Skip to main content

funder_partner: Texas A&M University

Agriculture for Peace platform launches at Borlaug Dialogue

Events of the past year have underscored the correlation of food supply chains, and weaknesses that need to be addressed. Tackling threats to global food security caused by COVID-19, conflict, and climate change require joint action and long-term commitments, with approaches based on partnerships, collaborative research and information sharing, and involvement from all actors within agrifood systems.

These topics and potential solutions were integral to the 2022 Norman E. Borlaug International Dialogue, hosted between October 18-20, 2022. With a theme of Feeding a Fragile World and overcoming shocks to the global food system, seminars and workshops explored scalable solutions for adaptation and mitigation to limit global warming and meet the UN Sustainable Development Goals (SDGs).

One event which proposed a solution to these challenges was Agriculture for Peace (Ag4Peace): A Call for Action, which marked the official launch of a platform aiming to support national food and agriculture strategies.

The initiative was founded by seven partners: Norman Borlaug Foundation, the International Maize and Wheat Improvement Center (CIMMYT), Cornell University College of Agriculture and Life Sciences, the International Center for Agricultural Research in the Dry Areas (ICARDA), the International Livestock Research Institute (ILRI), the International Rice Research Institute (IRRI) and Texas A&M University.

During the event, two additional collaborators were announced: World Wide Fund for Nature and Inter-American Institute for Cooperation on Agriculture (IICA).

The Ag4Peace concept

Ag4Peace is built on the understanding that without peace there is no food, and without food there is no peace. Conflicts and violence severely disrupt agricultural processes and limit access to food, which in turn forces people to take increasingly perilous actions as they attempt to secure their lives and those of their families. High food prices and hunger cause instability, migration, and civil unrest as people become more desperate.

Using a collaborative approach, partners will design holistic strategies that encompass the multi-faceted nature of agrifood systems and their interconnections with nature, nutrition, and livelihoods. This requires broad-based collaborations, so the Ag4Peace partners welcome other institutions, private sector, and non-governmental organizations that share their aspirations to join them.

Partners are co-constructing the Cross-Sector Collaboration to Advance Resilient Equitable Agrifood Systems (CC-AREAS), the first operational plan for the platform. This is a 10-year proof-of-concept program that applies a holistic, systems approach to achieve resilient agrifood systems and accelerate development of the circular bioeconomy in five low- and middle-income countries (LMICs) that are increasingly exposed to food security risks due to climate change and reliance on imported staple foods.

They will support national efforts to upgrade agrifood systems, adopt regenerative agriculture and climate-smart strategies, expand the circular bioeconomy, and achieve nutrition and food security goals.

In all aspects of the initiative (science, planning, implementation, and evaluation), participation priority will be given to small-scale farmers, women, and socially diverse groups, which will maximize positive outcomes and ensure inclusivity.

Benefits for farmers, communities, value chain participants, consumers, and ecosystems will be demonstrated throughout to encourage adoption and continued use of improved technologies and practices and demonstrate effectiveness.

Partner support for Ag4Peace

After the concept was introduced by Bram Govaerts, Director General of CIMMYT and recipient of the 2014 Norman Borlaug Award for Field Research and Application, a roundtable discussion with a diverse panel of experts began.

Speakers included Manuel Otero, Director General of the Inter-American Institute for Cooperation on Agriculture (IICA), Hon. Sharon E. Burke, Global Fellow of Environmental Change and Security Program at the Wilson Center, Per Pinstrup-Anderson, Professor and World Food Prize Laureate, and Alice Ruhweza, Africa Regional Director of the World Wildlife Fund (WWF).

Moderated by Margaret Bath, Chair of CIMMYT Board of Trustees, the panelists conveyed Ag4Peace’s aims of building productive, sustainable, and resilient agrifood systems, improving livelihoods for small-scale producers and other value chain actors, and deliver nutritious, affordable diets.

“Hunger is part of the picture of conflict,” explained Burke. “These strapped communities are often competing for resources with each other, within their own boundaries, and sometimes food is a weapon in these places, just as destructive as a bomb or a gun. Without food there is no peace, in the near or the long-term.”

Trade-offs versus win-wins

Pinstrup-Anderson ruminated on the importance of win-wins, which are solutions that work for supporting human health and protecting our natural environment without sacrificing results in one area for results in another. “We do not have to give up improving nutrition just to save the climate or save the earth – we can do both,” he said.

The significance of strong partnerships arose multiple times, such as when Otero explained, “It is not a matter of working just with the agriculture ministers but also with other ministers – foreign affairs, social development, environmental – because agriculture is a sector that crosses across all these institutions.”

Ruhweza explored whether threats to food security, such as COVID-19, conflict, and climate change, can also bring opportunities. “The right action on food systems can also accelerate the delivery of all our goals on climate and nature,” she said. “WWF is looking forward to partnering with this initiative.”

Final remarks from Julie Borlaug, President of the Norman Borlaug Foundation, where the platform will be housed, reiterated a call for more partners to join the coalition. “This is a learning lesson as we go. We will iterate over and over until we get it right, so we need all of you to be involved in that,” said Borlaug. “Join us as we move forward but let us know as we’re going sideways.”

CGIAR scientist honored with award

The winner of the annual Norman Borlaug Award for Field Research and Application award was announced at the Borlaug Dialogue, which this year went to Mahalingam Govindaraj, Senior Scientist for Crop Development at HarvestPlus and at the Alliance of Bioversity International and CIAT, a CGIAR research center.

Govindaraj received the award for his leadership in mainstreaming biofortified crops, particularly high-yielding, high-iron, and high-zinc pearl millet varieties. This work has contributed to improved nutrition for thousands of farmers and their communities in India and Africa, and estimates show that, by 2024, more than 9 million people in India will be consuming iron- and zinc-rich pearl, benefiting from improved nutrition.

Cover photo: The historical moment when Manuel Otero, Director General of IICA, joins the Agriculture for Peace initiative with Bram Govaerts, Director General of CIMMYT. (Photo: Liesbet Vannyvel/CIMMYT)

Diagram links physiological traits of wheat for yield potential

A generalized wiring diagram for wheat, as proposed by the authors. The diagram depicts the traits most commonly associated with the source (left) and sink (right) strengths and others that impact both the sink and source, largely dependent on growth stage (middle). TGW, thousand grain weight.
A generalized wiring diagram for wheat, as proposed by the authors. The diagram depicts the traits most commonly associated with the source (left) and sink (right) strengths and others that impact both the sink and source, largely dependent on growth stage (middle). TGW, thousand grain weight.

As crop yields are pushed closer to biophysical limits, achieving yield gains becomes increasingly challenging. Traditionally, scientists have worked on the premise that crop yield is a function of photosynthesis (source), the investment of assimilates into reproductive organs (sinks) and the underlying processes that enable and connect the expression of both. Although the original source-and-sink model remains valid, it must embrace more complexity, as scientific understanding improves.

A group of international researchers are proposing a new wiring diagram to show the interrelationships of the physiological traits that impact wheat yield potential, published on Nature Food. By illustrating these linkages, it shows connections among traits that may not have been apparent, which could serve as a decision support tool for crop scientists. The wiring diagram can inform new research hypotheses and breeding decisions, as well as research investment areas.

The diagram can also serve as a platform onto which new empirical data are routinely mapped and new concepts added, thereby creating an ever-richer common point of reference for refining models in the future.

“If routinely updated, the wiring diagram could lead to a paradigm change in the way we approach breeding for yield and targeting translational research,” said Matthew Reynolds, Distinguished Scientist and Head of Wheat Physiology at the International Maize and Wheat Improvement Center (CIMMYT) and lead author of the study. “While focused on yield potential, the tool can be readily adapted to address climate resilience in a range of crops besides wheat.”

Breeding milestone

The new wiring diagram represents a milestone in deterministic plant breeding. It dovetails simpler models with crop simulation models.

It takes into account how source and sink strengths may interact with wheat developmental stages to determine yield. For example, at the time of stem growth, spike growth or effective grain filling.

This diagram can be used to illustrate the relative importance of specific connections among traits in their appropriate phenological context and to highlight major gaps in knowledge. This graphical representation can also serve as a roadmap to prioritize research at other levels of integration, such as metabolomic or gene expression studies. The wiring diagram can be deployed to identify ways for improving elite breeding material and to explore untapped genetic resources for unique traits and alleles.

Yield for climate resilience

The wheat scientific community is hard at work seeking new ways to get higher yields more quickly to help the world cope with population growth, climate change, wars and stable supplies of calories and protein.

“To ensure food and nutritional security in the future, raising yields must be an integral component of making crops more climate-resilient. This new tool can serve as a roadmap to design the necessary strategies to achieve these goals,” said Jeff Gwyn, Program Director of the International Wheat Yield Partnership (IWYP).

— ENDS —

READ THE FULL PUBLICATION:

A wiring-diagram to integrate physiological traits of wheat yield potential

INTERVIEW OPPORTUNITIES:

Matthew Reynolds – Distinguished Scientist and Head of Wheat Physiology at the International Maize and Wheat Improvement Center (CIMMYT)

Gustavo Ariel Slafer – Research Professor at the Catalonian Institution for Research and Advanced Studies (ICREA) and Associate Professor of the University of Lleida

For more information or to arrange interviews, please contact the CIMMYT media team:

Marcia MacNeil and Rodrigo Ordóñez: https://staging.cimmyt.org/media-center/

ACKNOWLEDGEMENTS:

The study is an international collaboration of scientists from the International Maize and Wheat Improvement Center (CIMMYT), the Catalonian Institution for Research and Advanced Studies (ICREA), the Center for Research in Agrotechnology (AGROTECNIO), the University of Lleida, the University of Nottingham, the John Innes Centre, Lancaster University, Technische Universität München, CSIRO Agriculture & Food, and the International Wheat Yield Partnership (IWYP).

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is an international organization focused on non-profit agricultural research and training that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis.

Applying high-quality science and strong partnerships, CIMMYT works to achieve a world with healthier and more prosperous people, free from global food crises and with more resilient agri-food systems. CIMMYT’s research brings enhanced productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.

CIMMYT is a member of CGIAR, a global research partnership for a food-secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.

For more information, visit staging.cimmyt.org.

ABOUT IWYP:

The International Wheat Yield Partnership (IWYP) represents a long-term global endeavor that utilizes a collaborative approach to bring together funding from public and private research organizations from a large number of countries. Over the first five years, the growing list of partners aims to invest up to US$100 million.

For more information, visit https://iwyp.org

Building resilient and sustainable irrigation for food security in Nepal

An irrigation canal in Nepal. (Photo: Jitendra Raj Bajracharya/ICIMOD)
An irrigation canal in Nepal. (Photo: Jitendra Raj Bajracharya/ICIMOD)

In Nepal, agriculture contributes to a third of gross domestic product and employs about 80% of the rural labor force. The rural population is comprised mostly of smallholder farmers whose level of income from agricultural production is low by international standards and the countrys agricultural sector has become vulnerable to erratic monsoon rains. Farmers often experience unreliable rainfall and droughts that threaten their crop yields and are not resilient to climate change and water-induced hazard. This requires a rapid update of the sustainable irrigation development in Nepal. The Cereal Systems Initiative for South Asia (CSISA) Nepal COVID Response and Resilience short-term project puts emphasis on identifying and prioritizing entry points to build more efficient, reliable and flexible water services to farmers by providing a fundamental irrigation development assessment and framework at local, district and provincial levels.

Digital groundwater monitoring system and assessment of water use options

Digital system of groundwater data collection, monitoring and representation will be piloted with the government of Nepal to facilitate multi-stakeholder cooperation to provide enabling environments for inclusive irrigation development and COVID-19 response. When boosting the irrigation development, monitoring is fundamental to ensure sustainability. In addition, spatially targeted, ex-ante assessments of the potential benefits of irrigation interventions provide insights by applying machine-learning analytics and constructing data-driven models for yield and profitability responses to irrigation. Furthermore, a customized set of integrated hydrological modeling and scenario analyses can further strengthen local, district and provincial level assessment of water resources and how to build resilient and sustainable water services most productively from them.

Toward a systemic framework for sustainable scaling of irrigation in Nepal

Through interview and surveys, the project further builds systemic understanding of the technical, socioeconomic and institutional challenges and opportunities in scaling water access and irrigation technologies. This will contribute to the construction of a comprehensive irrigation development framework, achieved by the collective efforts from multiple stakeholders across different line ministries, levels of government and local stakeholders and water users. Together with the technical assessments and monitoring systems, the end goal is to provide policy guidelines and engage prioritized investments that ensure and accelerate the process of sustainable intensification in irrigation in Nepal.

This blog was originally published in Agrilinks.