Skip to main content

funder_partner: UK's Foreign, Commonwealth & Development Office (FCDO)

Bottlenecks between basic and applied plant science jeopardize life-saving crop improvements

Visitors at CIMMYT’s experimental station in Obregon, Mexico, where elite wheat lines are tested for new traits.
Visitors at CIMMYT’s experimental station in Obregon, Mexico, where elite wheat lines are tested for new traits.

For a number of reasons, including limited interdisciplinary collaboration and a dearth of funding, revolutionary new plant research findings are not being used to improve crops.

“Translational research” — efforts to convert basic research knowledge about plants into practical applications in crop improvement — represents a necessary link between the world of fundamental discovery and farmers’ fields. This kind of research is often seen as more complicated and time consuming than basic research and less sexy than working at the “cutting edge” where research is typically divorced from agricultural realities in order to achieve faster and cleaner results; however, modern tools — such as genomics, marker-assisted breeding, high throughput phenotyping of crop traits using drones, and speed breeding techniques — are making it both faster and cost-effective.

In a new article in Crop Breeding, Genetics, and Genomics, wheat physiologist Matthew Reynolds of the International Maize and Wheat Improvement Center (CIMMYT) and co-authors make the case for increasing not only funding for translational research, but the underlying prerequisites: international and interdisciplinary collaboration towards focused objectives and a visionary approach by funding organizations.

“It’s ironic,” said Reynolds. “Many breeding programs have invested in the exact technologies — such as phenomics, genomics and informatics — that can be powerful tools for translational research to make real improvements in yield and adaptation to climate, disease and pest stresses. But funding to integrate these tools in front-line breeding is quite scarce, so they aren’t reaching their potential value for crop improvement.”

Members of the International Wheat Yield Partnership (IWYP) which focuses on translational research to boost wheat yields.
Members of the International Wheat Yield Partnership (IWYP) which focuses on translational research to boost wheat yields.

Many research findings are tested for their implications for wheat improvement by the International Wheat Yield Partnership (IWYP) at the IWYP Hub, a centralized technical platform for evaluating innovations and building them into elite wheat varieties, co-managed by CIMMYT at its experimental station in Obregon, Mexico.

IWYP has its roots with the CGIAR Research Program on Wheat (WHEAT), which in 2010 formalized the need to boost both wheat yield potential as well as its adaptation to heat and drought stress. The network specializes in translational research, harnessing scientific findings from around the world to boost genetic gains in wheat, and capitalizing on the research and pre-breeding outputs of WHEAT and the testing networks of the International Wheat Improvement Network (IWIN). These efforts also led to the establishment of the Heat and Drought Wheat Improvement Consortium (HeDWIC).

“We’ve made extraordinary advances in understanding the genetic basis of important traits,“ said IWYP’s Richard Flavell, a co-author of the article. “But if they aren’t translated into crop production, their societal value is lost.”

The authors, all of whom have proven track records in both science and practical crop improvement, offer examples where exactly this combination of factors led to the impactful application of innovative research findings.

  • Improving the Vitamin A content of maize: A variety of maize with high Vitamin A content has the potential to reduce a deficiency that can cause blindness and a compromised immune system. This development happened as a result of many translational research efforts, including marker-assisted selection for a favorable allele, using DNA extracted from seed of numerous segregating breeding crosses prior to planting, and even findings from gerbil, piglet and chicken models — as well as long-term, community-based, placebo-controlled trials with children — that helped establish that Vitamin A maize is bioavailable and bioefficacious.
  • Flood-tolerant rice: Weather variability due to climate change effects is predicted to include both droughts and floods. Developing rice varieties that can withstand submergence in water due to flooding is an important outcome of translational research which has resulted in important gains for rice agriculture. In this case, the genetic trait for flood tolerance was recognized, but it took a long time to incorporate the trait into elite germplasm breeding programs. In fact, the development of flooding tolerant rice based on a specific SUB 1A allele took over 50 years at the International Rice Research Institute in the Philippines (1960–2010), together with expert molecular analyses by others. The translation program to achieve efficient incorporation into elite high yielding cultivars also required detailed research using molecular marker technologies that were not available at the time when trait introgression started.

Other successes include new approaches for improving the yield potential of spring wheat and the discovery of traits that increase the climate resilience of maize and sorghum.

One way researchers apply academic research to field impact is through phenotyping. Involving the use of cutting edge technologies and tools to measure detailed and hard to recognize plant traits, this area of research has undergone a revolution in the past decade, thanks to more affordable digital measuring tools such as cameras and sensors and more powerful and accessible computing power and accessibility.

Scientists are now able to identify at a detailed scale plant traits that show how efficiently a plant is using the sun’s radiation for growth, how deep its roots are growing to collect water, and more — helping breeders select the best lines to cross and develop.

An Australian pine at CIMMYT’s experimental station in Texoco, Mexico, commemorates the 4th symposium of the International Plant Phenotyping Network.
An Australian pine at CIMMYT’s experimental station in Texoco, Mexico, commemorates the 4th symposium of the International Plant Phenotyping Network.

Phenotyping is key to understanding the physiological and genetic bases of plant growth and adaptation and has wide application in crop improvement programs. Recording trait data through sophisticated non-invasive imaging, spectroscopy, image analysis, robotics, high-performance computing facilities and phenomics databases allows scientists to collect information about traits such as plant development, architecture, plant photosynthesis, growth or biomass productivity from hundreds to thousands of plants in a single day. This revolution was the subject of discussion at a 2016 gathering of more than 200 participants at the International Plant Phenotyping Symposium hosted by CIMMYT in Mexico and documented in a special issue of Plant Science.

There is currently an explosion in plant science. Scientists have uncovered the genetic basis of many traits, identified genetic markers to track them and developed ways to measure them in breeding programs. But most of these new findings and ideas have yet to be tested and used in breeding programs, wasting their potentially enormous societal value.

Establishing systems for generating and testing new hypotheses in agriculturally relevant systems must become a priority, Reynolds states in the article. However, for success, this will require interdisciplinary, and often international, collaboration to enable established breeding programs to retool. Most importantly, scientists and funding organizations alike must factor in the long-term benefits as well as the risks of not taking timely action. Translating a research finding into an improved crop that can save lives takes time and commitment. With these two prerequisites, basic plant research can and should positively impact food security.

Authors would like to acknowledge the following funding organizations for their commitment to translational research.

The International Wheat Yield Partnership (IWYP) is supported by the Biotechnology and Biological Sciences Research Council (BBSRC) in the UK; the U. S. Agency for International Development (USAID) in the USA; and the Syngenta Foundation for Sustainable Agriculture (SFSA) in Switzerland.

The Heat and Drought Wheat Improvement Consortium (HeDWIC) is supported by the Sustainable Modernization of Traditional Agriculture (MasAgro) Project by the Ministry of Agriculture and Rural Development (SADER) of the Government of Mexico; previous projects that underpinned HeDWIC were supported by Australia’s Grains Research and Development Corporation (GRDC).

The Queensland Government’s Department of Agriculture and Fisheries in collaboration with The Grains Research and Development Corporation (GRDC) have provided long-term investment for the public sector sorghum pre-breeding program in Australia, including research on the stay-green trait. More recently, this translational research has been led by the Queensland Alliance for Agriculture and Food Innovation (QAAFI) within The University of Queensland.

ASI validation work and ASI translation and extension components with support from the United Nations Development Programme (UNDP) and the Bill and Melinda Gates Foundation, respectively.

Financial support for the maize proVA work was partially provided by HarvestPlus (www.HarvestPlus.org), a global alliance of agriculture and nutrition research institutions working to increase the micronutrient density of staple food crops through biofortification. The CGIAR Research Program MAIZE (CRP-MAIZE) also supported this research.

The CGIAR Research Program on Wheat (WHEAT) is led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Center for Agricultural Research in the Dry Areas (ICARDA) as a primary research partner. Funding comes from CGIAR, national governments, foundations, development banks and other agencies, including the Australian Centre for International Agricultural Research (ACIAR), the UK Department for International Development (DFID) and the United States Agency for International Development (USAID).

Climate Services for Resilient Development in South Asia (CSRD)

Climate Services for Resilient Development (CSRD) is a global partnership that connects climate and environmental science with data streams to generate decision support tools and training for decision-makers in developing countries. Translating complex climate information into easy to understand actionable formats to spread awareness in the form of climate services is core to CSRD’s mission. CSRD works across South Asia (with emphasis on Bangladesh), the Horn of Africa (Ethiopia), and in South America (Colombia) to generate and provide timely and useful climate information, decision tools and services. In South Asia, CSRD focusses the development, supply and adaptation of agricultural climate services to reduce vulnerability by increasing resiliency in smallholder farming systems. These goals are strategically aligned with the Global Framework for Climate Services.

Project description

CSRD in South Asia aims to have the impact by increasing climate resilient farm management, indicated by increased use of climate services and climate information to inform farmers on how to better manage their production systems.  CSRD also aims to develop and validate models for agricultural climate services that can be replicated in other regions with similar farming systems and climate risks, while also fine-tuning weather and climate advisories to be most useful to farmers’ decision-making. A series of sustained contributions to CSRD’s Action and Learning Framework Pillars 1-4, detailed below, are envisioned as major project outcomes:

  • Pillar 1: Create the solution space:
    CSRD works to establish a problem-focus, to engage key stakeholders, to create a platform for sustained communication and collaboration, and to build synergies among relevant programs.
  • Pillar 2: Utilize quality data, products, and tools
    CSRD provides access to useful and available information and technology, and to develop tailored products and services responsive to problem-specific needs.
  • Pillar 3: Build capacities and platforms
    CSRD supports the use of targeted products and services, and to promote sustainability, scalability, and replicability.
  • Pillar 4: Build knowledge
    A key goal of CSRD’s work is to identify and promote good practices among the global climate services community and to support research efforts and innovation that increase the effectiveness of climate services.

Outputs

CSRD in South Asia will ultimately generate the following broad outputs and services:

Download the report summarizing CSRD activities, achievements, and challenges during the first year (from November 2016 through December 2017).

The CSRD consortium in South Asia is led by the International Maize and Wheat Improvement Center (CIMMYT) in partnership with the Bangladesh Meteorological Department (BMD), Bangladesh Department of Agricultural Extension (DAE), Bangladesh Agricultural Research Council (BARC), Bangladesh Agricultural Research Institute (BARI), International Center for Integrated Mountain Development (ICIMOD), International Institute for Climate and Society (IRI), University de Passo Fundo (UPF), and the University of Rhode Island (URI). This consortium provides strength and technical expertise to develop relevant climate products that can assist farmers and other stakeholders with relevant information to improve decision making, with the ultimate goal of increasing resilience to climate-related risks. The CSRD consortium also works to assure that climate information can be conveyed in ways that are decision-relevant to farmers and other agricultural stakeholders.

As a public-private partnership, CSRD is supported by the United States Agency for International Development (USAID), UK AID, the UK Met Office, the Asian Development Bank (ADB), the Inter-American Development Bank (IDB), ESRI, Google, the American Red Cross, and the Skoll Global Threats Fund.

MARPLE team recognized for international impact

MARPLE team members Dave Hodson and Diane Saunders (second and third from left) stand for a photograph after receiving the International Impact award. With them is Malcolm Skingle, director of Academic Liaison at GlaxoSmithKline (first from left) and Melanie Welham, executive chair of BBSRC. (Photo: BBSRC)
MARPLE team members Dave Hodson and Diane Saunders (second and third from left) stand for a photograph after receiving the International Impact award. With them is Malcolm Skingle, director of Academic Liaison at GlaxoSmithKline (first from left) and Melanie Welham, executive chair of BBSRC. (Photo: BBSRC)

The research team behind the MARPLE (Mobile And Real-time PLant disEase) diagnostic kit won the International Impact category of the Innovator of the Year 2019 Awards, sponsored by the United Kingdom’s Biotechnology and Biological Sciences Research Council (BBSRC).

The team — Diane Saunders of the John Innes Centre (JIC), Dave Hodson of the International Maize and Wheat Improvement Center (CIMMYT) and Tadessa Daba of the Ethiopian Institute for Agricultural Research (EIAR) — was presented with the award at an event at the London Science Museum on May 15, 2019. In the audience were leading figures from the worlds of investment, industry, government, charity and academia, including the U.K.’s Minister of State for Universities, Science, Research and Innovation, Chris Skidmore.

The BBSRC Innovator of the Year awards, now in their 11th year, recognize and support individuals or teams who have taken discoveries in bioscience and translated them to deliver impact. Reflecting the breadth of research that BBSRC supports, they are awarded in four categories of impact: commercial, societal, international and early career. Daba, Hodson and Saunders were among a select group of 12 finalists competing for the four prestigious awards. In addition to international recognition, they received £10,000 (about $13,000).

“I am delighted that this work has been recognized,” Hodson said. “Wheat rusts are a global threat to agriculture and to the livelihoods of farmers in developing countries such as Ethiopia. MARPLE diagnostics puts state-of-the-art, rapid diagnostic results in the hands of those best placed to respond: researchers on the ground, local government and farmers.”

On-the-ground diagnostics

The MARPLE diagnostic kit is the first operational system in the world using nanopore sequence technology for rapid diagnostics and surveillance of complex fungal pathogens in the field.

In its initial work in Ethiopia, the suitcase-sized field test kit has positioned the country — one of the region’s top wheat producers — as a world leader in pathogen diagnostics and forecasting. Generating results within 48 hours of field sampling, the kit represents a revolution in plant disease diagnostics. Its use will have far-reaching implications for how plant health threats are identified and tracked into the future.

MARPLE is designed to run at a field site without constant electricity and with the varying temperatures of the field.

“This means we can truly take the lab to the field,” explained Saunders. “Perhaps more importantly though, it means that smaller, less-resourced labs can drive their own research without having to rely on a handful of large, well-resourced labs and sophisticated expertise in different countries.”

In a recent interview with JIC, EIAR Director Tadessa Daba said, “we want to see this project being used on the ground, to show farmers and the nation this technology works.”

The MARPLE team uses the diagnostic kit in Ethiopia. (Photo: JIC)
The MARPLE team uses the diagnostic kit in Ethiopia. (Photo: JIC)

Development of the MARPLE diagnostic kit was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the CGIAR Platform for Big Data in Agriculture’s Inspire Challenge. Continued support is also provided by the BBSRC’s Excellence with Impact Award to the John Innes Centre and the Delivering Genetic Gain in Wheat project, led by Cornell University and funded by the UK’s Department for International Development (DFID) and the Bill & Melinda Gates Foundation.

More information on the award can be found on the JIC website, the BBSRC website and the website of the CGIAR Research Program on Wheat.

Velu Govindan

Velu Govindan is a senior wheat breeder at the CIMMYT’s Global Wheat Program in Mexico. He has been engaged in wheat improvement research for the past 15 years. During this period, he made significant contributions towards the development and release of more than 20 biofortified wheat varieties in South Asia with enhanced zinc and iron concentration, with tolerance to rusts & other foliar diseases and climate change-induced heat and drought stress.

Govindan is leading the two of the spring wheat breeding pipelines targeted to early maturing wheat environments with wheat yield potential, climate resilience and yield stability across diverse environments by combining traditional breeding and cutting-edge genomic tools. He is leading the CIMMYT breeding efforts towards mainstreaming grain Zn across elite wheat lines through accelerated breeding strategies. He has published more than 80 peer-reviewed journal articles and 15 book chapters. He received young scientist award from India.

Durable Rust Resistance in Wheat

The Durable Rust Resistance in Wheat project, a collaborative effort begun in April 2008, which now includes 22 research institutions around the world and is led by Cornell University, seeks to mitigate the threat of rust diseases to wheat. It aims to do so through coordinated activities that will replace susceptible varieties with durably resistant varieties, created by accelerated multilateral plant breeding and delivered through optimized developing country seed sectors. The project also aims to harness recent advances in genomics to introduce non-host resistance (immunity) into wheat.

Improved international collaboration in wheat research to meet growing world demand for food — an estimated 50 percent production increase in wheat alone is needed by 2020 — is another major goal of this project.

Objectives

  • Reduce systematically the world’s vulnerability to stem rust diseases of wheat through an international collaboration unprecedented in scale and scope.
  • Mitigate that threat through coordinated pathogen surveillance activities, and breeding initiatives.
  • Make efforts that will replace susceptible varieties in farmer’s fields with seed of durably resistant varieties, created by accelerated multilateral plant breeding, and delivered through optimized developing country seed sectors.

Delivering Genetic Gain in Wheat (DGGW)

Climate-change-induced heat stress and disease pathogens migrating across borders threaten the world’s wheat supply and food security in Africa and the Middle East. Building on the Durable Rust Resistance in Wheat (DRRW) global partnership, Delivering Genetic Gain in Wheat (DGGW) will mitigate serious threats to wheat brought about by climate change and develop and deploy new strains of wheat that are heat tolerant as well as resistant to wheat rusts and other diseases.

Cornell University has been awarded a $24 million grant by the Bill & Melinda Gates Foundation to continue to fund and expand the work of the Borlaug Global Rust Initiative (BGRI).

DGGW uses modern tools of comparative genomics and big data to develop and deploy varieties of wheat that incorporate climate resiliency as well as improved disease resistance for smallholder farmers in these politically vulnerable regions.”

The four-year grant builds on the successes of the BGRI, led by the DRRW project, funded by the UK Department for International Development and the Bill & Melinda Gates Foundation from 2008 to 2016.

Deadly wheat pathogens have been moving from the wheat fields of northern and East Africa into the Middle East. In their rush to identify genes that can resist evolving and virulent new strains of the disease known as stem rust, BGRI scientists have developed collaborative arrangements and facilities, with the crucial support of national governments and agencies, to screen thousands of samples of wheat each year from every continent under rust infection, to identify resistant lines.

DGGW is based at Cornell University and acts as the secretariat for the BGRI. Collaborations continue with national partners in Kenya and Ethiopia, as well as scientists at international agricultural research centers that focus on wheat, including CIMMYT and the International Center for Agricultural Research in the Dry Areas.

Advanced research laboratories in the U.S., Canada, China, Turkey, Denmark, Australia and South Africa collaborate on the project. So far, more than 2,000 scientists from 35 international institutions spread across 23 countries are involved in the consortium, and 37 countries contribute data to the surveillance network.

Objectives

  • Mitigate serious threats to wheat brought about by climate change
  • Develop new strains of heat-tolerant wheat
  • Develop rust and disease resistant wheat
  • Monitor spread of stem rust and other windborne wheat diseases

Drought Tolerant Maize for Africa (DTMA)

The Drought Tolerant Maize for Africa project aims to mitigate drought and other constraints to maize production in sub-Saharan Africa, increasing maize yields by at least one ton per hectare under moderate drought and with a 20 to 30 percent increase over farmers’ current yields, benefiting up to 40 million people in 13 African countries. The project brings together farmers, research institutions, extension specialists, seed producers, farmer community organizations and non-governmental organizations. It is jointly implemented by CIMMYT and the International Institute for Tropical Agriculture, in close collaboration with national agricultural research systems in participating nations. Millions of farmers in the region are already benefiting from the outputs of this partnership, which includes support and training for African seed producers and promoting vibrant, competitive seed markets.

Achievements:

  • Between 2007 and 12, participants marketed or otherwise made available 60 drought tolerant hybrids and 57 open-pollinated varieties to smallholder farmers
  • In addition to drought tolerance, the new varieties and hybrids also possess such desirable traits as resistance to major diseases
  • Engage government officials in policy dialogue to help fast-track varietal releases and fosters competitive seed markets and more
    widespread access to quality seed at affordable prices
  • Help ensure farmers’ access to the best possible products and services, coordinate various capacity-building events and
    activities for maize breeders, technicians, seed producers, extension workers, non-government organizations and farmer groups
  • Provide technical and advisory support to 50 African undergraduate and 28 African graduate students
  • Expand smallholder farmers’ use of drought and other stress tolerant maize seed to benefit 30 to 40 million people and provide added grain worth $160-200 million each year in drought-affected areas of sub-Saharan Africa

Principal coordinator

Tsedeke Abate

Growing need for food is reason for more biodiversity

Recent research in Southern Ethiopia found that agricultural areas with the highest tree cover also experienced the most productivity in crop, feed and fuel. (Photo: Mokhamad Edliadi/CIFOR)
Recent research in Southern Ethiopia found that agricultural areas with the highest tree cover also experienced the most productivity in crop, feed and fuel. (Photo: Mokhamad Edliadi/CIFOR)

Deep within southern Ethiopia’s agroforestry landscapes, where farmers grow grain and keep cattle, sheep, goats and donkeys, researchers counted more than 4,100 birds as part of an assessment on agricultural productivity and biodiversity.

The researchers also counted some 4,473 individual trees from 52 tree species in the same study, which they believe is the first to link key indicators of biodiversity to more than one indicator of agricultural productivity, considering three products people in rural communities value most: fodder, fuel and food.

This has led to two important new conclusions: that encouraging biodiversity on and around agricultural land likely increases its productivity, and that measurements of productivity must be broadened to include what matters for local livelihoods.

Too often, agricultural productivity is measured through a very narrow lens, such as “mere” crop yields alone. But, according to the study, that has “disregarded local perspectives of what is actually important to people in terms of ecosystem services.

Take, for instance, trees: in addition to potentially growing food, they also benefit crop yield by controlling erosion; capture nutrients for the soil through their roots; help regulate the climate; and provide habitats for animals and insects, including natural enemies of crop pests. The study found that in this region of Ethiopia, agricultural productivity was higher in areas with heavy tree cover than in landscapes where trees had been removed for more crop space.

“We need to understand what would be the best way to produce food with minimum negative consequences on biodiversity,” says lead researcher Frédéric Baudron, challenging the assumption of trading one for the other in faith that agricultural intensification and biodiversity conservation can be achieved at once.

This study comes amid concerns that a rising demand for food and fuel to serve the world’s growing population – projected to reach 9 billion by 2050 – will drive greater agricultural expansion and intensification.

The proliferation of both would likely cause real harm to landscapes and biodiversity, threatening the essential natural constituents of the world’s ability to feed itself, warns Baudron. “That has serious implications for the sustainability of our global food production system,” he says. “We need biodiversity as an essential input.”

He also raises the issue of justice. Biodiversity loss hits hardest the millions of small farmers in developing countries – who make up the majority of farmers worldwide – because they depend almost exclusively on ecosystem services, and not external inputs, for production. And the resulting edible output is crucial for everyone; family farms produce more than 80 percent of the world’s food in value terms, according to FAO statistics.

Baudron says the study’s findings play into how small family farms should be managed through policy and in major restoration efforts, given that tree placement and configuration have enormous implications for biodiversity and ecosystem services it provides.

In other words, biodiversity shouldn’t be a bonus of productive landscapes. The study suggests, rather, that productive landscapes should be designed to make the most of all of the services provided by biodiversity.

The work was part of ‘The Agrarian Change Project’, with funding from the United Kingdom’s Department for International Development (DFID), the United States Agency for International Development (USAID) and the CGIAR Research Program on Wheat.

This article was originally published on Landscapes News. This content is licensed under Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0). This means you are free to redistribute our material for non-commercial purposes, as long as you give Landscapes News appropriate credit and link to the original Landscapes News content, indicate if changes were made, and distribute your contributions under the same Creative Commons license. You must notify Landscapes News if you repost, reprint or reuse our materials by contacting G[dot]Lipton[at]cgiar.org.

Reflections on the global impact of biofortification

Over two billion people across the world suffer from hidden hunger, the consumption of a sufficient number of calories, but still lacking essential nutrients such as vitamin A, iron or zinc. This can lead to severe health damage, blindness, or even death, particularly among children under the age of five. Furthermore, a recent FAO report estimates the number of undernourished people worldwide at over 800 million, with severe food insecurity and undernourishment increasing in almost all sub-regions of Africa, as well as across South America.

In recognition of World Food Day and the focus of the 2018 World Food Prize on nutrition, the CGIAR Research Centers and Programs reflect on the significance and global impact of biofortification and climate resilient crops – key components in achieving Sustainable Development Goals 2: Zero Hunger and 3: Good Health and Wellbeing by 2030.

As biofortification work nears a quarter-century – 10 years in the making, and another 15 years of implementation – the CGIAR evaluates what has made it such a success, in How the science of biofortification grew from an idea to a food revolution.

Biofortification enables scientists to fortify staple crops with micronutrients to address hidden hunger. There are now 290 new varieties of 12 biofortified crops – including maize, wheat and potatoes – being grown in 60 countries, reaching an estimated 10 million farming households.

The first biofortified maize variety was quality protein maize (QPM), developed by International Maize and Wheat Improvement Center (CIMMYT) scientists Evangelina Villegas and Surinder Vasal. QPM features enhanced levels of lysine and tryptophan, essential amino acids, which can help reduce malnutrition in children. Villegas and Vasal would later go on to win the World Food Prize in 2000 for this groundbreaking work, and genetic variation found in QPM would serve as the baseline for developing further biofortified products, such as zinc-enriched maize and vitamin A orange maize.

Biofortified, provitamin A enriched maize at an experimental plot in Zambia. Photo: CIMMYT
Biofortified, provitamin A enriched maize at an experimental plot in Zambia. Photo: CIMMYT

Several key factors have contributed to the success of biofortification. One is partnership. The CGIAR Centers work with hundreds of partners around the world, from national governments and research institutes through to non-governmental organizations and farmers on the ground. Other factors include the ability to build evidence and conduct thorough monitoring and evaluation, the maintenance of a clear vision on how research will have impact, and coordinated investment.

In considering the future role of biofortification in our evolving agricultural landscape, the article highlights the need to tie up with meeting global goals on sustainable development in terms of food security and improved nutrition, and the importance of ‘future proofing’ new varieties in the face of climate change.

In further support of biofortification, the UK’s Department for International Development (DFID) recognized the importance of CGIAR’s world-renowned agricultural research in the fight to end global hunger. Support from DFID has been crucial to biofortification work in Africa as well as in the development of drought-tolerant maize by CIMMYT and the CGIAR Research Program on Maize (MAIZE), which has increased farmers’ yields by up to 30 per cent, benefitting 20 million people in 13 African countries. Over 300 drought tolerant maize varieties were released by CIMMYT under the Drought Tolerant Maize for Africa (DTMA) project, which ran from 2006 to 2015, and continue to be scaled out and provide benefits to smallholder farmers in the region today. DFID also highlighted the impact of their support to CIMMYT and the CGIAR Research Program on Wheat (WHEAT) in the development of disease resistant wheat varieties that help avoid food shortages and exacerbated hunger worldwide.

After a prolonged decline in global hunger, findings pointing to a recent increase are alarming. Coupled with uncertainties surrounding food supply due to challenges like changing climates and ever-present crop pests and diseases, the challenges we face are significant. The development and deployment of crops biofortified with nourishing micronutrients and equipped to cope with abiotic and biotic stresses is of fundamental importance. The work of the CGIAR Centers and Research Programs is vital to improve the livelihoods of smallholder farmers and to fuel the fight towards zero hunger by 2030.

This article is based on coverage from The Telegraph and CGIAR.

Mutating diseases drive wheat variety turnover in Ethiopia, new study shows

Yellow spores of the fungus Puccinia striiformis f.sp. tritici, which causes stripe rust disease in wheat. Photo: CIMMYT/Mike Listman.
Yellow spores of the fungus Puccinia striiformis f.sp. tritici, which causes stripe rust disease in wheat. Photo: CIMMYT/Mike Listman.

Rapidly emerging and evolving races of wheat stem rust and stripe rust disease—the crop’s deadliest scourges worldwide—drove large-scale seed replacement by Ethiopia’s farmers during 2009-14, as the genetic resistance of widely-grown wheat varieties no longer proved effective against the novel pathogen strains, according to a new study by the International Maize and Wheat Improvement Center (CIMMYT).

Based on two surveys conducted by CIMMYT and the Ethiopian Institute of Agricultural Research (EIAR) and involving more than 2,000 Ethiopian wheat farmers, the study shows that farmers need access to a range of genetically diverse wheat varieties whose resistance is based on multiple genes.

After a severe outbreak in 2010-11 of a previously unseen stripe rust strain, 40 percent of the affected farm households quickly replaced popular but susceptible wheat varieties, according to Moti Jaleta, agricultural economist at CIMMYT and co-author of the publication.

“That epidemic hit about 600,000 hectares of wheat—30 percent of Ethiopia’s wheat lands—and farmers said it cut their yields in half,” Jaleta said. “In general, the rapid appearance and mutation of wheat rust races in Ethiopia has convinced farmers about the need to adopt newer, resistant varieties.”

The fourth most widely grown cereal after tef, maize, and sorghum, wheat in Ethiopia is produced largely by smallholder farmers under rainfed conditions. Wheat production and area under cultivation have increased significantly in the last decade and Ethiopia is among Africa’s top three wheat producers, but the country still imports on average 1.4 million tons of wheat per year to meet domestic demand.

National and international organizations such as EIAR, CIMMYT, and the International Centre for Agricultural Research in the Dry Areas (ICARDA) are working intensely to identify and incorporate new sources of disease resistance into improved wheat varieties and to support the multiplication of more seed to meet farmer demand.

New wheat varieties have provided bigger harvests and incomes for Ethiopia farmers in the last decade, but swiftly mutating and spreading disease strains are endangering wheat’s future, according to Dave Hodson, CIMMYT expert in geographic information and decision support systems, co-author of the new study.

Ethiopian wheat farmers like Abebe Abora, of Doyogena, have benefitted from adopting high-yielding wheat varieties but face threats from fast mutating races of wheat rust disease pathogens. Photo: CIMMYT/Apollo Habtamu.
Ethiopian wheat farmers like Abebe Abora, of Doyogena, have benefitted from adopting high-yielding wheat varieties but face threats from fast mutating races of wheat rust disease pathogens. Photo: CIMMYT/Apollo Habtamu.

“In addition to stripe rust, highly-virulent new races of stem rust are ruining wheat harvests in eastern Africa,” he explained. “These include the deadly Ug99 race group, which has spread beyond the region, and, more recently, the stem rust race TKTTF.”

As an example, he mentioned the case of the wheat variety Digalu, which is resistant to stripe rust and was quickly adopted by farmers after the 2010-11 epidemic. But Digalu has recently shown susceptibility to TKTTF stem rust and must now be replaced.

“In rust-prone Ethiopia, the risks of over-reliance on a widely-sown variety that is protected by a single, major resistance gene—Digalu, for example—are clearly apparent,” he added. “CIMMYT and partners are working hard to replace it with a new variety whose resistance is genetically more complex and durable.”

Hodson said as well that continuous monitoring of the rust populations in Ethiopia and the surrounding region is essential to detect and respond to emerging threats, as well as to ensure that the key pathogen races are used to screen for resistance in wheat breeding programs.

Hodson and partners at the John Innes Centre, UK, and EIAR are leading development of a handheld tool that allows rapid identification of disease strains in the field, instead of having to send them to a laboratory and lose precious time awaiting the results.

CIMMYT and partners are also applying molecular tools to study wheat varietal use in Ethiopia. “There are indications that yields reported by farmers were much lower than official statistics, and farmer recollections of varietal names and other information are not always exact,” Hodson explained. “We are analyzing results now of a follow-up study that uses DNA fingerprinting to better document varietal use and turnover.”

The authors would like to acknowledge the Standing Panel for Impact Assessment (SPIA) for financing, the Diffusion and Impacts of Improved Varieties in Africa (DIIVA) project that supported the first survey in 2011, and Cornell University, the Bill & Melinda Gates Foundation, and United Kingdom’s Department for International Development (DFID) through the Durable Rust Resistance in Wheat (DRRW, now called Delivering Genetic Gain in Wheat) project for support for the second survey in 2014.

Timothy J. Krupnik

Timothy Krupnik has worked in agricultural research for development in Asia, sub-Saharan Africa, and the Caribbean. At CIMMYT, he leads a multi-disciplinary and multi-cultural research team that comprises the Sustainable Agrifood Systems program’s Innovation Sciences in Agroecosystems and Food Systems theme across Asia.

This team spans disciplines and brings together technical skills ranging from systems agronomy, remote sensing, socioeconomics, climatology, agricultural engineering, and modeling and data science. The team’s research generates real-world impact by addressing key knowledge gaps, developing tools, and facilitating partnerships that increase productivity, sustainability and resilience in the context of the region’s biophysical, economic, and sociocultural diversity.

Krupnik has published over 120 peer-reviewed papers, policy briefs, chapters and books, and has led the development of numerous extension modules, decision support tools, and early warning systems.

Young women scientists who will galvanize global wheat research

CIUDAD OBREGÓN, Mexico (CIMMYT) – As more than 200 wheat science and food specialists from 34 countries gathered in northwestern Mexico to address threats to global nutrition and food security, 9 outstanding young women wheat scientists among them showed that this effort will be strengthened by diversity.

Winners of the Jeanie Borlaug Laube Women in Triticum (WIT) Early Career Award pose in front of the statue of the late Nobel Peace laureate, Dr. Norman E. Borlaug. Included in the photo are Amor Yahyaoui, CIMMYT wheat training coordinator (far left), Jeanie Borlaug Laube (center, blue blouse), and Maricelis Acevedo, Associate Director for Science, the Delivering Genetic Gain in Wheat Project (to the left of Jeanie Borlaug Laube). Photo: CIMMYT/Mike Listman
Winners of the Jeanie Borlaug Laube Women in Triticum (WIT) Early Career Award pose in front of the statue of the late Nobel Peace laureate, Dr. Norman E. Borlaug. Included in the photo are Amor Yahyaoui, CIMMYT wheat training coordinator (far left), Jeanie Borlaug Laube (center, blue blouse), and Maricelis Acevedo, Associate Director for Science, the Delivering Genetic Gain in Wheat Project (to the right of Jeanie Borlaug Laube). Photo: CIMMYT/Mike Listman

Winners of the Jeanie Borlaug Laube Women in Triticum (WIT) Early Career Award joined during 21-23 March an on-going wheat research training course organized by the International Maize and Wheat Improvement Center (CIMMYT).

“As my father used to say, you are the future,” said Jeanie Borlaug Laube, daughter of the late Nobel Peace Prize laureate, Dr. Norman E. Borlaug, and mentor of many young agricultural scientists. Speaking to the WIT recipients, she said, “You are ahead of the game compared to other scientists your age.”

Established in 2010 as part of the Delivering Genetic Gain in Wheat (DGGW) project led by Cornell University, the WIT program has provided professional development opportunities for 44 young women researchers in wheat from more than 20 countries.

The award is given annually to as many as five early science-career women, ranging from advanced undergraduates to recent doctoral graduates and postdoctoral fellows. Selection is based on a scientific abstract and statement of intent, along with evidence of commitment to agricultural development and leadership potential.

Women who will change their professions and the world

Weizhen Liu. Photo: WIT archives
Weizhen Liu. Photo: WIT archives

Weizhen Liu, a 2017 WIT recipient and postdoctoral researcher at Cornell University, is applying genome-wide association mapping and DNA marker technology to enhance genetic resistance in tetraploid and bread wheat to stripe rust, a major global disease of wheat that is spreading quickly and becoming more virulent.

“I am eager to join and devote myself to improving wheat yields by fighting wheat rusts,” said Liu, who received her bachelors in biotechnology from Nanjing Agricultural University, China, in 2011, and a doctorate from Washington State University in 2016. “Through WIT, I can share my research with other scientists, receive professional feedback, and build international collaboration.”

Mitaly Bansal. Photo: WIT archives
Mitaly Bansal. Photo: WIT archives

Mitaly Bansal, a 2016 WIT award winner, currently works as a Research Associate at Punjab Agricultural University, India. She did her PhD research in a collaborative project involving Punjab Agricultural University and the John Innes Centre, UK, to deploy stripe and leaf rust resistance genes from non-progenitor wild wheat in commercial cultivars.

“I would like to work someday in a position of public policy in India,” said Bansal, who received the Monsanto Beachell-Borlaug scholarship in 2013. “That is where I could have the influence to change things that needed changing.”

Networking in the cradle of wheat’s “Green Revolution”

In addition to joining CIMMYT training for a week, WIT recipients will attend the annual Borlaug Global Rust Initiative (BGRI) technical workshop, to be held this year in Marrakech, Morocco, from 14 to 17 April, and where the 2018 WIT winners will be announced.

The CIMMYT training sessions took place at the Norman Borlaug Experiment Station (CENEB), an irrigated desert location in Sonora State, northwestern Mexico, and coincided with CIMMYT’s 2018 “Visitors’ Week,” which took place from 19 to 23 March.

An annual gathering organized by the CIMMYT global wheat program at CENEB, Visitors’ Week typically draws hundreds of experts from the worldwide wheat research and development community. Participants share innovations and news on critical issues, such as the rising threat of the rust diseases or changing climates in key wheat farmlands.

Through her interaction with Visitors’ Week peers, Liu said she was impressed by the extensive partnering among experts from so many countries. “I realized that one of the most important things to fight world hunger is collaboration; no one can solve food insecurity, malnutrition, and climate change issues all by himself.”

A strong proponent and practitioner of collaboration, Norman E. Borlaug worked with Sonora farmers in the 1940-50s as part of a joint Rockefeller Foundation-Mexican government program that, among other outputs, generated high-yielding, disease-resistant wheat varieties. After bringing wheat self-sufficiency to Mexico, the varieties were adopted in South Asia and beyond in the 1960-70s, dramatically boosting yields and allowing famine-prone countries to feed their rapidly-expanding populations.

This became known as the Green Revolution and, in 1970, Borlaug received the Nobel Peace Prize in recognition of his contributions. Borlaug subsequently led CIMMYT wheat research until his retirement in 1979 and served afterwards as a special consultant to the Center.

When a new, highly virulent race of wheat stem rust, Ug99, emerged in eastern Africa in the early 2000s, Borlaug sounded the alarm and championed a global response that grew into the BGRI and associated initiatives such as DGGW.

“This is just a beginning for you, but it doesn’t end here,” said Maricelis Acevedo, a former WIT recipient who went on to become the leader of DGGW. Speaking during the training course, she observed that many WIT awardees come from settings where women often lack access to higher education or the freedom to pursue a career.

“Through WIT activities, including training courses like this and events such as Visitors’ Week and the BGRI workshop,” Acevedo added, “you’ll gain essential knowledge and skills but you’ll also learn leadership and the personal confidence to speak out, as well as the ability to interact one-on-one with leaders in your fields and to ask the right questions.”

CIMMYT is a global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives generous support from national governments, foundations, development banks and other public and private agencies.

Funded by the Bill & Melinda Gates Foundation and the UK’s Department for International Development (DFID) under UK aid, the DGGW project aims to strengthen the delivery pipeline for new, disease resistant, climate-resilient wheat varieties and to increase the yields of smallholder wheat farmers.

Ethiopian farmers profit from scaled-up, fast-track production of disease resistant wheat seed

A sunny November day brings hundreds of farmer seed producers to Doyogena, a scenic highland village in Ethiopia’s Southern Nations, Nationalities, and Peoples’ Region (SNNP). The visitors form a bustling line to collect more than $90 each – on average – in profits from representatives of the Zereta Kembata Seed Multiplication and Marketing Union.

Farmers in line at Doyogena. Photo: CIMMYT/A. Habtamu
Ethiopian farmer seed producers collect payment at the Zereta Kembata Seed Multiplication and Marketing Union facility, in  Doyogena. Photo: CIMMYT/A. Habtamu

“The union receives seed grown by more than 1,100 farmers, several hundred of whom are women, belonging to 8 farmer cooperatives,” said Yosief Balewold, general manager of the union.

With help from Ethiopia’s Agricultural Transformation Agency, Zereta Kembata began in 2016 to collect, clean, pack, and sell seed of wheat, potato, sorghum, and faba bean. “This year we marketed nearly 27 tons of the new, disease resistant wheat seed; that’s enough to sow around 270 hectares of the crop.”

Pitted against a yearly onslaught of fast-evolving fungal diseases that can infect as much as $200 million worth of the crops they are growing, more than 75,000 small-scale wheat farmers in Ethiopia’s 4 major wheat-growing regions will have gained access by late 2017 to a vital asset—over 400 tons of new, disease resistant wheat varieties of wheat seed, much of it produced by other farmers.

Marketed in tandem with science-based recommendations for growing wheat, the annual seed supply has steadily increased since 2014 through the Wheat Seed Scaling Initiative, led by the International Maize and Wheat Improvement Center (CIMMYT) and funded by the U.S. Agency for International Development (USAID).

“We’re energizing and diversifying Ethiopia’s wheat seed sector, partly by involving and benefitting both formal and farmer seed producers, including women and men,” said Bekele Abeyo, a CIMMYT scientist who leads the project.

With money from union shares purchased by farmer cooperatives and a regulatory 30 percent reinvestment of earnings, the union is building a large warehouse to store seed. In a smaller shack nearby sits a 0.75 ton steel seed cleaner donated by the Wheat Seed Scaling Initiative, which has been working with Zereta Kembata and other seed producers identified as outstanding by SNNP policymakers.

Abebe Abora, farmer in the Doyogena District of Ethiopia’s Southern Nations, Nationalities, and Peoples' Region (SNNP), has been a member of a seed production cooperative for four years. “Because of modern technology such as improved wheat varieties, farming is better for me than it was for my father,” he said. Photo: CIMMYT/A. Habtamu
Abebe Abora, farmer in the Doyogena District of Ethiopia’s Southern Nations, Nationalities, and Peoples’ Region (SNNP), has been a member of a seed production cooperative for four years. “Modern technology such as improved wheat varieties has made farming better for me than it was for my father,” he said. Photo: CIMMYT/A. Habtamu

“Ethiopia has seen a rapid rise in recent years of new and deadly strains of stem rust and yellow rust, wheat adversaries since biblical times that have lately mutated to overcome resistance genes bred into many modern wheat varieties,” said Ayele Badebo, a CIMMYT wheat pathologist based in Ethiopia. “Farmers must swiftly begin to sow a range of varieties bearing new resistance genes, but limited access to the seed has been a bottleneck.”

In addition to assisting government-managed seed producers and 4 seed companies, through the initiative CIMMYT supports 10 farmer unions that purchase, pack, and sell the seed grown by numerous farmer cooperatives, as well as 12 farmer seed production associations, including 5 women’s groups, who profit from growing and selling quality seed of the new varieties.

“The Seed Scaling Initiative gives wheat farmers 25-50 kilograms of wheat seed, based on land availability, to kick-start their seed production operation,” explained Terefe Fitta, manager of the Seed Scaling Initiative. “The farmers pay back the ‘loan’ at harvest with the same amount of seed, which is given to other prospective farmer seed producers, and so on.”

A critical innovation of the initiative has been to link farmer seed producers directly with sources of “early-generation” seed, principally state and federal researchers. “The project has also brought on board laboratories that monitor seed production and test harvested seed, certifying it for marketing,” said Badebo, citing those accomplishments as lasting legacies of the Initiative.

Women seize chance to advance

Recognizing the critical role of women in Ethiopian agriculture and rural communities, the Seed Scaling Initiative is supporting several women’s seed producer groups. An example is the Tembo Awtena Women’s Seed Producers Association, in Angacha District, SNNP.

Established in 2014, Tembo Awtena is the first women’s cooperative in the district. The group first tried to bake and sell bread but reformed in 2015 to produce seed, having heard that it was profitable from other farmer cooperatives.

Through the Seed Scaling Initiative, CIMMYT gave the association around two tons of seed to start and Ethiopia’s Southern Seed Enterprise purchased the entire first year of seed production at a 20 percent premium over market price because the quality was so good, according to Amarech Desta, Tembo Awtena chairwoman.

Amarech Desta, Tembo Awtena chairwoman. Photo: CIMMYT/A. Habtamu
Amarech Desta (left), Tembo Awtena chairwoman, with fellow farmer and association member Desalech Ashamo. Photo: CIMMYT/A. Habtamu

“In 2016, with support from CIMMYT, we sold more than $7,400 worth of seed,” said Desta, adding that word of the association’s success had attracted 30 additional women farmers in 2017, bringing the total membership to 133.

Desalech Ashamo, an association member who is a single head of household, received nearly $300 for the seed she grew in 2017 and used the earnings to paint her house. “A big advantage is that all our seed is sold in one lot, rather than piecemeal, so we receive a lump sum that can be used for a significant household project.”

Desta explained that, despite Angacha being a very traditional community, men support women’s seed production activities. “My husband knows the benefits are for all and the men even help us with field activities.”

Tembo Awtena members are especially pleased at being one of the three women’s seed production groups in the Oromia and SNNP regions to receive seed threshers recently through the Seed Scaling Initiative. Association members had been threshing the wheat seed manually, a long and laborious process, according to Desta. “With the new machine we will be able thresh in one hour what would take us three days by hand,” she said.

The chairwoman also has plans for an office, a storage area, a milling machine, opening a shop to sell farm supplies, and gaining recognition and publicity to share their story with others who may benefit.

Power from valued partnerships

The success of the Wheat Seed Scaling Initiative depends on the commitment and contributions of diverse national and global partners, among them the Ethiopian Institute of Agricultural Research (EIAR) and state and district level officials in the Amhara, Oromia, SNNP, and Tigray regions, which are home to 90 percent of Ethiopia’s nearly 5 million wheat farmers.  Most of the varieties come from breeding lines of CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA); a number were developed through the Delivering Genetic Gain in Wheat (formerly Durable Rust Resistance in Wheat) project, led by Cornell University and funded by the Bill & Melinda Gates Foundation and the UK’s Department for International Development (DFID) under their UKAid project.

First blast resistant, biofortified wheat variety released in Bangladesh

Members of National Technical Committee of NSB evaluating BAW 1260 in the field. Photo: CIMMYT
Members of National Technical Committee of NSB evaluating BAW 1260, the breeding line used to develop BARI Gom 33. Photo: CIMMYT

DHAKA, Bangladesh (CIMMYT) — As wheat farmers in Bangladesh struggle to recover from a 2016 outbreak of a mysterious disease called “wheat blast,” the country’s National Seed Board (NSB) released a new, high-yielding, blast-resistant wheat variety, according to a communication from the Wheat Research Centre (WRC) in Bangladesh.

Called “BARI Gom 33,” the variety was developed by WRC using a breeding line from the International Maize and Wheat Improvement Center (CIMMYT), a Mexico-based organization that has collaborated with Bangladeshi research organizations for decades, according to Naresh C. Deb Barma, Director of WRC, who said the variety had passed extensive field and laboratory testing. “Gom” means “wheat grain” in Bangla, the Bengali language used in Bangladesh.

“This represents an incredibly rapid response to blast, which struck in a surprise outbreak on 15,000 hectares of wheat in southwestern Bangladesh just last year, devastating the crop and greatly affecting farmers’ food security and livelihoods, not to mention their confidence in sowing wheat,” Barma said.

Caused by the fungus Magnaporthe oryzae pathotype triticum, wheat blast was first identified in Brazil in 1985 and has constrained wheat farming in South America for decades. Little is known about the genetics or interactions of the fungus with wheat or other hosts. Few resistant varieties have been released in Brazil, Bolivia and Paraguay, the countries most affected by wheat blast.

The Bangladesh outbreak was its first appearance in South Asia, a region where rice-wheat cropping rotations cover 13 million hectares and over a billion inhabitants eat wheat as main staple.

Many blast fungal strains are impervious to fungicides, according to Pawan Singh, a CIMMYT wheat pathologist. “The Bangladesh variant is still sensitive to fungicides, but this may not last forever, so we’re rushing to develop and spread new, blast-resistant wheat varieties for South Asia,” Singh explained.

The urgent global response to blast received a big boost in June from the Australian Centre for International Agricultural Research (ACIAR), which funded an initial four-year research project to breed blast resistant wheat varieties and the Indian Council of Agricultural Research (ICAR), which also provided grant to kick-start the work in South Asia. Led by CIMMYT, the initiative involves researchers from nearly a dozen institutions worldwide.

Chemical controls are costly and potentially harmful to human and environmental health, so protecting crops like wheat with inherent resistance is the smart alternative, but resistance must be genetically complex, combining several genes, to withstand new mutations of the pathogen over time.

Key partners in the new project are the agricultural research organizations of Bangladesh, including the Bangladesh Agricultural Research Institute (BARI), and the Instituto Nacional de Innovación Agropecuaria y Forestal in Bolivia, which will assist with large-scale field experiments to select wheat lines under artificial and natural infections of wheat blast.

Other partners include national and provincial research organizations in India, Nepal and Pakistan, as well as Kansas State University (KSU) and the U.S. Department of Agriculture-Agricultural Research Services (USDA-ARS). The U.S. Agency for International Agricultural Development (USAID) has also supported efforts to kick-start blast control measures, partnerships and upscaling the breeding, testing and seed multiplication of new, high-yielding, disease resistant varieties through its Feed the Future project.

BARI Gom 33 was tested for resistance to wheat blast in field trials in Bolivia and Bangladesh and in greenhouse tests by the USDA-ARS laboratory at Fort Detrick, Maryland. International partnerships are critical for a fast response to wheat blast, according to Hans-Joachim Braun, director of CIMMYT’s Global Wheat Program.

“Worldwide, we’re in the middle of efforts that include blast surveillance and forecasting, studies on the pathogen’s genetics and biology, integrated disease management and seed systems, as well as raising awareness about the disease and training for researchers, extension workers, and farmers,” said Braun.

With over 160 million people, Bangladesh is among the world’s most densely populated countries. Wheat is Bangladesh’s second most important staple food, after rice. The country grows more than 1.3 million tons each year but consumes 4.5 million tons, meaning that imports whose costs exceed $0.7 billion each year comprise more than two-thirds of domestic wheat grain use.

WRC will produce tons of breeder’s seed of BARI Gom 33 each year. This will be used by the Bangladesh Agricultural Development Corporation (BADC) and diverse non-governmental organizations and private companies to produce certified seed for farmers.

“This year WRC will provide seed to BADC for multiplication and the Department of Agricultural Extension will establish on-farm demonstrations of the new variety in blast prone districts during 2017-18,” said Barma.

As an added benefit for the nutrition of wheat consuming households, BARI Gom 33 grain features 30 percent higher levels of zinc than conventional wheat. Zinc is a critical micronutrient missing in the diets of many of the poor throughout South Asia and whose lack particularly harms the health of pregnant women and children under 5 years old.

With funding from HarvestPlus and the CGIAR Research Program on Agriculture for Nutrition, CIMMYT is leading global efforts to breed biofortified wheat with better agronomic and nutritional quality traits. The wheat line used in BARI Gom 33 was developed at CIMMYT, Mexico, through traditional cross-breeding and shared with Bangladesh and other cooperators in South Asia through the Center’s International Wheat Improvement Network, which celebrates 50 years in 2018.

Stable window 1 and 2 (W1W2) funding from CGIAR enabled CIMMYT and partners to react quickly and screen breeding lines in Bolivia, as well as working with KSU to identify sources of wheat blast resistance. The following W1 funders have made wheat blast resistance breeding possible: Australia, the Bill & Melinda Gates Foundation, Canada, France, India, Japan, Korea, New Zeland, Norway, Sweden, Switzerland, the United Kingdom and the World Bank. The following funders also contributed vital W2 funding: Australia, China, the United Kingdom (DFID) and USAID.

New initiative strengthens agricultural drought monitoring in Bangladesh

A new joint effort will strengthen or establish drought monitoring and early warning systems in Bangladesh. Photo: Santosh Raj Pathak/ICIMOD.
A new joint effort will strengthen or establish drought monitoring and early warning systems in Bangladesh. Photo: Santosh Raj Pathak/ICIMOD.

DHAKA, Bangladesh (CIMMYT) – A new joint effort will strengthen or establish drought monitoring and early warning systems in Bangladesh, as well as provide information on local cropping systems in South Asia to boost farmer resilience to climate change.

Regionally specific winter season drought and dry spells during the monsoon are a reoccurring concern in Bangladesh. Drought leads to reduced farming productivity, and climate change predictions suggest further decreases in precipitation in coming years. Additionally, there are uncertainties about where monsoons will flood in the rainy season, limiting groundwater recharge. If farmers are unable to adapt to these changes, bottlenecks in crop productivity and increased food insecurity are likely to result.

The effort will be led by Climate Services for Resilient Development (CSRD) and SERVIR-Hindu Kush Himalaya – a project funded by the United States Agency for International Development (USAID) – using Earth observation data.

A workshop jointly hosted by a number of organizations was recently held at the Bangladesh Agriculture Research Council (BARC) campus in Dhaka, Bangladesh to discuss the development of these agricultural monitoring services. The workshop brought together key partners to discuss anticipated methods, work plans and the user engagement process for effective development and long-term sustainability of the agricultural drought monitoring service.

Under this partnership, BARC is working to strengthen capacity of national research and agricultural extension institutes to use geographic information systems and remote sensing approaches for drought risk management.

(L-R) Birendra Bajracharya, regional program manager at the International Centre for Integrated Mountain Development, Shams Uddin Ahmed, director of the Bangladesh Meteorological Department, Muhammad Jalal Uddin, executive chairman the Bangladesh Agriculture Research Council and Timothy J. Krupnik, CIMMYT systems agronomist. Photo: Santosh Raj Pathak/ICIMOD
(L-R) Birendra Bajracharya, regional program manager at the International Centre for Integrated Mountain Development, Shams Uddin Ahmed, director of the Bangladesh Meteorological Department, Muhammad Jalal Uddin, executive chairman the Bangladesh Agriculture Research Council and Timothy J. Krupnik, CIMMYT systems agronomist. Photo: Santosh Raj Pathak/ICIMOD

Shams Uddin Ahmed, director of the Bangladesh Meteorological Department, noted that groundwater accessibility is a growing concern due to continued drought. The government has posed restrictions on deep well extraction, except for drinking water, to conserve crucial groundwater resources. He added that access to good quality drought monitoring and early warning information could help develop climate services to help farmers adapt to these challenges.

Muhammad Jalal Uddin, executive chairman of BARC, emphasized the need to adopt new technologies including remote sensing applications to improve predictability of climate hazards like floods and droughts. He added that with the adoption of improved agricultural practices, Bangladesh has become self-sufficient in rice, but that further work is needed to attain overall nutrition sufficiency.

Promoting and enabling climate services that increase farmer resilience to the impacts of climate variability can positively change behaviors and affect policy in developing countries. To do this, collaborators are working together to establish information communication technology platforms to provide user-oriented, easily accessible, timely and decision-relevant scientific information in the form of climate services.

Birendra Bajracharya, regional program manager of the Mountain Environment Regional Information System program at the International Centre for Integrated Mountain Development (ICIMOD), highlighted opportunities of using Earth observation data products for addressing societal challenges. He emphasized the user-centric “services” used by ICIMOD increase the sustainable use of Earth observation information and geospatial technologies for environmental management and improve resilience to climate change in the region.

Read the full workshop summary from ICIMOD here.

CSRD is a a public-private partnership supported by USAID, Department for International Development (DFID), the Met Office, Asian Development Bank, the Inter-American Development Bank, ESRI, Google, the American Red Cross and the Skoll Global Threats Fund.