Skip to main content

funder_partner: The University of British Columbia

CropSustaiN BNI Wheat Mission

The Novo Nordisk Foundation and CIMMYT have launched the 4-year CropSustaiN initiative to determine the global potential of wheat that is significantly better at using nitrogen, thanks to Biological Nitrification Inhibition (BNI)—and to accelerate breeding and farmer access to BNI wheat varieties.

With a budget of US$ 21 million, CropSustaiN addresses the pressing challenges of nitrogen pollution and inefficient fertilizer use, which contribute to greenhouse gas (GHG) emissions and ecological degradation. Currently, no other seed or agronomic practice-based solution matches BNI crops’ mitigation impact potential. Growing BNI crops can complement other climate mitigation measures.

The challenge

Agriculture is at the heart of both food and nutrition security and environmental sustainability. The sector contributes ca. 10-12% of global GHG emissions, including 80% of the highly potent nitrous oxide (N2O) emissions. Fertilizer use contributes to such N losses, because plants take up about 50%, the remainder being lost. Wheat is the world’s largest ‘crop’ consumer of nitrogen-based fertilizer—a relatively nitrogen-inefficient cereal—at the same time providing affordable calories to billions of resource-poor people and ca. 20% of globally consumed protein. CropSustaiN targets this nexus of productivity and planetary boundary impact by verifying and thus de-risking the needed breeding, agronomic, and social innovations.

A solution: BNI-wheat

BNI is a natural ability of certain plant species to release metabolites from their roots into the soil. They influence the nitrogen-transforming activity of nitrifying bacteria, slowing down the conversion of ammonium to nitrate in the soil. This preserves soil ammonium levels for a longer time, providing plants with a more sustained source of available nitrogen and making them more nitrogen-use efficient (nitrogen plant use efficiency). As a result, BNI helps reduce the release of N2O gas emissions and nitrate leaching to the surrounding ecosystem.

A research breakthrough in 2021, led by the Japan International Research Center of Agricultural Sciences (JIRCAS) in collaboration with CIMMYT, demonstrated that the BNI trait can be transferred from a wheat wild relative to a modern wheat variety by conventional breeding. BNI wheat can be made available to farmers worldwide.

Growing BNI wheat could reduce nitrogen fertilizer usage by 15-20%, depending on regional farming conditions, without sacrificing yield or quality.

 

Incorporating BNI into additional crops would reduce usage further. Farmers can get the same yield with less external inputs.

Other BNI-crops

CropSustaiN will work on spring and winter wheats. Rice, maize, barley, and sorghum also have BNI potential. CropSustaiN will build the knowledge base and share with scientists working on other crops and agronomic approaches.

Objectives and outcomes

This high risk, high reward mission aims to:

  • Verify the global, on-farm potential of BNI-wheat through field trial research and breeding.
  • Build the partnerships and pathways to meet farmer demand for BNI-wheat seeds.
  • Work with stakeholders on policy change that enables BNI crops production and markets

Success will be measured by determining nitrogen pollution reduction levels under different soil nitrogen environments and management conditions on research stations, documenting crop performance and safety, breeding for BNI spring and winter wheats for a wide range of geographies, and gauging farmer needs, interest, and future demand.

Wheat spikes against the sky at CIMMYT’s El BatĂĄn, Mexico headquarters. (Photo: H. Hernandez Lira/CIMMYT)

A collaborative effort

CIMMYT is the lead implementer of Novo Nordisk Foundation’s mission funding. CropSustaiN’s interdisciplinary, intersectoral, systems approach relies on building partnerships and knowledge-sharing within and outside this research initiative. 45+ partners are engaged in CropSustaiN.

The potential GHG emissions reduction from deploying BNI-wheat is estimated to be 0.016-0.19 gigatonnes of CO2-equivalent emissions per year, reducing 0.4-6% of total global N2O emissions annually, plus a lowering of nitrate pollution.

Impact on climate change mitigation and Nationally Determined Contributions (NDCs)

The assumption is that BNI wheat is grown in all major wheat-growing areas and that farmers will practice a behavioral shift towards lower fertilizer use and higher fertilizer use efficiency. That could lead to ca. a reduction of 17 megatons per year globally. This can help nations achieve their NDCs under the Paris Agreement.

International public goods, governance, and management

CIMMYT and the Foundation are committed to open access and the dissemination of seeds, research data, and results as international public goods. The governance and management model reinforces a commitment to equitable global access to CropSustaiN outputs, emphasized in partnership agreements and management of intellectual property.

Invitation to join the mission

The CropSustaiN initiative is a bold step towards agricultural transformation. You are invited to become a partner. You can contribute to the mission with advice, by sharing methods, research data and results, or becoming a co-founder.

Please contact CropSustaiN Mission Director, Victor Kommerell, at v.kommerell@cgiar.org or Novo Nordisk Foundation’s Senior Scientific Manager, Jeremy A. Daniel, at jad@novo.dk.

Additional reference material

  1. BNI International Consortium (Japan International Research Center for Agricultural Sciences, JIRCAS)
  2. Nitrification inhibitors: biological and synthetic (German Environment Agency, Umweltbundesamt)
  3. CropSustaiN: new innovative crops to reduce the nitrogen footprint form agriculture
  4. Annual Technical Report 2024. CropSustaiN: A new paradigm to reduce the nitrogen footprint from agriculture
  5. BNI-Wheat Future: towards reducing global nitrogen use in wheat
  6. CIMMYT Publications Repository

‘Sharing’ or ‘sparing’ land?

Any fifth grader is familiar with the Cretaceous-Tertiary mass extinction, which saw dinosaurs — and three quarters of all species alive at that time — disappear from Earth, probably after it was struck by a very large asteroid. However, few people are aware the planet is currently going through a similar event of an equally large magnitude: a recent report from the World Wide Fund for Nature highlighted a 60% decline in the populations of over 4,000 vertebrate species monitored globally since 1970. This time, the culprit is not an asteroid, but human beings. The biggest threat we represent to other species is also the way we meet one of our most fundamental needs: food production.

As a response, scientists, particularly ecologists, have looked for strategies to minimize trade-offs between agriculture and biodiversity. One such strategy is “land sparing,” also known as the “Borlaug effect.” It seeks to segregate production and conservation and to maximize yield on areas as small as possible, sparing land for nature. Another strategy is “land sharing” or “wildlife-friendly farming,” which seeks to integrate production and conservation in the same land units and make farming as benign as possible to biodiversity. It minimizes the use of external inputs and retains unfarmed patches on farmland.

A heated debate between proponents of land sparing and proponents of land sharing has taken place over the past 15 years. Most studies, however, have found land sparing to lead to better outcomes than land sharing, in a range of contexts. With collaborators from CIFOR, UBC and other organizations, I hypothesized that this belief was biased because researchers assessed farming through a narrow lens, only looking at calories or crop yield.

Many more people today suffer from hidden hunger, or lack of vitamins and minerals in their diets, than lack of calories. Several studies have found more diverse and nutritious diets consumed by people living in or near areas with greater tree cover as trees are a key component of biodiversity. However, most of these studies have not looked at mechanisms explaining this positive association.

Forests for food

Studying seven tropical landscapes in Bangladesh, Burkina Faso, Cameroon, Ethiopia, Indonesia, Nicaragua and Zambia, we found evidence that tree cover directly supports diets in four landscapes out of seven. This may be through the harvest of bushmeat, wild fruits, wild vegetables and other forest-sourced foods. The study further found evidence of an agroecological pathway — that forests and trees support diverse crop and livestock production through an array of ecosystem services, ultimately leading to improved diets — in five landscapes out of seven. These results clearly demonstrate that although land sparing may have the best outcomes for biodiversity, it would cut off rural households from forest products such as forest food, firewood and livestock feed. It would also cut off smallholder farms from ecosystem services provided by biodiversity, and smallholders in the tropics tend to depend more on ecosystem services than on external inputs.

In Ethiopia, previous research conducted by some of the same authors has demonstrated that multifunctional landscapes that do not qualify as land sparing nor as land sharing may host high biodiversity whilst being more productive than simpler landscapes. They are more sustainable and resilient, provide more diverse diets and produce cereals with higher nutritional content.

The debate on land sparing vs. sharing has largely remained confined to the circles of conservation ecologists and has seldom involved agricultural scientists. As a result, most studies on land sparing vs. sharing have focused on minimizing the negative impact of farming on biodiversity, instead of looking for the best compromises between agricultural production and biodiversity conservation.

To design landscapes that truly balance the needs of people and nature, it is urgent for agronomists, agricultural economists, rural sociologists and crop breeders to participate in the land sparing vs. sharing debate.

Read more:
Testing the Various Pathways Linking Forest Cover to Dietary Diversity in Tropical Landscapes

This study was made possible by funding from the UK’s Department for International Development (DFID), the United States Agency for International Development (USAID) through the project Agrarian Change in Tropical Landscapes, and by the CGIAR Research Programs on MAIZE and WHEAT.