Skip to main content

funder_partner: University of Nottingham

CropSustaiN BNI Wheat Mission

The Novo Nordisk Foundation and CIMMYT have launched the 4-year CropSustaiN initiative to determine the global potential of wheat that is significantly better at using nitrogen, thanks to Biological Nitrification Inhibition (BNI)—and to accelerate breeding and farmer access to BNI wheat varieties.

With a budget of US$ 21 million, CropSustaiN addresses the pressing challenges of nitrogen pollution and inefficient fertilizer use, which contribute to greenhouse gas (GHG) emissions and ecological degradation. Currently, no other seed or agronomic practice-based solution matches BNI crops’ mitigation impact potential. Growing BNI crops can complement other climate mitigation measures.

The challenge

Agriculture is at the heart of both food and nutrition security and environmental sustainability. The sector contributes ca. 10-12% of global GHG emissions, including 80% of the highly potent nitrous oxide (N2O) emissions. Fertilizer use contributes to such N losses, because plants take up about 50%, the remainder being lost. Wheat is the world’s largest ‘crop’ consumer of nitrogen-based fertilizer—a relatively nitrogen-inefficient cereal—at the same time providing affordable calories to billions of resource-poor people and ca. 20% of globally consumed protein. CropSustaiN targets this nexus of productivity and planetary boundary impact by verifying and thus de-risking the needed breeding, agronomic, and social innovations.

A solution: BNI-wheat

BNI is a natural ability of certain plant species to release metabolites from their roots into the soil. They influence the nitrogen-transforming activity of nitrifying bacteria, slowing down the conversion of ammonium to nitrate in the soil. This preserves soil ammonium levels for a longer time, providing plants with a more sustained source of available nitrogen and making them more nitrogen-use efficient (nitrogen plant use efficiency). As a result, BNI helps reduce the release of N2O gas emissions and nitrate leaching to the surrounding ecosystem.

A research breakthrough in 2021, led by the Japan International Research Center of Agricultural Sciences (JIRCAS) in collaboration with CIMMYT, demonstrated that the BNI trait can be transferred from a wheat wild relative to a modern wheat variety by conventional breeding. BNI wheat can be made available to farmers worldwide.

Growing BNI wheat could reduce nitrogen fertilizer usage by 15-20%, depending on regional farming conditions, without sacrificing yield or quality.

 

Incorporating BNI into additional crops would reduce usage further. Farmers can get the same yield with less external inputs.

Other BNI-crops

CropSustaiN will work on spring and winter wheats. Rice, maize, barley, and sorghum also have BNI potential. CropSustaiN will build the knowledge base and share with scientists working on other crops and agronomic approaches.

Objectives and outcomes

This high risk, high reward mission aims to:

  • Verify the global, on-farm potential of BNI-wheat through field trial research and breeding.
  • Build the partnerships and pathways to meet farmer demand for BNI-wheat seeds.
  • Work with stakeholders on policy change that enables BNI crops production and markets

Success will be measured by determining nitrogen pollution reduction levels under different soil nitrogen environments and management conditions on research stations, documenting crop performance and safety, breeding for BNI spring and winter wheats for a wide range of geographies, and gauging farmer needs, interest, and future demand.

Wheat spikes against the sky at CIMMYT’s El BatĂĄn, Mexico headquarters. (Photo: H. Hernandez Lira/CIMMYT)

A collaborative effort

CIMMYT is the lead implementer of Novo Nordisk Foundation’s mission funding. CropSustaiN’s interdisciplinary, intersectoral, systems approach relies on building partnerships and knowledge-sharing within and outside this research initiative. 45+ partners are engaged in CropSustaiN.

The potential GHG emissions reduction from deploying BNI-wheat is estimated to be 0.016-0.19 gigatonnes of CO2-equivalent emissions per year, reducing 0.4-6% of total global N2O emissions annually, plus a lowering of nitrate pollution.

Impact on climate change mitigation and Nationally Determined Contributions (NDCs)

The assumption is that BNI wheat is grown in all major wheat-growing areas and that farmers will practice a behavioral shift towards lower fertilizer use and higher fertilizer use efficiency. That could lead to ca. a reduction of 17 megatons per year globally. This can help nations achieve their NDCs under the Paris Agreement.

International public goods, governance, and management

CIMMYT and the Foundation are committed to open access and the dissemination of seeds, research data, and results as international public goods. The governance and management model reinforces a commitment to equitable global access to CropSustaiN outputs, emphasized in partnership agreements and management of intellectual property.

Invitation to join the mission

The CropSustaiN initiative is a bold step towards agricultural transformation. You are invited to become a partner. You can contribute to the mission with advice, by sharing methods, research data and results, or becoming a co-founder.

Please contact CropSustaiN Mission Director, Victor Kommerell, at v.kommerell@cgiar.org or Novo Nordisk Foundation’s Senior Scientific Manager, Jeremy A. Daniel, at jad@novo.dk.

Additional reference material

  1. BNI International Consortium (Japan International Research Center for Agricultural Sciences, JIRCAS)
  2. Nitrification inhibitors: biological and synthetic (German Environment Agency, Umweltbundesamt)
  3. CropSustaiN: new innovative crops to reduce the nitrogen footprint form agriculture
  4. Annual Technical Report 2024. CropSustaiN: A new paradigm to reduce the nitrogen footprint from agriculture
  5. BNI-Wheat Future: towards reducing global nitrogen use in wheat
  6. CIMMYT Publications Repository

While you were sleeping: increasing nighttime temperatures and their effects on plant productivity

When one thinks of heat waves, the natural tendency is to consider high daytime temperatures. However, when most people are sleeping, a hidden factor of climate change is taking place: temperatures at night are not dipping as much as observed in the past, which has dramatic effects on many crops, including wheat. In fact, nocturnal temperatures are rising more rapidly globally than daytime temperatures, which is of great concern as research is starting to show the sensitivity of plants to warmer nights.

A group of researchers, from the University of Nottingham, the Sonora Institute of Technology (ITSON) and CIMMYT examined how different wheat lines reacted to the effects of rising nighttime temperatures treatments imposed in the field, for three years at CIMMYT’s Norman E. Borlaug experimental station in Ciudad Obregon, Mexico. Their results, Night-time warming in the field reduces nocturnal stomatal conductance and grain yield but does not alter daytime physiological responses were published in New Phytologist.

Previous studies revealed that wheat yields decline 3-8% for every 1°C increase of the nighttime low temperature. For this research, the team subjected the selected wheat breeds to an increase of 2°C. The varieties were selected based on previous evaluations of their daytime heat tolerance.

Notably, the findings highlighted that genotypes classified as traditionally heat tolerant were sensitive to small increases in nighttime temperature even without daytime temperature stress, implying that adaptation to warm nights is likely under independent genetic control than daytime adaptation.

“These results are exciting as they offer new perspectives on the impact of night temperatures on diurnal photosynthetic performance and wheat yields,” said co-first author Liana Acevedo-Siaca. “Through this work we found that wheat yields decreased, on average, 1.9% for every degree that increased at night. Our hope is that this work can help inform future breeding and research decisions to work towards more resilient agricultural systems, capable of dealing with warmer day and nighttime temperatures.”

Plants at night

While plants do not “sleep” in the way animals do, nighttime for plants has long been thought of as a time of repose compared to daylight hours when photosynthesis is taking place. However, recent findings have revealed that plants are more active than previously thought at night, for example in transpiration, which is the process of plants gathering liquid water from the soil and releasing water vapor through their leaves.

“An interesting result of our research was that we found varieties characterized as heat tolerant, showed some of the greatest declines in yield in response to warmer nights,” said co-first author Lorna McAusland, Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham. “These are the varieties wheat farmers are being recommended for increasing daytime temperature, and so there is a worry that advantages gained during the day are being lost at night.”

“There is likely a goldmine of opportunities related to genetically improving nighttime processes in crops, as very little research has been conducted in that space. Useful genetic variation can be expected, since ‘night’ traits have never been considered or needed before now,” said co-author Matthew Reynolds, who leads the CIMMYT’s Wheat Physiology Lab that collaborates globally with experts via HeDWIC (https://hedwic.org/) and uses physiological pre-breeding as a conduit for cutting edge technologies to impact mainstream breeding.

Diagram links physiological traits of wheat for yield potential

A generalized wiring diagram for wheat, as proposed by the authors. The diagram depicts the traits most commonly associated with the source (left) and sink (right) strengths and others that impact both the sink and source, largely dependent on growth stage (middle). TGW, thousand grain weight.
A generalized wiring diagram for wheat, as proposed by the authors. The diagram depicts the traits most commonly associated with the source (left) and sink (right) strengths and others that impact both the sink and source, largely dependent on growth stage (middle). TGW, thousand grain weight.

As crop yields are pushed closer to biophysical limits, achieving yield gains becomes increasingly challenging. Traditionally, scientists have worked on the premise that crop yield is a function of photosynthesis (source), the investment of assimilates into reproductive organs (sinks) and the underlying processes that enable and connect the expression of both. Although the original source-and-sink model remains valid, it must embrace more complexity, as scientific understanding improves.

A group of international researchers are proposing a new wiring diagram to show the interrelationships of the physiological traits that impact wheat yield potential, published on Nature Food. By illustrating these linkages, it shows connections among traits that may not have been apparent, which could serve as a decision support tool for crop scientists. The wiring diagram can inform new research hypotheses and breeding decisions, as well as research investment areas.

The diagram can also serve as a platform onto which new empirical data are routinely mapped and new concepts added, thereby creating an ever-richer common point of reference for refining models in the future.

“If routinely updated, the wiring diagram could lead to a paradigm change in the way we approach breeding for yield and targeting translational research,” said Matthew Reynolds, Distinguished Scientist and Head of Wheat Physiology at the International Maize and Wheat Improvement Center (CIMMYT) and lead author of the study. “While focused on yield potential, the tool can be readily adapted to address climate resilience in a range of crops besides wheat.”

Breeding milestone

The new wiring diagram represents a milestone in deterministic plant breeding. It dovetails simpler models with crop simulation models.

It takes into account how source and sink strengths may interact with wheat developmental stages to determine yield. For example, at the time of stem growth, spike growth or effective grain filling.

This diagram can be used to illustrate the relative importance of specific connections among traits in their appropriate phenological context and to highlight major gaps in knowledge. This graphical representation can also serve as a roadmap to prioritize research at other levels of integration, such as metabolomic or gene expression studies. The wiring diagram can be deployed to identify ways for improving elite breeding material and to explore untapped genetic resources for unique traits and alleles.

Yield for climate resilience

The wheat scientific community is hard at work seeking new ways to get higher yields more quickly to help the world cope with population growth, climate change, wars and stable supplies of calories and protein.

“To ensure food and nutritional security in the future, raising yields must be an integral component of making crops more climate-resilient. This new tool can serve as a roadmap to design the necessary strategies to achieve these goals,” said Jeff Gwyn, Program Director of the International Wheat Yield Partnership (IWYP).

— ENDS —

READ THE FULL PUBLICATION:

A wiring-diagram to integrate physiological traits of wheat yield potential

INTERVIEW OPPORTUNITIES:

Matthew Reynolds – Distinguished Scientist and Head of Wheat Physiology at the International Maize and Wheat Improvement Center (CIMMYT)

Gustavo Ariel Slafer – Research Professor at the Catalonian Institution for Research and Advanced Studies (ICREA) and Associate Professor of the University of Lleida

For more information or to arrange interviews, please contact the CIMMYT media team:

Marcia MacNeil and Rodrigo Ordóñez: https://staging.cimmyt.org/media-center/

ACKNOWLEDGEMENTS:

The study is an international collaboration of scientists from the International Maize and Wheat Improvement Center (CIMMYT), the Catalonian Institution for Research and Advanced Studies (ICREA), the Center for Research in Agrotechnology (AGROTECNIO), the University of Lleida, the University of Nottingham, the John Innes Centre, Lancaster University, Technische UniversitĂ€t MĂŒnchen, CSIRO Agriculture & Food, and the International Wheat Yield Partnership (IWYP).

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is an international organization focused on non-profit agricultural research and training that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis.

Applying high-quality science and strong partnerships, CIMMYT works to achieve a world with healthier and more prosperous people, free from global food crises and with more resilient agri-food systems. CIMMYT’s research brings enhanced productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.

CIMMYT is a member of CGIAR, a global research partnership for a food-secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.

For more information, visit staging.cimmyt.org.

ABOUT IWYP:

The International Wheat Yield Partnership (IWYP) represents a long-term global endeavor that utilizes a collaborative approach to bring together funding from public and private research organizations from a large number of countries. Over the first five years, the growing list of partners aims to invest up to US$100 million.

For more information, visit https://iwyp.org

Scientists bridge theory and practice to boost climate resilience in wheat

With the past decade identified as the warmest on record and global temperatures predicted to rise by as much as 2 degrees Celsius over preindustrial levels by 2050, the world’s staple food crops are increasingly under threat.

A new review published this month in the Journal of Experimental Botany describes how researchers from the International Maize and Wheat Improvement Center (CIMMYT) and collaborators are boosting climate resilience in wheat using powerful remote sensing tools, genomics and big data analysis. Scientists are combining multiple approaches to explore untapped diversity among wheat genetic resources and help select better parents and progeny in breeding.

The review — authored by a team of 25 scientists from CIMMYT, Henan Agricultural University, the University of Adelaide and the Wheat Initiative — also outlines how this research can be harnessed on a global level to further accelerate climate resilience in staple crops.

“An advantage of understanding abiotic stress at the level of plant physiology is that many of the same tools and methods can be applied across a range of crops that face similar problems,” said first author and CIMMYT wheat physiologist Matthew Reynolds.

Abiotic stresses such as temperature extremes and drought can have devastating impacts on plant growth and yields, posing a massive risk to food security.

Harnessing research across a global wheat improvement network for climate resilience: research gaps, interactive goals, and outcomes.
Harnessing research across a global wheat improvement network for climate resilience: research gaps, interactive goals, and outcomes.

Addressing research gaps

The authors identified nine key research gaps in efforts to boost climate resilience in wheat, including limited genetic diversity for climate resilience, a need for smarter strategies for stacking traits and addressing the bottleneck between basic plant research and its application in breeding.

Based on a combination of the latest research advances and tried-and-tested breeding methods, the scientists are developing strategies to address these gaps. These include:

  • Using big data analysis to better understand stress profiles in target environments and design wheat lines with appropriate heat and drought adaptive traits.
  • Exploring wheat genetic resources for discovery of novel traits and genes and their use in breeding.
  • Accelerating genetic gains through selection techniques that combine phenomics with genomics.
  • Crowd-sourcing new ideas and technologies from academia and testing them in real-life breeding situations.

These strategies will be thoroughly tested at the Heat and Drought Wheat Improvement Network (HeDWIC) Hub under realistic breeding conditions and then disseminated to other wheat breeding programs around the world facing similar challenges.

One factor that strongly influences the success and acceleration of climate resilience technologies, according to Reynolds, is the gap between theoretical discovery research and crop improvement in the field.

“Many great ideas on how to improve climate-resilience of crops pile up in the literature, but often remain ‘on the shelf’ because the research space between theory and practice falls between the radar of academia on the one hand, and that of plant breeders on the other,” Reynolds explained.

Translational research — efforts to convert basic research knowledge about plants into practical applications in crop improvement — represents a necessary link between the world of fundamental discovery and farmers’ fields and aims to bridge this gap.

Main research steps involved in translating promising technologies into genetic gains (graphical abstract, adapted from Reynolds and Langridge, 2016). Reprinted under licence CC BY-NC-ND.
Main research steps involved in translating promising technologies into genetic gains (graphical abstract, adapted from Reynolds and Langridge, 2016). Reprinted under licence CC BY-NC-ND.

The impacts of this research, conducted under HeDWIC — a project led by CIMMYT in partnership with experts around the world — will be validated on a global scale through the International Wheat Improvement Network (IWIN), with the potential to reach at least half of the world’s wheat-growing area.

The results will benefit breeders and researchers but, most importantly, farmers and consumers around the world who rely on wheat for their livelihoods and their diets. Wheat accounts for about 20% of all human calories and protein, making it a pillar of food security. For about 1.5 billion resource-poor people, wheat is their main daily staple food.

With the world population projected to rise to almost ten billion by 2050, demand for food is predicted to increase with it. This is especially so for wheat, being a versatile crop both in terms of where it can grow and its many culinary and industrial uses. However, current wheat yield gains will not meet 2050 demand unless serious action is taken. Translational research and strategic breeding are crucial elements in ensuring that research is translated into higher and stable yields to meet these challenges.

Read the full study:
Harnessing translational research in wheat for climate resilience

Cover photo: Wheat fields at CIMMYT’s experimental stations near Ciudad ObregĂłn, Sonora state, Mexico. (Photo: M. Ellis/CIMMYT)

A view from above

Scientists at the International Maize and Wheat Improvement Center (CIMMYT) have been harnessing the power of drones and other remote sensing tools to accelerate crop improvement, monitor harmful crop pests and diseases, and automate the detection of land boundaries for farmers.

A crucial step in crop improvement is phenotyping, which traditionally involves breeders walking through plots and visually assessing each plant for desired traits. However, ground-based measurements can be time-consuming and labor-intensive.

This is where remote sensing comes in. By analyzing imagery taken using tools like drones, scientists can quickly and accurately assess small crop plots from large trials, making crop improvement more scalable and cost-effective. These plant traits assessed at plot trials can also be scaled out to farmers’ fields using satellite imagery data and integrated into decision support systems for scientists, farmers and decision-makers.

Here are some of the latest developments from our team of remote sensing experts.

An aerial view of the Global Wheat Program experimental station in Ciudad ObregĂłn, Sonora, Mexico (Photo: Francisco Pinto/CIMMYT)

Measuring plant height with high-powered drones

A recent study, published in Frontiers in Plant Science validated the use of drones to estimate the plant height of wheat crops at different growth stages.

The research team, which included scientists from CIMMYT, the Federal University of Viçosa and KWS Momont Recherche, measured and compared wheat crops at four growth stages using ground-based measurements and drone-based estimates.

The team found that plant height estimates from drones were similar in accuracy to measurements made from the ground. They also found that by using drones with real-time kinematic (RTK) systems onboard, users could eliminate the need for ground control points, increasing the drones’ mapping capability.

Recent work on maize has shown that drone-based plant height assessment is also accurate enough to be used in maize improvement and results are expected to be published next year.

A map shows drone-based plant height estimates from a maize line trial in Muzarabani, Zimbabwe. (Graphic: CIMMYT)

Advancing assessment of pests and diseases

CIMMYT scientists and their research partners have advanced the assessment of Tar Spot Complex — a major maize disease found in Central and South America — and Maize Streak Virus (MSV) disease, found in sub-Saharan Africa, using drone-based imaging approach. By analyzing drone imagery, scientists can make more objective disease severity assessments and accelerate the development of improved, disease-resistant maize varieties. Digital imaging has also shown great potential for evaluating damage to maize cobs by fall armyworm.

Scientists have had similar success with other common foliar wheat diseases, Septoria and Spot Blotch with remote sensing experiments undertaken at experimental stations across Mexico. The results of these experiments will be published later this year. Meanwhile, in collaboration with the Federal University of Technology, based in Parana, Brazil, CIMMYT scientists have been testing deep learning algorithms — computer algorithms that adjust to, or “learn” from new data and perform better over time — to automate the assessment of leaf disease severity. While still in the experimental stages, the technology is showing promising results so far.

CIMMYT researcher Gerald Blasch and EIAR research partners Tamrat Negash, Girma Mamo and Tadesse Anberbir (right to left) conduct field work in Ethiopia. (Photo: Tadesse Anberbir)

Improving forecasts for crop disease early warning systems

CIMMYT scientists, in collaboration with Université catholique de Louvain (UCLouvain), Cambridge University and the Ethiopian Institute of Agricultural Research (EIAR), are currently exploring remote sensing solutions to improve forecast models used in early warning systems for wheat rusts. Wheat rusts are fungal diseases that can destroy healthy wheat plants in just a few weeks, causing devastating losses to farmers.

Early detection is crucial to combatting disease epidemics and CIMMYT researchers and partners have been working to develop a world-leading wheat rust forecasting service for a national early warning system in Ethiopia. The forecasting service predicts the potential occurrence of the airborne disease and the environmental suitability for the disease, however the susceptibility of the host plant to the disease is currently not provided.

CIMMYT remote sensing experts are now testing the use of drones and high-resolution satellite imagery to detect wheat rusts and monitor the progression of the disease in both controlled field trial experiments and in farmers’ fields. The researchers have collaborated with the expert remote sensing lab at UCLouvain, Belgium, to explore the capability of using European Space Agency satellite data for mapping crop type distributions in Ethiopia. The results will be also published later this year.

CIMMYT and EIAR scientists collect field data in Asella, Ethiopia, using an unmanned aerial vehicle (UAV) data acquisition. (Photo: Matt Heaton)

Delivering expert irrigation and sowing advice to farmers phones

Through an initiative funded by the UK Space Agency, CIMMYT scientists and partners have integrated crop models with satellite and in-situ field data to deliver valuable irrigation scheduling information and optimum sowing dates direct to farmers in northern Mexico through a smartphone app called COMPASS — already available to iOS and Android systems. The app also allows farmers to record their own crop management activities and check their fields with weekly NDVI images.

The project has now ended, with the team delivering a webinar to farmers last October to demonstrate the app and its features. Another webinar is planned for October 2021, aiming to engage wheat and maize farmers based in the Yaqui Valley in Mexico.

CIMMYT researcher Francelino Rodrigues collects field data in Malawi using a UAV. (Photo: Francelino Rodrigues/CIMMYT)

Detecting field boundaries using high-resolution satellite imagery

In Bangladesh, CIMMYT scientists have collaborated with the University of Buffalo, USA, to explore how high-resolution satellite imagery can be used to automatically create field boundaries.

Many low and middle-income countries around the world don’t have an official land administration or cadastre system. This makes it difficult for farmers to obtain affordable credit to buy farm supplies because they have no land titles to use as collateral. Another issue is that without knowing the exact size of their fields, farmers may not be applying to the right amount of fertilizer to their land.

Using state of the art machine learning algorithms, researchers from CIMMYT and the University of Buffalo were able to detect the boundaries of agricultural fields based on high-resolution satellite images. The study, published last year, was conducted in the delta region of Bangladesh where the average field size is only about 0.1 hectare.

A CIMMYT scientist conducts an aerial phenotyping exercise in the Global Wheat Program experimental station in Ciudad ObregĂłn, Sonora, Mexico. (Photo: Francisco Pinto/CIMMYT)

Developing climate-resilient wheat

CIMMYT’s wheat physiology team has been evaluating, validating and implementing remote sensing platforms for high-throughput phenotyping of physiological traits ranging from canopy temperature to chlorophyll content (a plant’s greenness) for over a decade. Put simply, high-throughput phenotyping involves phenotyping a large number of genotypes or plots quickly and accurately.

Recently, the team has engaged in the Heat and Drought Wheat Improvement Consortium (HeDWIC) to implement new high-throughput phenotyping approaches that can assist in the identification and evaluation of new adaptive traits in wheat for heat and drought.

The team has also been collaborating with the Accelerating Genetic Gains in Maize and Wheat (AGG) project, providing remote sensing data to improve genomic selection models.

Cover photo: An unmanned aerial vehicle (UAV drone) in flight over CIMMYT’s experimental research station in Ciudad Obregon, Mexico. (Photo: Alfredo Saenz/CIMMYT)

New mobile app helping Latin American farmers increase crop yields by 12%

Rezatec, a leading provider of geospatial data analytics, has launched a free smartphone app which acts as a portal for farmers to record their agricultural activities and provides recommendations for optimal sowing and irrigation scheduling. Based on preliminary results from the experimental stations, the app has demonstrated the potential to increase wheat yields by up to 12%.

“Yaqui Valley farmers are very experienced farmers; however, they can also benefit by using an app that is designed locally to inform and record their decisions,” explains Francelino Rodrigues, Precision Agriculture Scientist at CIMMYT. “Sowing and irrigation timing are well known drivers of yield potential in that region – these are two features of the app we’re about to validate during this next season.”

Read more here: https://www.realwire.com/releases/New-mobile-app-helping-Latin-American-farmers-increase-crop-yields-by-12

 

New mobile technology to help farmers improve yields and stabilize incomes

An international team of scientists is working with farmers in the Yaqui Valley, in Mexico’s Sonora state, to develop and test a new mobile technology that aims to improve wheat and sugarcane productivity by helping farmers manage factors that cause the yield gap between crop potential and actual field performance.

Scientists have been developing and testing a smartphone app where farmers can record their farming activities — including sowing date, crop type and irrigation — and receive local, precise crop management advice in return.

This project is a private-public partnership known as Mexican COMPASS, or Mexican Crop Observation, Management & Production Analysis Services System.

Research has shown that proper timing of irrigation is more important to yields than total water amounts. Earlier planting times have also been shown to improve wheat yields. Having optimum dates for both activities could help farmers improve yields and stabilize their incomes.

COMPASS smartphone app interface. (Photo: Saravana Gurusamy/Rezatec)
COMPASS smartphone app interface. (Photo: Saravana Gurusamy/Rezatec)

The COMPASS smartphone app uses earth observation satellite data and in-situ field data captured by farmers to provide information such as optimum sowing date and irrigation scheduling.

“Sowing and irrigation timing are well known drivers of yield potential in that region — these are two features of the app we’re about to validate during this next season,” explained Francelino Rodrigues, Precision Agriculture Scientist at the International Maize and Wheat Improvement Center (CIMMYT).

Sound data

Technological innovation for crop productivity is needed now more than ever with threats to food security increasing and natural resources becoming scarcer. Farmers are under increasing pressure to produce more with less, which means greater precision is needed in their agricultural practices.

The Yaqui Valley, Mexico’s biggest wheat producing area, is located in the semi-arid Sonoran Desert in the northern part of Mexico. Water security is a serious challenge and farmers must be very precise in their irrigation management.

The Mexican COMPASS consortium, which is made up of the geospatial data analytics company Rezatec, the University of Nottingham, Booker Tate, CIMMYT and the Colegio de Postgraduados (COLPOS) in Mexico, evolved as a way to help Mexican farmers improve their water use efficiency.

“Yaqui Valley farmers are very experienced farmers, however they can also benefit by using an app that is designed locally to inform and record their decisions,” Rodrigues explained.

The smartphone app will also allow farmers to record and schedule their crop management practices and will give them access to weekly time-series Normalized Difference Vegetation Index (NDVI) maps, that will allow farmers to view their fields at any time from any location.

“All of this information is provided for free! That’s the exciting part of the project. The business model was designed so that farmers will not need to pay for access to the app and its features, in exchange for providing their crop field data. It’s a win-win situation,” said Rodrigues.

CIMMYT research assistant Lorena Gonzalez (center) helps local farmers try out the new COMPASS app during the workshop in Ciudad Obregon, Sonora state, Mexico. (Photo: Alison Doody/CIMMYT)
CIMMYT research assistant Lorena Gonzalez (center) helps local farmers try out the new COMPASS app during the workshop in Ciudad Obregon, Sonora state, Mexico. (Photo: Alison Doody/CIMMYT)

Farmer-centered design

The app is now in the validation stage and COMPASS partners are inviting farmers to test the technology on their own farms. A workshop on October 21 in Ciudad Obregon provided farmers with hands-on training for the app and allowed them to give their feedback.

Over 100 farmers attended the workshop, which featured presentations from Saravana Gurusamy, project manager at Rezatec, IvĂĄn OrtĂ­z-Monasterio, principal scientist at CIMMYT, and representatives from local farmer groups AsociaciĂłn de Organismos de Agricultores del Sur de Sonora (AOASS) and Distrito de Riego del RĂ­o Yaqui (DRRYAQUI). The workshop featured a step-by-step demonstration of the app and practical exercises for farmers to test it out for themselves.

“We need technology nowadays because we have to deal with many factors. The profit we get for wheat is getting smaller and smaller each year, so we have to be very productive. I hope that this app can help me to produce a better crop,” said one local wheat farmer who attended the workshop.

User feedback has played a key role in the development of the app. COMPASS interviewed dozens of farmers to see what design worked for them.

“Initially we came up with a really complicated design. However, when we gave it to farmers, they didn’t know how to use it,” explained Rezatec project manager, Saravana Gurusamy. The team went back to the drawing board and with the feedback they received from farmers, came up with a simple design that any farmer, regardless of their experience with technology or digital literacy, could use.

A farmer who attended the workshop talks about his experience and the potential benefits of the app. See full video on YouTube.

Sitting down with Gurusamy after the workshop, he outlined his vision for the future of the app.

“My vision is to see all the farmers in Sonora, working in wheat using the app. The first step is to prove the technology here, then roll it out to all of Mexico and eventually internationally.”

Mexican COMPASS is a four year project funded by the UK Space Agency’s International Partnership Programme (IPP-UKSA) and the CGIAR Research Program on Wheat (WHEAT). It is a collaboration between Rezatec, the University of Nottingham and Booker Tate in the UK, and the International Maize and Wheat Improvement Center (CIMMYT) and the Colegio de Postgraduados (COLPOS) in Mexico.