Skip to main content

funder_partner: Swedish University of Agricultural Sciences (SLU)

Building global capacity to combat wheat blast

Researchers and experts from 15 countries convened in Zambia, between 4-15 March 2024, for an international training on wheat blast disease screening, surveillance, and management.

Wheat blast, caused by pathogen Magnaporthe oryzae pathotype triticum, is threatening global wheat production especially in warmer and humid regions. The disease was first observed in Parana state of Brazil in 1985 and subsequently spread to Bolivia, Paraguay, and Argentina. Outside of South America, wheat blast incidences were recorded for the first time in Bangladesh in 2016 and in Zambian wheat fields in 2018.

To mitigate the impact of this potential plant pandemic, the Zambia Agriculture Research Institute (ZARI), in collaboration with CIMMYT and other partners, organized a comprehensive training for building research capacity and raising awareness within the local and international community, especially in at-risk countries.

“This collaborative effort, supported by various international partners and funders, underscores the importance of global cooperation in addressing agricultural challenges such as wheat blast. The objective of the training was to empower researchers with knowledge and tools for enhanced wheat production resilience in regions vulnerable to this destructive disease,” said Pawan Kumar Singh, principal scientist and project leader at CIMMYT. Singh collaborated with Batiseba Tembo, wheat breeder at ZARI-Zambia, to coordinate and lead the training program.

Thirty-eight wheat scientists, researchers, professors, policymakers, and extension agents from countries including Bangladesh, Brazil, Ethiopia, India, Kenya, Mexico, Nepal, South Africa, Sweden, Tanzania, United Kingdom, Uruguay, Zambia, and Zimbabwe convened at the Mt. Makulu Central Research Station in Chilanga, Zambia.

“Wheat blast is a devastating disease that requires concerted efforts to effectively manage it and halt further spread. The disease is new to Africa, so developing capacity amongst country partners before the disease spreads more widely is critical,” said Tembo.

Participants at the International Training on Wheat Blast Screening and Surveillance. (Photo: CIMMYT)

Highlights from the training: discussions, lab exercises, and field visits

During the training, participants engaged in lectures, laboratory exercises, and field visits. There were insightful discussions on key topics including the fundamentals of wheat blast epidemiology, disease identification, molecular detection of the wheat blast pathogen, isolation and preservation techniques for the pathogen, disease scoring methods, disease management strategies, and field surveillance and monitoring.

The course also provided practical experience in disease evaluation at the Precision Phenotyping Platform (PPP) screening nursery located in Chilanga research station. This involved characterization of a diverse range of wheat germplasm with the aim of releasing resistant varieties in countries vulnerable to wheat blast. Additionally, participants undertook field visits to farmers’ fields, conducting surveillance of wheat blast-infected areas. They collected samples and recorded survey data using electronic open data kit (ODK) capture tools.

Participants listen to a lecture by B.N. Verma, director of Zambia Seed Co., on the history of wheat production in Zambia. (Photo: CIMMYT)

“The killer disease needs to be understood and managed utilizing multi-faceted approaches to limit the expansion and damages it can cause to global wheat production. The Bangladesh Wheat and Maize Research Institute (BWMRI) is willing to share all the strategies it deployed to mitigate the effect of wheat blast,” said Golam Faruq, BWMRI’s director general.

Participants visited seed farms to gain practical insights into seed production processes and quality assurance measures. These visits provided first-hand knowledge of seed selection, breeding techniques, and management practices crucial for developing resistant wheat varieties. Participants also visited research sites and laboratories to observe advanced research methodologies and technologies related to wheat blast management. These visits exposed them to cutting-edge techniques in disease diagnosis, molecular analysis, and germplasm screening, enhancing their understanding of effective disease surveillance and control strategies.

Field visit. (Photo: CIMMYT)

“The training and knowledge sharing event was a significant first step in developing understanding and capacity to deal with wheat blast for partners from several African countries. It was wonderful to see the efforts made to ensure gender diversity among participants,” said Professor Diane Saunders from the John Innes Centre, UK.

CIMMYT and BWMRI host international training program on surveillance and management strategies for wheat blast

The devastating disease wheat blast is a threat to crop production in many South Asian countries. In Bangladesh, it was first identified in seven southern and southwestern districts in 2016, and later spread to 27 others causing significant damage. The International Maize and Wheat Improvement Center (CIMMYT) is working with the Bangladesh Wheat and Maize Research Institute (BWMRI) and other national partners to conduct research and extension activities to mitigate the ongoing threat.

From March 1-10, 2023, a group of 46 wheat researchers, government extension agents, and policy makers from ten countries — Bangladesh, Brazil, China, Ethiopia, India, Japan, Mexico, Nepal, Sweden, and Zambia — gathered in Jashore, Bangladesh to learn about and exchange experiences regarding various wheat diseases, particularly wheat blast. Following the COVID-19 pandemic, this was the first in-person international wheat blast training held in Bangladesh. It focused on the practical application of key and tricky elements of disease surveillance and management strategies, such as resistance breeding and integrated disease management.

Training participants get hands-on practice using a field microscope, Bangladesh. (Photo: Ridoy/CIMMYT)

“This is an excellent training program,” said Shaikh Mohammad Bokhtiar, executive chairman of the Bangladesh Agriculture Research Council (BARC), during the opening session.  “Participants will learn how to reduce the severity of the blast disease, develop and expand blast resistant varieties to farmers, increase production, and reduce imports.”

This sentiment was echoed by Golam Faruq, director general of BWMRI. “This program helps in the identification of blast-resistant lines from across the globe,” he said. “From this training, participants will learn to manage the devastating blast disease in their own countries and include these learnings into their national programs.”

Hands-on training

The training was divided into three sections: lectures by national and international scientists; laboratory and field experiment visits; and trips to farmers’ fields. Through the lecture series, participants learned about a variety of topics including disease identification, molecular detection, host-pathogen interaction, epidemiology and integrated disease management.

Hands-on activities were linked to working on the Precision Phenotyping Platform (PPP), which involves the characterization of more than 4,000 wheat germplasm and releasing several resistant varieties in countries vulnerable to wheat blast. Participants practiced taking heading notes, identifying field disease symptoms, tagging, and scoring disease. They conducted disease surveillance in farmers’ fields in Meherpur and Faridpur districts — both of which are extremely prone to wheat blast — observing the disease, collecting samples and GPS coordinates, and completing surveillance forms.

Muhammad Rezaul Kabir, senior wheat breeder at BWMRI, explains the Precision Phenotyping Platform, Bangladesh. (Photo: Md. Harun-Or-Rashid/CIMMYT)

Participants learned how to use cutting-edge technology to recognize blast lesions in leaves using field microscopes. They went to a pre-installed spore trapping system in a farmer’s field to learn about the equipment and steps for collecting spore samples, observing them under a compound microscope, and counting spores. They also visited the certified seed production fields of Shawdesh Seed, a local company which has played an important role in promoting wheat blast resistant varieties BARI Gom 33 and BWMRI Gom 3 regionally, and Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU) in Gazipur to see current wheat blast research in action.

Blast-resistance in Bangladesh

“I am so happy to see the excellent infrastructure and work ethics of staff that has made possible good science and impactful research come out of the PPP,” said Aakash Chawade, associate professor in Plant Breeding at the Swedish University of Agricultural Sciences. “Rapid development of blast-resistant varieties and their dissemination will help Bangladesh mitigate the effects of wheat blast, not only inside the country but by supporting neighboring ones as well.”

Training participants scout and score disease in a blast-infected wheat field, Bangladesh. (Photo: Md. Harun-Or-Rashid/CIMMYT)

“Besides the biotic and abiotic challenges faced in wheat production, climate change and the Russia-Ukraine crisis are further creating limitations to wheat production and marketing,” said Pawan Kumar Singh, head of Wheat Pathology at CIMMYT and lead organizer of the training. “Due to the development of blast-resistant wheat varieties and its commercial production under integrated disease management practices, the domestic production of wheat in Bangladesh has increased and there is increased interest from farmers in wheat.”

Dave Hodson, a principal scientist at CIMMYT and one of the training’s resource speakers, added: “This is a remarkable success that researchers developed two blast resistant varieties in Bangladesh urgently. It was only achievable because of the correct measures taken by the researchers and support of Government policies.”

However, there are still some barriers to widespread adoption of these varieties. As such, in parallel to other activities, a team from Bangladesh Agricultural University (BAU) joined the field trip to meet local farmers and conduct research into the socio-economic factors influencing the adoption and scaling of relevant wheat varieties.

Ecological farming a boon for staple crop farmers in Africa, new study finds

Elufe Chipande (left), a farmer at Songani in Zomba District, Malawi, is rotating maize (background) and pigeonpea (foreground) under conservation agriculture practices to improve soil fertility and capture and retain more water. Christian Thierfelder (center), a cropping systems agronomist working out of the Zimbabwe office of CIMMYT, advises and supports southern African farmers and researchers to refine and spread diverse yield-enhancing, resource-conserving crop management practices. Photo: Mphatso Gama/CIMMYTSRUC

An international team of scientists has found that eco-friendly practices such as growing a range of crops, including legumes such as beans or pigeonpea, and adding plant residues or manure to soils can raise food crop yields in places such as rural Africa, where small-scale farmers cannot apply much nitrogen fertilizer.

Published in the science journal Nature Sustainability and examining data from 30 long-running field experiments involving staple crops (wheat, maize, oats, barley, sugar beet, or potato) in Europe and Africa, this major study is the first to compare farm practices that work with nature to increase yields and explore how they interact with fertilizer use and tillage.

“Agriculture is a leading cause of global environmental change but is also very vulnerable to that change,” said Chloe MacLaren, a plant ecologist at Rothamsted Research, UK, and lead author of the paper. “Using cutting-edge statistical methods to distill robust conclusions from divergent field experiment data, we found combinations of farming methods that boost harvests while reducing synthetic fertilizer overuse and other environmentally damaging practices.”

Recognizing that humanity must intensify production on current arable land to feed its rising numbers, the paper advances the concept of “ecological intensification,” meaning farming methods that enhance ecosystem services and complement or substitute for human-made inputs, like chemical fertilizer, to maintain or increase yields.

Boosting crop yields and food security for far-flung smallholders

The dataset included results from six long-term field experiments in southern Africa led by the International Maize and Wheat Improvement Center (CIMMYT). Africa’s farming systems receive on average only 17 kilograms of fertilizer per hectare, compared to more than 180 kilograms per hectare in Europe or close to 600 in China, according to Christian Thierfelder, a CIMMYT cropping systems agronomist and study co-author.

“In places where farmers’ access to fertilizer is limited, such as sub-Saharan Africa or the Central American Highlands, ecological intensification can complement scarce fertilizer resources to increase crop yields, boosting households’ incomes and food security,” Thierfelder explained. “We believe these practices act to increase the supply of nitrogen to crops, which explains their value in low-input agriculture.”

The CIMMYT long-term experiments were carried out under “climate-smart” conservation agriculture practices, which include reduced or no tillage, keeping some crop residues on the soil, and (again) growing a range of crops.

“These maize-based cropping systems showed considerable resilience against climate effects that increasingly threaten smallholders in the Global South,” Thierfelder added.

Benefits beyond yield

Besides boosting crop yields, ecological intensification can cut the environmental and economic costs of productive farming, according to MacLaren.

“Diversifying cropping with legumes can increase profits and decrease nitrogen pollution by reducing the fertilizer requirements of an entire crop rotation, while providing additional high-value food, such as beans,” MacLaren explained. “Crop diversity can also confer resilience to weather variability, increase biodiversity, and suppress weeds, crop pests and pathogens; it’s essential, if farmers are to improve maize production in places like Africa.”

Thierfelder cautioned that widespread adoption of ecological intensification will require strong support from policymakers and society, including establishing functional markets for legume seed and for marketing farmers’ produce, among other policy improvements.

“Dire and worsening global challenges — climate change, soil degradation and fertility declines, and scarcening fresh water — threaten the very survival of humanity,” said Thierfelder. “It is of utmost importance to renovate farming systems and bring us back into a safe operating space.”

Click here to read the paper, Long-term evidence for ecological intensification as a pathway to sustainable agriculture.

For more information or interviews:

Rodrigo Ordoñez, Communications Manager

Email: r.ordonez@cgiar.org

Tel: +52 55 5804 2004, ext. 1167

 

New publications: Genome-wide breeding to curtail wheat blast

A recent publication in the journal Frontiers of Plant Science provides results of the first-ever study to test genomic selection in breeding for resistance to wheat blast, a deadly disease caused by the fungus Magnaporthe oryzae that is spreading from its origin in Brazil to threaten wheat crops in South Asia and sub-Saharan Africa.

Genomic selection identifies individual plants based on the information from molecular markers, DNA signposts for genes of interest, that are distributed densely throughout the wheat genome. For wheat blast, the results can help predict which wheat lines hold promise as providers of blast resistance for future crosses and those that can be advanced to the next generation after selection.

In this study, scientists from the International Maize and Wheat Improvement Center (CIMMYT) and partners evaluated genomic selection by combining genotypic data with extensive and precise field data on wheat blast responses for three sets of genetically diverse wheat lines and varieties, more than 700 in all, grown by partners at locations in Bangladesh and Bolivia over several crop cycles.

The study also compared the use of a small number of molecular markers linked to the 2NS translocation, a chromosome segment from the grass species Aegilops ventricosa that was introduced into wheat in the 1980s and is a strong and stable source of blast resistance, with predictions using thousands of genome-wide markers. The outcome confirms that, in environments where wheat blast resistance is determined by the 2NS translocation, genotyping using one-to-few markers tagging the translocation is enough to predict the blast response of wheat lines.

Finally, the authors found that selection based on a few wheat blast-associated molecular markers retained 89% of lines that were also selected using field performance data, and discarded 92% of those that were discarded based on field performance data. Thus, both marker-assisted selection and genomic selection offer viable alternatives to the slower and more expensive field screening of many thousands of wheat lines in hot-spot locations for the disease, particularly at early stages of breeding, and can speed the development of blast-resistant wheat varieties.

Read the full study:
Genomic Selection for Wheat Blast in a Diversity Panel, Breeding Panel and Full-Sibs Panel

The research was conducted by scientists from the International Maize and Wheat Improvement Center (CIMMYT), the Bangladesh Wheat and Maize Research Institute (BWMRI), the Instituto Nacional de Innovación Agropecuaria y Forestal (INIAF) of Bolivia, the Borlaug Institute for South Asia (BISA) and the Indian Council of Agricultural Research (ICAR) in India, the Swedish University of Agricultural Sciences (Alnarp), and Kansas State University in the USA. Funding for the study was provided by the Bill & Melinda Gates Foundation, the Foreign and Commonwealth Development Office of the United Kingdom, the U.S. Agency for International Development (USAID), the CGIAR Research Program on Wheat (WHEAT), the Indian Council of Agricultural Research (ICAR), the Swedish Research Council, and the Australian Centre for International Agricultural Research (ACIAR).

Cover photo: A researcher from Bangladesh shows blast infected wheat spikes and explains how the disease directly attacks the grain. (Photo: Chris Knight/Cornell University)