Skip to main content

funder_partner: Universidad Autónoma Chapingo (UACh)

Catalyzing smallholder farming in Mexico

Scientists from CIMMYT, founded in Mexico in 1966, have pursued decades of participatory research with Mexico’s smallholder maize farmers to improve their local varieties for traits like yield and insect resistance, while preserving their special grain quality, as well as testing and promoting zero-tillage and other resource-conserving farming practices.

Farmer Maria Luisa Gordillo Mendoza harvests a plot of maize grown with conservation agriculture techniques in her field in Nuevo México, Chiapas. (Photo: Peter Lowe/CIMMYT)

Smallholder farm operations account for more than 80% of all farms worldwide and produce roughly 35% of the world’s food, according to FAO census data and follow-up studies.

An estimated two-thirds of the Mexico’s farmers are smallholders, typically working challenging agroecologies scattered across the country’s mountainous terrain and applying generations-old subsistence practices to grow low-yielding local maize varieties.

Ancient milpa multicropping systems can lift up the present and future

The milpa intercrop — in which maize is grown together with beans, squash, or other vegetable crops — has a millennial history in the Americas and can furnish a vital supply of food and nutrients for marginalized, resource-poor communities.

One hectare of a milpa comprising maize, common beans, and potatoes can provide the annual carbohydrate needs of more than 13 adults, enough protein for nearly 10 adults, and adequate supplies of many vitamins and minerals, according to a CIMMYT-led study in the western highlands of Guatemala, an isolated and impoverished region, reported in Nature Scientific Reports in 2021.

But milpas are typically grown on much smaller areas than a hectare, so households cannot depend on this intercrop alone to satisfy their needs. A solution? Customized milpas that merge farmers’ age-old wisdom and practices with science-based innovation.

An example is planting fruit trees — guava, avocado, mango, peaches, or lime among others — among milpa crops in lines perpendicular to hill slopes. The practice was tested and promoted in the Los Tuxtlas region of the state of Veracruz by Mexico’s National Institute of Forestry, Agriculture, and Livestock Research (INIFAP) and the Colegio de Postgraduados (ColPos) and has been refined by farmers in other areas through CIMMYT-led innovation networks.

Planted milpa crops in lines perpendicular to the slope on a steep hillside in Chiapas, Mexico. (Photo: Peter Lowe/CIMMYT)

In Los Tuxtlas the practice provided added income and nutrition, dramatically reduced erosion, improved land and water-use efficiency by around 50%, and boosted soil health and fertility.

In the state of Puebla and other parts of South and southwestern Mexico, milpa-fruit tree intercrops have worked well on steep hillsides. In the state of Oaxaca, for example, versions of the practice have notably improved farming by indigenous communities in the Mixe and Mazateca regions, supported by outreach of the Mexican Agency for the Sustainable Development of Hillsides (AMDSL), a partner in a CIMMYT research hub in the region.

Research by AMDSL and CIMMYT on smallholder plots in two Oaxaca municipalities where farmers have been combining milpas with peach and avocado production and conservation agriculture practices for more than a decade found that cropping diversification, together with use of zero tillage and keeping crop residues on the soil rather than removing or burning them, raised total yearly crop outputs by as much as 1.7 tons per hectare and reduced farmers’ risk of catastrophic crop losses due to droughts or other climate extremes.

Blue maize pleases diners and delivers profits

Farmers’ local maize varieties yield less than hybrids but are still grown because they provide ideal grain quality for traditional foods, as well as marketable stalks and leaves to feed farm animals and maize husks for wrapping tamales, to name a few products.

Building on longstanding partnerships with INIFAP and the Autonomous University of Chapingo (UACh) to improve local varieties and preserve maize genetic diversity in Mexico, CIMMYT breeders have recently developed improved blue maize hybrids and open-pollinated varieties.

Sought by restauranteurs worldwide for its flavor and beauty, blue maize grain normally comes from native varieties grown by smallholder farmers on small plots with low yields and variable quality.

The new CIMMYT varieties are derived from traditional Guatemalan, Mexican, and Peruvian landraces and feature higher yields, more consistent grain quality, and enhanced resistance to common maize diseases, offering smallholders and other Mexican farmers a profitable product for the country’s booming restaurant industry and for export chains.

Selection of corn varieties for the state of Morelos, Mexico. (Photo: ACCIMMYT)

Parental inbred lines of the new hybrids have been distributed to private and public partners, who are developing their own hybrids and OPVs in Mexico. CIMMYT continues to test the new hybrids under various farming systems to ensure they produce stable yields when grown in farmers’ fields.

Data driven extension

Using cutting-edge data systems, CIMMYT has leveraged information from nearly 200,000 plots representing more than 26,000 hectares across diverse agroecologies to offer Mexican farmers — including smallholders — site-specific recommendations that make their farming systems more productive, resilient, and sustainable. The initiative was supported by MasAgro, an integrated development partnership of Mexico and CIMMYT during 2010-21 and funded by Mexico’s Secretariat of Agriculture and Rural Development (SADER).

Field trial design workshop for smallholder farmers who grow maize landraces

As part of the efforts of the Sustainable Modernization of Traditional Agriculture (MasAgro) program aimed at improving food security based on maize landraces in marginal areas of the state of Oaxaca, Mexico, a workshop on trial design was held from 19-21 February to improve the precision of data on improved maize landraces in smallholder farmers’ fields. Attending the workshop were partners from the National Forestry, Agriculture and Livestock Research Institute (INIFAP) and the Southern Regional University Center of the Autonomous University of Chapingo (UACh).

The objective was to continue to have positive impacts on the marginalized communities of Oaxaca, by adapting to the hillside conditions and poor, uneven and broken up soils that often characterize the plots of farmers who grow maize landraces. The very varied trial designs in farmers’ fields, plus the varied population structure of maize landraces make it difficult for scientists to create efficient designs.

The training workshop was led by Dr. Martha Willcox, CIMMYT Maize Landrace program, and designed by Dr. Juan Burgueño and Mr. Claudio Ayala, who sought to facilitate breeding research in smallholder farmers’ fields and to continue to work for the benefit of more than 400 Oaxacan farmers. The project’s multi-disciplinary base includes genetic improvement, agronomic management and biostatistics in order to generate greater value and scientifically confirm the benefits that are being achieved in the fields of the country’s poorest farmers.

It should be noted that during the four years that MasAgro has worked on participatory breeding (2014-2017), INIFAP, UACh and CIMMYT have found that in marginalized communities, maize landraces with the characteristics mentioned above not only yield more, but also generate higher returns on investments, which benefits farmers. Smallholder farmers grow maize in many ecological niches outside the areas most favorable for intensive commercial agriculture and in areas where hybrid improvement programs have not been introduced or worked due to the extreme conditions, including fog, drought and disease. Maize landraces are better adapted to those areas and have the culinary qualities needed to make every-day and festive local dishes.

In addition, not only has maize production for home consumption improved, but farmers are now linked to gastronomic markets. During project years and with its help, maize began to be exported, with 10,000 kilograms exported in 2014 and more than 900,000 kg exported in 2017.

Defining priorities for quality research in native maize

DSC_0127In order to define the research priorities for the Seeds of Discovery initiative in maize quality of landraces (a Strategic Initiative of both CRPs MAIZE and WHEAT funded by Mexico), a diverse group of food scientists, chemists, maize breeders, genebank curators, social scientists, and representatives of research institutions such as UNAM and Chapingo, met for a workshop to discuss future research on quality characteristics within native Mexican maize.

Held during 23-24 April 2012, at Mansión del Quijote, the workshop recognized the need to preserve cultural customs and identify market niches in order to ensure the conservation and use of germplasm. Many native maize landraces are grown by farmers for specific culinary uses. Tlayudas, for example, are normally prepared using native maize from Raza bolita, whilst Pozole is only prepared with pozolero maize belonging to the ancho, cacahuacintle, and eloteros occidentales races. These culinary and cultural niches are not easily filled by standard
commercial hybrids.

The workshop was organized by Martha Willcox (Genetic Resources Program) and Natalia Palacios (Global Maize Program). “We wanted to prioritize specific uses and areas of research,” said Natalia Palacios. “By discussing state of the art research on quality, germplasm conservation
and characterization, and the uses and applications of landraces, we were able to identify some starting points for further research,” she added. Whilst a great deal of work has focused on landrace quality, much of this research has gone undocumented. Therefore, one of the key focuses for 2012 will be on data analysis, documentation, and publication.

“Overall, we hope to identify and characterize accessions with exceptional quality parameters to be used in breeding, both at the landrace level and to introgress into improved breeding lines, in order to provide an economic benefit to farmers,” stated Martha Willcox.