach is to expose plant tissues to chemicals or radiation that stimulate random mutations of the type that occur in nature, creating diversity and driving natural selection and evolution.

Determined by farmers and consumer markets, the target traits for plant breeding can include improved grain and fruit yield, resistance to major diseases and pests, better nutritional quality, ease of processing, and tolerance to environmental stresses such as drought, heat, acid soils, flooded fields and infertile soils. Most traits are genetically complex — that is, they are controlled by many genes and gene interactions — so breeders must intercross and select among hundreds of thousands of plants over generations to develop and choose the best.

Plant breeding over the last 100 years has fostered food and nutritional security for expanding populations, adapted crops to changing climates, and helped to alleviate poverty. Together with better farming practices, improved crop varieties can help to reduce environmental degradation and to mitigate climate change from agriculture.

Is plant breeding a modern technique?

Plant breeding began around 10,000 years ago, when humans undertook the domestication of ancestral food crop species. Over the ensuing millennia, farmers selected and re-sowed seed from the best grains, fruits or plants they harvested, genetically modifying the species for human use.

Modern, science-based plant breeding is a focused, systematic and swifter version of that process. It has been applied to all crops, among them maize, wheat, rice, potatoes, beans, cassava and horticulture crops, as well as to fruit trees, sugarcane, oil palm, cotton, farm animals and other species.

With modern breeding, specialists began collecting and preserving crop diversity, including farmer-selected heirloom varieties, improved varieties and the crops’ undomesticated relatives. Today hundreds of thousands of unique samples of diverse crop types, in the form of seeds and cuttings, are meticulously preserved as living catalogs in dozens of publicly-administered “banks.”

The International Maize and Wheat Improvement Center (CIMMYT) manages a germplasm bank containing more than 180,000 unique maize- and wheat-related seed samples, and the Svalbard Global Seed Vault on the Norwegian island of Spitsbergen preserves back-up copies of nearly a million collections from CIMMYT and other banks.

Through genetic analyses or growing seed samples, scientists comb such collections to find useful traits. Data and seed samples from publicly-funded initiatives of this type are shared among breeders and other researchers worldwide. The complete DNA sequences of several food crops, including rice, maize, and wheat, are now available and greatly assist scientists to identify novel, useful diversity.

Much crop breeding is international. From its own breeding programs, CIMMYT sends half a million seed packages each year to some 800 partners, including public research institutions and private companies in 100 countries, for breeding, genetic analyses and other research.

A field worker removes the male flower of a wheat spike, as part of controlled pollination in breeding. (Photo: Alfonso Cortés/CIMMYT)
A field worker removes the male flower of a wheat spike, as part of controlled pollination in breeding. (Photo: Alfonso Cortés/CIMMYT)

A century of breeding innovations

Early in the 20th century, plant breeders began to apply the discoveries of Gregor Mendel, a 19th-century mathematician and biologist, regarding genetic variation and heredity. They also began to take advantage of heterosis, commonly known as hybrid vigor, whereby progeny of crosses between genetically different lines will turn out stronger or more productive than their parents.

Modern statistical methods to analyze experimental data have helped breeders to understand differences in the performance of breeding offspring; particularly, how to distinguish genetic variation, which is heritable, from environmental influences on how parental traits are expressed in successive generations of plants.

Since the 1990s, geneticists and breeders have used molecular (DNA-based) markers. These are specific regions of the plant’s genome that are linked to a gene influencing a desired trait. Markers can also be used to obtain a DNA “fingerprint” of a variety, to develop detailed genetic maps and to sequence crop plant genomes. Many applications of molecular markers are used in plant breeding to select progenies of breeding crosses featuring the greatest number of desired traits from their parents.

Plant breeders normally prefer to work with “elite” populations that have already undergone breeding and thus feature high concentrations of useful genes and fewer undesirable ones, but scientists also introduce non-elite diversity into breeding populations to boost their resilience and address threats such as new fungi or viruses that attack crops.

Transgenics are products of one genetic engineering technology, in which a gene from one species is inserted in another. A great advantage of the technology for crop breeding is that it introduces the desired gene alone, in contrast to conventional breeding crosses, where many undesired genes accompany the target gene and can reduce yield or other valuable traits. Transgenics have been used since the 1990s to implant traits such as pest resistance, herbicide tolerance, or improved nutritional value. Transgenic crop varieties are grown on more than 190 million hectares worldwide and have increased harvests, raised farmers’ income and reduced the use of pesticides. Complex regulatory requirements to manage their potential health or environmental risks, as well as consumer concerns about such risks and the fair sharing of benefits, make transgenic crop varieties difficult and expensive to deploy.

Genome editing or gene editing techniques allow precise modification of specific DNA sequences, making it possible to enhance, diminish or turn off the expression of genes and to convert them to more favorable versions. Gene editing is used primarily to produce non-transgenic plants like those that arise through natural mutations. The approach can be used to improve plant traits that are controlled by single or small numbers of genes, such as resistance to diseases and better grain quality or nutrition. Whether and how to regulate gene edited crops is still being defined in many countries.

The mobile seed shop of Victoria Seeds Company provides access to improved maize varieties for farmers in remote villages of Uganda. (Photo: Kipenz Films for CIMMYT)
The mobile seed shop of Victoria Seeds Company provides access to improved maize varieties for farmers in remote villages of Uganda. (Photo: Kipenz Films for CIMMYT)

Selected impacts of maize and wheat breeding

In the early 1990s, a CIMMYT methodology led to improved maize varieties that tolerate moderate drought conditions around flowering time in tropical, rainfed environments, besides featuring other valuable agronomic and resilience traits. By 2015, almost half the maize-producing area in 18 countries of sub-Saharan Africa — a region where the crop provides almost a third of human calories but where 65% of maize lands face at least occasional drought — was sown to varieties from this breeding research, in partnership with the International Institute of Tropical Agriculture (IITA). The estimated yearly benefits are as high as $1 billion.

Intensive breeding for resistance to Maize Lethal Necrosis (MLN), a viral disease that appeared in eastern Africa in 2011 and quickly spread to attack maize crops across the continent, allowed the release by 2017 of 18 MLN-resistant maize hybrids.

Improved wheat varieties developed using breeding lines from CIMMYT or the International Centre for Agricultural Research in the Dry Areas (ICARDA) cover more than 100 million hectares, nearly two-thirds of the area sown to improved wheat worldwide, with benefits in added grain that range from $2.8 to 3.8 billion each year.

Breeding for resistance to devastating crop diseases and pests has saved billions of dollars in crop losses and reduced the use of costly and potentially harmful pesticides. A 2004 study showed that investments since the early 1970s in breeding for resistance in wheat to the fungal disease leaf rust had provided benefits in added grain worth 5.36 billion 1990 US dollars. Global research to control wheat stem rust disease saves wheat farmers the equivalent of at least $1.12 billion each year.

Crosses of wheat with related crops (rye) or even wild grasses — the latter known as wide crosses — have greatly improved the hardiness and productivity of wheat. For example, an estimated one-fifth of the elite wheat breeding lines in CIMMYT international yield trials features genes from Aegilops tauschii, commonly known as “goat grass,” that boost their resilience and provide other valuable traits to protect yield.

Biofortification — breeding to develop nutritionally enriched crops — has resulted in more than 60 maize and wheat varieties whose grain offers improved protein quality or enhanced levels of micro-nutrients such as zinc and provitamin A. Biofortified maize and wheat varieties have benefited smallholder farm families and consumers in more than 20 countries across sub-Saharan Africa, Asia, and Latin America. Consumption of provitamin-A-enhanced maize or sweet potato has been shown to reduce chronic vitamin A deficiencies in children in eastern and southern Africa. In India, farmers have grown a high-yielding sorghum variety with enhanced grain levels of iron and zinc since 2018 and use of iron-biofortified pearl millet has improved nutrition among vulnerable communities.

Innovations in measuring plant responses include remote sensing systems, such as multispectral and thermal cameras flown over breeding fields. In this image of the CIMMYT experimental station in ObregĂłn, Mexico, water-stressed plots are shown in green and red. (Photo: CIMMYT and the Instituto de Agricultura Sostenible)
Innovations in measuring plant responses include remote sensing systems, such as multispectral and thermal cameras flown over breeding fields. In this image of the CIMMYT experimental station in ObregĂłn, Mexico, water-stressed plots are shown in green and red. (Photo: CIMMYT and the Instituto de Agricultura Sostenible)

The future

Crop breeders have been laying the groundwork to pursue genomic selection. This approach takes advantage of low-cost, genome-wide molecular markers to analyze large populations and allow scientists to predict the value of particular breeding lines and crosses to speed gains, especially for improving genetically complex traits.

Speed breeding uses artificially-extended daylength, controlled temperatures, genomic selection, data science, artificial intelligence tools and advanced technology for recording plant information — also called phenotyping — to make breeding faster and more efficient. A CIMMYT speed breeding facility for wheat features a screenhouse with specialized lighting, controlled temperatures and other special fixings that will allow four crop cycles — or generations — to be grown per year, in place of only two cycles with normal field trials. Speed breeding facilities will accelerate the development of productive and robust varieties by crop research programs worldwide.

Data analysis and management. Growing and evaluating hundreds of thousands of plants in diverse trials across multiple sites each season generates enormous volumes of data that breeders must examine, integrate, and co-analyze to inform decisions, especially about which lines to cross and which populations to discard or move forward. New informatics tools such as the Enterprise Breeding System will help scientists to manage, analyze and apply big data from genomics, field and lab studies.

Following the leaders. Driven by competition and the quest for profits, private companies that market seed and other farm products are generally on the cutting edge of breeding innovations. The CGIAR’s Excellence in Breeding (EiB) initiative is helping crop breeding programs that serve farmers in low- and middle-income countries to adopt appropriate best practices from private companies, including molecular marker-based approaches, strategic mechanization, digitization and use of big data to drive decision making. Modern plant breeding begins by ensuring that the new varieties produced are in line with what farmers and consumers want and need.

Cover photo: CIMMYT experimental station in Toluca, Mexico. Located in a valley at 2,630 meters above sea level with a cool and humid climate, it is the ideal location for selecting wheat materials resistant to foliar diseases, such as wheat rust. Conventional plant breeding involves selection among hundreds of thousands of plants from crosses over many generations, and requires extensive and costly field, screenhouse and lab facilities. (Photo: Alfonso Cortés/CIMMYT)

New direction in research for advancing gender-responsive maize breeding

New improved maize varieties may fall short in meeting the needs of women and the poorest of farmers – a concern that remains a focus of the International Maize and Wheat Improvement Center (CIMMYT) and the wider CGIAR.

Lower than expected adoption rates for some new maize varieties suggest that innovative strategies in breeding and seed delivery are likely needed. There is broad recognition of the need to get new germplasm from the CGIAR and its partners into the fields of more farmers in less time.

CIMMYT research on markets and social inclusion focuses on understanding two related dynamics: the unique preferences, needs and circumstances faced by women and the poorest farmers, and the implications these carry for how breeding programs and seed companies design and market new varieties.

Taking stock of knowledge and gaps in gender and maize breeding

A new paper by CIMMYT researchers, “Gender inclusivity through maize breeding in Africa: A review of the issues and options for future engagement”, takes stock of lessons learnt on gender and maize breeding and assesses knowledge gaps that need to be filled to effectively support gender-responsive and gender-intentional breeding and seed systems work.

Decades of research on maize preferences have sought to understand if and how men’s and women’s preferences differ. However, existing data provides unclear guidance to maize breeders on gender-relevant traits to prioritize in product profile design. The evidence suggests a lack of meaningful differences in what men and women are looking for in maize­­—yield, drought tolerance and early maturity—are high priorities almost across the board.

One reason for the similarity in preferences among women and men may relate to how we evaluate them, the authors argue. Preference studies that focus on evaluation of varieties’ agronomic and productivity-related traits may overlook critical components of farmers’ variety assessment and seed choice, including their household and farming context. Ultimately, they say, we need to explore new approaches to evaluating farmer demand for seed, considering new questions instead of continuing to look for gender-based differences in preferences.

A first step in that direction is to figure out how demand for maize seed differs among farmers according to their needs, priorities and resource limitations. Gender is definitely a part of that equation, but there’s much more to think about, like how maize fits into household food security and livelihoods, decision-making dynamics around maize production, and seed accessibility. New tools will be needed for understanding those and how decision-making around seed happens in real-world contexts.

Understanding how farmers make decisions on seed choice

The authors offer several practical suggestions for maize breeders and other researchers in this space:

  • First, explore tools that allow farmers to evaluate varieties in their household context. Large-scale farmer-managed on-farm trials have gained attention in the CGIAR as tools for more accurate assessment of farmer preferences. These approaches have several added advantages. They enable evaluation of variety performance under realistic management conditions—including under management practices used disproportionately by women, such as intercropping, which is typically excluded from larger researcher-managed trials. These approaches also enable farmer evaluation of maize varieties not only in terms of in-field performance and yield at harvest stage, but in terms of grain quality after harvest. This is particularly important for social inclusion, given women’s disproportionate attention to traits related to processing and consumption.
  • Second, move beyond gender-based preferences in evaluating seed demand. Gendered preferences matter, but they may not be the sole factor that determines a farmer’s choice of seed. We need to understand market segments for seed in relation to farmers’ aspirations, risk perceptions and tolerance, livelihood priorities, and household context. This also means exploring the intrahousehold gender dynamics of maize farming and seed choice to understand women’s roles in decision-making in maize production, processing, and consumption.
  • Finally, consider questions related to maize seed systems more broadly. Are maize seed systems capable of delivering gender-responsive and gender-intentional varieties to women and men? What are the barriers to wider uptake of new varieties aside from variety suitability? Innovative marketing and delivery mechanisms may be critical to realizing gains from more gender-intentional breeding.

With the transition to the One CGIAR, sharing tools and lessons learned across crops will be increasingly important. Researchers in the CGIAR community have developed new tools for gender-responsive and gender-intentional breeding. This includes through the Gender and Breeding Initiative, which has published the G+ tools to support gendered market segmentation and gender-intentional product profile development.

While learning from one another’s experiences will prove essential during the transition, recognizing that the gender dynamics of maize production may be very different from sweet potato production will also be key. Here, the new Market Intelligence & Product Profiles initiative and SeEdQUAL initiative on seed systems will both create new spaces for exploring these issues across crops.

Related links

Webinar: CIMMYT Webinar (Nov. 2021) on Gender Inclusivity through Maize Breeding

CGIAR Gender & Breeding Initiative link: http://www.rtb.cgiar.org/gender-breeding-initiative/

Breeding for better gender equity at CGIAR Excellence in Breeding: https://excellenceinbreeding.org/blog/breeding-better-gender-equity

New CIMMYT maize hybrids available from Eastern Africa Breeding Program

How does CIMMYT's improved maize get to the farmer?
How does CIMMYT’s improved maize get to the farmer?

The International Maize and Wheat Improvement Center (CIMMYT) is offering a new set of elite, improved maize hybrids to partners for commercialization in eastern Africa and similar agro-ecological zones. National agricultural research systems (NARS) and seed companies are invited to apply for licenses to register and commercialize these new hybrids, in order to bring the benefits of the improved seed to farming communities.

The deadline to submit applications to be considered during the first round of allocations is February 11, 2022. Applications received after that deadline will be considered during the following round of product allocations.

Information about the newly available CIMMYT maize hybrids from the Latin America breeding program, application instructions and other relevant material is available in the CIMMYT Maize Product Catalog and in the links provided below.

Product Profile Newly available CIMMYT hybrids Basic traits Nice-to-have / Emerging traits
Eastern Africa Product Profile 1A

(EA-PP1A)

CIM20EAPP1-01-38 Intermediate-maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and MSV MLN, Striga, FAW
CIM20EAPP1-01-1
CIM20EAPP1-01-16

 

You can download the full text and trial data summary for the CIMMYT Eastern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2020 to 2021 Seasons and Product Announcement.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

New publications: Genome-wide breeding to curtail wheat blast

A recent publication in the journal Frontiers of Plant Science provides results of the first-ever study to test genomic selection in breeding for resistance to wheat blast, a deadly disease caused by the fungus Magnaporthe oryzae that is spreading from its origin in Brazil to threaten wheat crops in South Asia and sub-Saharan Africa.

Genomic selection identifies individual plants based on the information from molecular markers, DNA signposts for genes of interest, that are distributed densely throughout the wheat genome. For wheat blast, the results can help predict which wheat lines hold promise as providers of blast resistance for future crosses and those that can be advanced to the next generation after selection.

In this study, scientists from the International Maize and Wheat Improvement Center (CIMMYT) and partners evaluated genomic selection by combining genotypic data with extensive and precise field data on wheat blast responses for three sets of genetically diverse wheat lines and varieties, more than 700 in all, grown by partners at locations in Bangladesh and Bolivia over several crop cycles.

The study also compared the use of a small number of molecular markers linked to the 2NS translocation, a chromosome segment from the grass species Aegilops ventricosa that was introduced into wheat in the 1980s and is a strong and stable source of blast resistance, with predictions using thousands of genome-wide markers. The outcome confirms that, in environments where wheat blast resistance is determined by the 2NS translocation, genotyping using one-to-few markers tagging the translocation is enough to predict the blast response of wheat lines.

Finally, the authors found that selection based on a few wheat blast-associated molecular markers retained 89% of lines that were also selected using field performance data, and discarded 92% of those that were discarded based on field performance data. Thus, both marker-assisted selection and genomic selection offer viable alternatives to the slower and more expensive field screening of many thousands of wheat lines in hot-spot locations for the disease, particularly at early stages of breeding, and can speed the development of blast-resistant wheat varieties.

Read the full study:
Genomic Selection for Wheat Blast in a Diversity Panel, Breeding Panel and Full-Sibs Panel

The research was conducted by scientists from the International Maize and Wheat Improvement Center (CIMMYT), the Bangladesh Wheat and Maize Research Institute (BWMRI), the Instituto Nacional de InnovaciĂłn Agropecuaria y Forestal (INIAF) of Bolivia, the Borlaug Institute for South Asia (BISA) and the Indian Council of Agricultural Research (ICAR) in India, the Swedish University of Agricultural Sciences (Alnarp), and Kansas State University in the USA. Funding for the study was provided by the Bill & Melinda Gates Foundation, the Foreign and Commonwealth Development Office of the United Kingdom, the U.S. Agency for International Development (USAID), the CGIAR Research Program on Wheat (WHEAT), the Indian Council of Agricultural Research (ICAR), the Swedish Research Council, and the Australian Centre for International Agricultural Research (ACIAR).

Cover photo: A researcher from Bangladesh shows blast infected wheat spikes and explains how the disease directly attacks the grain. (Photo: Chris Knight/Cornell University)