Skip to main content

funder_partner: Trust for Advancement of Agricultural Sciences (TAAS), India

A climate-smart remodeling of South Asia’s rice-wheat cropping is urgent

A climate change hotspot region that features both small-scale and intensive farming, South Asia epitomizes the crushing pressure on land and water resources from global agriculture to feed a populous, warming world. Continuous irrigated rice and wheat cropping across northern India, for example, is depleting and degrading soils, draining a major aquifer, and producing a steady draft of greenhouse gases.

Through decades-long Asian and global partnerships, the International Maize and Wheat Improvement Center (CIMMYT) has helped to study and promote resource-conserving, climate-smart solutions for South Asian agriculture. Innovations include more precise and efficient use of water and fertilizer, as well as conservation agriculture, which blends reduced or zero-tillage, use of crop residues or mulches as soil covers, and more diverse intercrops and rotations. Partners are recently exploring regenerative agriculture approaches — a suite of integrated farming and grazing practices to rebuild the organic matter and biodiversity of soils.

Along with their environmental benefits, these practices can significantly reduce farm expenses and maintain or boost crop yields. Their widespread adoption depends in part on enlightened policies and dedicated promotion and testing that directly involves farmers. We highlight below promising findings and policy directions from a collection of recent scientific studies by CIMMYT and partners.

Getting down in the dirt

A recent scientific review examines the potential of a suite of improved practices — reduced or zero-tillage with residue management, use of organic manure, the balanced and integrated application of plant nutrients, land levelling, and precise water and pest control — to capture and hold carbon in soils on smallholder farms in South Asia. Results show a potential 36% increase in organic carbon in upper soil layers, amounting to some 18 tons of carbon per hectare of land and, across crops and environments, potentially cutting methane emissions by 12%. Policies and programs are needed to encourage farmers to adopt such practices.

Another study on soil quality in India’s extensive breadbasket region found that conservation agriculture practices raised per-hectare wheat yields by nearly half a ton and soil quality indexes nearly a third, over those for conventional practices, as well as reducing greenhouse gas emissions by more than 60%.

Ten years of research in the Indo-Gangetic Plains involving rice-wheat-mungbean or maize-wheat-mungbean rotations with flooded versus subsoil drip irrigation showed an absence of earthworms — major contributors to soil health — in soils under farmers’ typical practices. However, large earthworm populations were present and active under climate-smart practices, leading to improved soil carbon sequestration, soil quality, and the availability of nutrients for plants.

The field of farmer Ram Shubagh Chaudhary, Pokhar Binda village, Maharajganj district, Uttar Pradesh, India, who has been testing zero tillage to sow wheat directly into the unplowed paddies and leaving crop residues, after rice harvest. Chaudhary is one of many farmer-partners in the Cereal Systems Initiative for South Asia (CSISA), led by CIMMYT. (Photo: P. Kosina/CIMMYT)
The field of farmer Ram Shubagh Chaudhary, Pokhar Binda village, Maharajganj district, Uttar Pradesh, India, who has been testing zero tillage to sow wheat directly into the unplowed paddies and leaving crop residues, after rice harvest. Chaudhary is one of many farmer-partners in the Cereal Systems Initiative for South Asia (CSISA), led by CIMMYT. (Photo: P. Kosina/CIMMYT)

Rebooting marginal farms by design

Using the FarmDESIGN model to assess the realities of small-scale, marginal farmers in northwestern India (about 67% of the population) and redesign their current practices to boost farm profits, soil organic matter, and nutritional yields while reducing pesticide use, an international team of agricultural scientists demonstrated that integrating innovative cropping systems could help to improve farm performance and household livelihoods.

More than 19 gigatons of groundwater is extracted each year in northern India, much of this to flood the region’s puddled, transplanted rice crops. A recent experiment calibrated and validated the HYDRUS-2D model to simulate water dynamics for puddled rice and for rice sown in non-flooded soil using zero-tillage and watered with sub-surface drip irrigation. It was found that the yield of rice grown using the conservation agriculture practices and sub-surface drip irrigation was comparable to that of puddled, transplanted rice but required only half the irrigation water. Sub-surface drip irrigation also curtailed water losses from evapotranspiration and deep drainage, meaning this innovation coupled with conservation agriculture offers an ecologically viable alternative for sustainable rice production.

Given that yield gains through use of conservation agriculture in northern India are widespread but generally low, a nine-year study of rice-wheat cropping in the eastern Indo-Gangetic Plains applying the Environmental Policy Climate (EPIC) model, in this case combining data from long-term experiments with regionally gridded crop modeling, documented the need to tailor conservation agriculture flexibly to local circumstances, while building farmers’ capacity to test and adapt suitable conservation agriculture practices. The study found that rice-wheat productivity could increase as much as 38% under conservation agriculture, with optimal management.

Key partner organizations in this research include the following: Indian Council of Agricultural Research (ICAR); Central Soil Salinity Research Institute (CSSRI), Indian Agricultural Research Institute (IARI), Indian Institute of Farming Systems Research (IIFSR), Agriculture University, Kota; CCS Haryana Agricultural University, Hisar; Punjab Agricultural University, Ludhiana; Sri Karan Narendra Agriculture University, Jobner, Rajasthan; the Borlaug Institute for South Asia (BISA); the Trust for Advancement of Agricultural Sciences, Cornell University; Damanhour University, Damanhour, Egypt; UM6P, Ben Guerir, Morocco; the University of Aberdeen; the University of California, Davis; Wageningen University & Research; and IFDC.

Generous funding for the work cited comes from the Bill & Melinda Gates Foundation, The CGIAR Research Programs on Wheat Agri-Food Systems (WHEAT) and Climate Change, Agriculture and Food Security (CCAFS), supported by CGIAR Fund Donors and through bilateral funding agreements), The Indian Council of Agricultural Research (ICAR), and USAID.

Cover photo: A shortage of farm workers is driving the serious consideration by farmers and policymakers to replace traditional, labor-intensive puddled rice cropping (shown here), which leads to sizable methane emissions and profligate use of irrigation water, with the practice of growing rice in non-flooded soils, using conservation agriculture and drip irrigation practices. (Photo: P. Wall/CIMMYT)

Q&A: Regenerative agriculture for soil health

South Asia was the epicenter of the Green Revolution, a historic era of agricultural innovation that fed billions of people on the brink of famine.

Yet despite the indisputably positive nutritional and developmental impacts of the Green Revolution of the 1960s, the era of innovation also led to the widespread use of farming practices—like intensive tilling, monoculture, removal and burning of crop residues, and over-use of synthetic fertilizer—that have a deleterious effect on the soil and cause off-site ecological harm. Excess pumping of irrigation water over decades has dried out the region’s chief aquifer.

South Asia’s woes illustrate the environmental costs of intensive food production to feed our densely-populated planet. Currently, one billion hectares of land worldwide suffers from degraded soils.

The International Maize and Wheat Improvement Center (CIMMYT) works with two of the world’s most widely cultivated and consumed cereal crops. To grow enough of these staple foods to feed the world, a second Green Revolution is needed: one that avoids the mistakes of the past, regenerates degraded land and reboots biodiversity in farm areas.

M.L. Jat, a CIMMYT Principal Scientist, has spent 20 years studying and promoting sustainable agricultural practices for maize- and wheat-based farming systems. In the following Q&A, Jat tells us about regenerative agriculture: integrated farming and grazing practices intended to rebuild soil organic matter and restore degraded soil biodiversity.

Q: What major components or practices are part of regenerative agriculture?

A: Regenerative agriculture is a comprehensive system of farming that harnesses the power of soil biology to rebuild soil organic matter, diversify crop systems, and improve water retention and nutrient uptake. The depletion of biodiversity, degradation of soil health, warming, and drier weather in farm areas have necessitated a reversal in agriculture from “degeneration to regeneration.”

The practices address food and nutritional security challenges while protecting natural resources and lowering agriculture’s environmental footprint, in line with the United Nations Sustainable Development Goals. CIMMYT has worked for years to research and promote conservation agriculture, which contributes to the aims of regenerative agriculture, and is already practiced on more than 200 million hectares globally — 15% of all cropland — and is expanding at a rate of 10.5 million hectares per year.

Q: What are the potential roles of major food crops — maize, rice, and wheat — in regenerative agriculture systems?

A: Regenerative agriculture is “crop neutral;” that is, it is applicable to almost all crops and farming systems. The world’s rice, wheat, and maize crops have an enormous physical and ecological footprint on land and natural resources, but play a critical role in food and nutrition security. Considering that anthropogenic climate change has reduced the global agricultural total factor productivity by about 21% in the past six decades, applying regenerative agriculture approaches to these systems represents a momentous contribution toward sustainable farming under increasing climatic risks.

Download "Regenerative Agriculture for Soil Health, Food and Environmental Security: Proceedings and Recommendations” from the Trust for Advancement of Agricultural Sciences.
Download “Regenerative Agriculture for Soil Health, Food and Environmental Security: Proceedings and Recommendations”.

Q: What elements or approaches of regenerative agriculture are applicable in India and how can they be applied?

A: Regenerative practices for maize and wheat systems in India include no-tillage, crop residue recycling, legume inter-cropping and cover crops, crop diversification, integrated nutrient management, and precision water management.

The potential area of adoption for regenerative agriculture in India covers at least 50 million hectares across a diversity of cropping systems and agroecologies — including irrigated, rainfed, and arid farmlands — and can be approached through appropriate targeting, investments, knowledge and capacity enhancement, and enabling policies.

In the breadbasket region of the Indo-Gangetic Plains, regenerative agriculture can help address the aforementioned second-generation problems of the Green Revolution, as well as contributing to the Indian government’s Soil Health Mission and its COP26 commitments.

Q: In order to get regenerative agriculture off the ground in South Asia, who will be involved?

A: Adapting and applying regenerative agriculture’s portfolio of practices will require the participation of all stakeholders associated with farming. Application of these principles is location- and situation-specific, so researchers, extension functionaries, value chain actors, philanthropists, environmentalists, NGOs, farmers, and policy planners all have a role to play in the impact pathway.

CIMMYT, the Borlaug Institute for South Asia (BISA), public and private programs and agencies, and farmers themselves have been developing, refining, and scaling out conservation agriculture-based regenerative agriculture practices for some three decades in South Asia. CIMMYT and BISA will continue to play a key role in mainstreaming regenerative agriculture in local, national, and regional development plans through science-based policy and capacity development.

Q: Farmers constitute a strong economic and political force in India. How can they be brought on board to practice regenerative agriculture, which could be more costly and knowledge-intensive than their current practices?

A: We need to pursue business “unusual” and harness the potential opportunities of regenerative agriculture to sequester soil carbon and reduce greenhouse gas emissions. Regenerative agriculture practices can offer farmers additional income and certainly create a “pull factor” for their adoption, something that has already started and will constitute a strong business case. For example, innovative business models give farmers an opportunity to trade ecosystem services and carbon credits through repurposing subsidies and developing carbon markets for private sectors. CIMMYT, along with the Indian Council of Agricultural Research and private partners such as Grow Indigo, are already helping to put in place a framework to acquire carbon credits through regenerative agriculture in India.

For more information about the application of regenerative agriculture on India’s farmlands, see “Regenerative Agriculture for Soil Health, Food and Environmental Security: Proceedings and Recommendations” from the Trust for Advancement of Agricultural Sciences.

Cover photo: Brown and green fields. (Photo: Elizabeth Lies/Unsplash)

State-of-the-art maize doubled haploid facility inaugurated in India

Main building of CIMMYT’s maize doubled haploid facility in Kunigal, Karnataka state, India. (Photo: CIMMYT)
Main building of CIMMYT’s maize doubled haploid facility in Kunigal, Karnataka state, India. (Photo: CIMMYT)

On December 3, 2021, the International Maize and Wheat Improvement Center (CIMMYT) and its partners inaugurated a state-of-the-art maize doubled haploid (DH) facility in Kunigal, in India’s Karnataka state. The facility was established by CIMMYT in partnership with the University of Agricultural Sciences, Bangalore (UAS Bangalore), with financial support from the CGIAR Research Program on Maize (MAIZE).

It is the first public sector facility of its kind in Asia, fulfilling a very important need for maize breeding programs in the region. The facility, operated by CIMMYT, will provide DH production services for CIMMYT’s and UAS Bangalore’s breeding programs, as well as for national agricultural research institutions and small- and medium-sized seed companies engaged in maize breeding across tropical Asia. This is expected to result in accelerated development and deployment of a greater number of elite, climate-resilient and nutritionally-enriched maize hybrids in tropical Asia.

DH technology has the potential to enhance genetic gains and breeding efficiency, especially in combination with other modern tools and technologies, such as molecular markers and genomic selection. The facility occupies 12 acres of land at the Agricultural Research Station in Kunigal, in southwestern India. It is expected to produce at least 25,000-30,000 maize DH lines per year.

For more information, and to request these services, visit CIMMYT’s Maize Doubled Haploid Technology website.

R.S. Paroda (center) cuts the ribbon to inaugurate the maize doubled haploid facility in Kunigal, Karnataka state, India. He is flanked by S. Rajendra Prasad (left), vice chancellor of UAS Bangalore and B.M. Prasanna (right), director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize. (Photo: CIMMYT)
R.S. Paroda (center) cuts the ribbon to inaugurate the maize doubled haploid facility in Kunigal, Karnataka state, India. He is flanked by S. Rajendra Prasad (left), vice chancellor of UAS Bangalore and B.M. Prasanna (right), director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize. (Photo: CIMMYT)

Fast-track maize breeding in Asia

R.S. Paroda, who is a Padma Bhushan awardee in India and the chairman of the Trust for Advancement of Agricultural Sciences (TAAS) in New Delhi, thanked CIMMYT for its role in developing the facility. “The maize DH facility will revolutionize hybrid maize programs in both the public and private sectors in Asia, enabling fast-tracked development of climate-resilient and genetically diverse maize hybrids suitable for the rainfed maize-growing areas.”

S. Rajendra Prasad, vice chancellor of UAS Bangalore, appreciated the partnership between his institution and CIMMYT. “The facility will create opportunities to modernize maize breeding programs in India, besides serving as an educational and training hub for young students at the University,” he said. Members of UAS Bangalore Board of Management also participated in the formal opening of the facility.

B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize (MAIZE), spearheaded the process of establishing this important breeding facility. “Along with similar maize DH facilities in Mexico and Kenya, which respectively serve Latin America and Africa, this third facility for Asia rounds up CIMMYT’s commitment to strengthen tropical maize breeding programs across the globe,” he explained.

Bram Govaerts, CIMMYT’s director general, participated through a recorded video message.

Attending the ceremony were also 150 post-graduate students, faculty from UAS Bangalore, researchers from UAS Raichur and the Indian Institute of Maize Research, CIMMYT maize scientists, and private-sector members of the International Maize Improvement Consortium for Asia (IMIC-Asia).

R.S. Paroda, chairman of the Trust for Advancement of Agricultural Sciences (TAAS) in New Delhi, unveils the inauguration plaque for the maize doubled haploid facility in Kunigal, Karnataka state, India. (Photo: CIMMYT)
R.S. Paroda, chairman of the Trust for Advancement of Agricultural Sciences (TAAS) in New Delhi, unveils the inauguration plaque for the maize doubled haploid facility in Kunigal, Karnataka state, India. (Photo: CIMMYT)

Collaboration networks

A technical workshop titled “Transforming India’s Agriculture and Modernizing Maize Breeding Programs” was held the same day. The workshop featured talks by Paroda on the role of youth in Indian agriculture, Prasanna on modernizing maize breeding and enhancing genetic gain, CIMMYT scientist Vijay Chaikam on maize doubled haploid technology, and CIMMYT breeder Sudha Nair on genomic technologies for maize improvement.

IMIC-Asia held a General Body Meeting soon after the technical workshop, at which B.S. Vivek, maize breeder at CIMMYT, introduced the framework for the third phase of IMIC-Asia. Participants included representatives of the Indian Institute of Maize Research, the All-India Coordinated Maize Improvement Program, and private seed companies with membership in the consortium. Meeting participants expressed a keen interest in utilizing the new doubled haploid facility’s services.

Conservation agriculture for sustainable intensification in Eastern India

A new policy brief produced by the Indian Council of Agricultural Research (ICAR) lays out a clear case for the benefits and importance of conservation agriculture, and a road map for accelerating its adoption in Eastern India.

A collaborative effort by research and policy partners including ICAR, the National Academy of Agricultural Sciences (NAAS), The International Maize and Wheat Improvement Center (CIMMYT), the International Rice Research Institute (IRRI), and national academic and policy institutions, the brief represents the outputs of years of both rigorous scientific research and stakeholder consultations.

Eastern India — an area comprising seven states — is one of the world’s most densely populated areas, and a crucial agricultural zone, feeding more than a third of India’s population. The vast majority — more than 80% — of its farmers are smallholders, earning on average, just over half the national per capita income.

Conservation agriculture (CA) consists of farming practices that aim to maintain and boost yields and increase profits while reversing land degradation, protecting the environment and responding to climate change. These practices include minimal mechanical soil disturbance, permanent soil cover with living or dead plant material, and crop diversification through rotation or intercropping. A number of studies have shown the success of conservation agriculture in combatting declining factor productivity, deteriorating soil health, water scarcity, labor shortages, and climate change in India.

The road map lists recommended steps for regional and national policy makers, including

  • establishing a database repository on conservation agriculture for eastern India,
  • setting up common learning platform and sites for science-based evidence on CA,
  • developing an effective and productive supply chain system for CA machinery,
  • offering subsidies for CA machinery as incentives to farmers,
  • adopting pricing strategies to encourage market demand for sustained adoption of CA,
  • developing synergies for effective coordination between NARS and CGIAR institutions, and
  • building capacity among stakeholders.

Read the full policy brief here:

Conservation Agriculture for Sustainable Intensification in Eastern India

A combine harvester equipped with the Super SMS (left) harvests rice while a tractor equipped with the Happy Seeder is used for direct seeding of wheat. (Photo: Sonalika Tractors)
A combine harvester equipped with the Super SMS (left) harvests rice while a tractor equipped with the Happy Seeder is used for direct seeding of wheat. (Photo: Sonalika Tractors)

Partners include the Indian Council of Agricultural Research (ICAR), the National Academy of Agricultural Sciences (NAAS), the International Maize and Wheat Improvement Center (CIMMYT), the International Rice Research Institute (IRRI), the Trust for Advancement of Agricultural Sciences (TAAS), the Borlaug Institute for South Asia (BISA), Dr. Rajendra Prasad Central Agricultural University, Bihar Agricultural University, and the Department of Agriculture of the state of Bihar.