Skip to main content

funder_partner: Seed Trade Association of Kenya (STAK)

Unique partnership to transform maize breeding and production in Africa

Scientists part of the Seed Production Technology for Africa (SPTA) and the Maize Lethal Necrosis Gene Editing projects are leveraging innovative technologies to transform seed production systems and speed up the delivery of disease resistance in elite new hybrids. This research is helping smallholder farmers in sub-Saharan Africa to access high-quality seed of new hybrids that were bred to perform under stressful low-input, drought-prone conditions, including farming regions impacted by maize lethal necrosis (MLN).

Fast delivery of MLN-tolerant varieties

The fight against maize lethal necrosis (MLN) has persisted for almost ten years now.

Collaborative efforts in diagnostics, management and systematic surveillance have limited its spread and confined the disease to the eastern Africa region. However, ongoing work is required to efficiently develop MLN-tolerant varieties for smallholders in endemic areas and prepare for the potential further movement of the disease.

“Maize lethal necrosis still exists. It has not been eradicated. Even though it has reduced in its prevalence and impact, it is still present and is a latent threat in Ethiopia, Kenya, Rwanda, Tanzania and Uganda, with potential to spread further,” said B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize.

“That is why the work of the gene editing project is critical to rapidly change the genetic component of those susceptible parent lines of popular hybrids into MLN-tolerant versions,” said Prasanna. Scientists will edit the four parent lines of two popular hybrids, currently grown by farmers in Kenya and Uganda, which are susceptible to MLN. The edited MLN-tolerant lines will be used to make MLN-tolerant versions of these drought-tolerant hybrids.

Through gene editing technology, the time it takes to develop hybrids using traditional breeding methods will be cut in half. By 2025, the edited MLN-tolerant hybrids will be available for planting on approximately 40,000 hectares by about 20,000 Kenyan farmers.

A non-pollen-producing maize plant (on the left) on farm trial in Zimbabwe. (Photo: Jill Cairns/CIMMYT)
A non-pollen-producing maize plant (on the left) on farm trial in Zimbabwe. (Photo: Jill Cairns/CIMMYT)

Business as unusual

The unique seed production technology developed by Corteva Agriscience seeks to transform the seed production process in sub-Saharan Africa. This technology utilizes a dominant non-pollen producing maize gene to create female plants that are unable to produce pollen.

Seed companies that use seed production technology eliminate the need to detassel the female parent: a manual process through which tassels are removed from plants to prevent self-pollination and ensure that the intended male parent is the only source of pollen in the hybrid seed production field. Targeted small and medium-size seed companies could make significant savings to the cost of production if they were to eliminate manual detasseling. The method also helps to ensure the purity of the hybrid seed by removing the risk of unintentional self-pollination.

Hybrids produced using the seed production technology, characterized as 50 percent non-pollen producing (FNP), are unique since only half of the plants will produce pollen in the field. FNP hybrids re-allocate energy from the tassel and pollen production to grain formation, thus delivering an additional 200 kilograms per hectare yield advantage to the farmer. This represents a 10 percent productivity boost for farmers who will harvest approximately 2 tons per hectare, the average maize yield across sub-Saharan Africa. Farmers engaged in participatory research have demonstrated preference for FNP hybrids and associate the trait with higher yield and larger ear size.

As the first phase of Seed Production Technology for Africa (SPTA) wraps up, the collaborators are preparing for the next phase that will focus on commercializing, scaling up and increasing smallholders’ access to FNP. “This is among the unique partnerships funded by the foundation and I am hopeful that this incredible work will continue through the next phase,” said Gary Atlin, program officer at the Bill & Melinda Gates Foundation.

Resistant hybrid (on the right) grows beside a susceptible commercial check at the Kenya Plant Health Inspectorate Services' (KEPHIS) National Performance Trial. (Photo: CIMMYT)
Resistant hybrid (on the right) grows beside a susceptible commercial check at the Kenya Plant Health Inspectorate Services’ (KEPHIS) National Performance Trial. (Photo: CIMMYT)

A win-win collaboration

Research and development work under the SPTA and the MLN Gene Editing projects has immensely benefited from the support of public and private partners. Seed companies and national institutions have contributed to improving access to and knowledge of these technologies as well as creating a crucial link with farmers. Ongoing engagement with regulatory agencies through the different stages of the projects ensures transparency and fosters understanding.

In order to assess the progress of these two initiatives, representatives from regulatory agencies, seed trade associations, seed companies, national agricultural institutions and funders came together for a virtual meeting that was hosted on July 29, 2020.

“KALRO embraces partnerships such as those that are delivering these two projects. That synergy helps us to resolve challenges faced by farmers and other actors in various agricultural value chains,” observed Felister Makini, deputy director general of Crops at KALRO.

As the primary technology provider, Corteva Agriscience provides the seed production technology system on a royalty-free basis and grants access to key gene editing technologies, which are the foundation for the two projects. Corteva Agriscience is also actively involved in project execution through collaborative scientific support.

“We have appreciated the opportunity to work with CIMMYT, KARLO, Agricultural Research Council (ARC) of South Africa and the Bill & Melinda Gates Foundation to bring some of the technologies and tools from Corteva to address significant challenges facing smallholder farmers in Africa. We could not have done this alone, it requires the partnerships that exist here to bring forth these solutions,” said Kevin Diehl, director of the Global Seed Regulatory Platform at Corteva Agriscience.

Seeing is believing

Nancy Wawira strolls through a small plot of maize at Kithimu, in Kenya’s Embu County. She is charmed by the attributes of a maize variety that can yield 2,700kg per acre or more. The variety can endure drought-like conditions, matures in less than 120 days and has potential for double-cobbing.

Wawira is visiting a demonstration farm to witness the performance of several high yielding, early to medium maturing, drought-tolerant maize varieties.

By coming to this demonstration farm, Wawira hoped to identify a newer maize variety she could plant on her quarter-acre of land to get higher yield. The plot she stood on was the exact replica of what she was looking for. “Occasions such as this field day are very important for me and I always endeavor to attend them, as there is always something new to see or learn,” she says.

On her farm, she has been planting one of the old but popular commercial varieties suitable for this mid-altitude ecology. She normally harvests 4 bags of maize, of 90kg each, every season. However, if there is not enough rain or if there are pests or diseases, which is often the case, she harvests just 2 bags or less. This is hardly enough to meet her family’s food requirements for the year.

Switching to the maize variety she was interested in, and applying recommended farming practices, she could harvest 6 bags per season or more.

“Today, I have learnt how to improve my farming,” says Wawira. “Even when I access the variety that is high yielding, drought-tolerant and can mature in about three and a half months, as I witnessed on one of the plots, I still need to pay attention to proper crop husbandry related to spacing, timing of the planting, seed, fertilizer and pesticide application besides weed control,” she says.

Nancy Wawira examines maize in one of the demo plots. (Photo: Joshua Masinde/CIMMYT)
Nancy Wawira examines maize in one of the demo plots. (Photo: Joshua Masinde/CIMMYT)

Made-to-order

Wawira was one of the more than 400 farmers from nearby Manyatta sub-county visiting the demonstration farm on February 7, 2020. They were able to see varieties and learn about their traits, invited by the Seed Trade Association of Kenya (STAK) with the support of the International Maize and Wheat Improvement Center (CIMMYT).

The demonstration is a continuation of the work started under the Drought Tolerant Maize for Africa Seed Scaling (DTMASS) project and later under the Stress Tolerant Maize for Africa (STMA) project.

Officials from Embu County, led by its minister in charge of agriculture Jamleck Muturi, were present during the farmers’ visit. Ten seed firms, some of which use CIMMYT’s germplasm for seed propagation and marketing, participated as well.

“Several of our member seed companies are showcasing the varieties developed through CIMMYT’s breeding pipeline,” said Duncan Ochieng’, the chief executive officer of STAK. “The maize varieties showcased on these demo farms were designed to be drought-tolerant, high yielding and range from early to medium maturing. These varieties are juxta-posted with other commercial varieties suitable for this region.”

During visits to demonstration farms, farmers give feedback on their variety preferences. Seed companies can then align their breeding, germplasm-access requests, seed production or marketing plans with farmers’ expectations.

Some of the farmers who participated in the field day in Embu County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Some of the farmers who participated in the field day in Embu County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Jackline Wanja in one of the demo plots of the variety she liked. (Photo: Joshua Masinde/CIMMYT)
Jackline Wanja in one of the demo plots of the variety she liked. (Photo: Joshua Masinde/CIMMYT)
A seed company representative shows seeds to a farmer during the visit to the demonstration farm. (Photo: Joshua Masinde/CIMMYT)
A seed company representative shows seeds to a farmer during the visit to the demonstration farm. (Photo: Joshua Masinde/CIMMYT)
STAK chief executive officer Duncan Ochieng' examines a maize cob in one of the demo plots. (Photo: Joshua Masinde/CIMMYT)
STAK chief executive officer Duncan Ochieng’ examines a maize cob in one of the demo plots. (Photo: Joshua Masinde/CIMMYT)

Dire traits

Farming stresses such as pests, diseases, heat and drought have made targeted breeding a critical necessity.

Young farmers are increasingly choosing varieties that can mature faster, typically in less than three months. They also favor varieties that offer higher yield than the popular commercial varieties, many of which have been on the market for at least a decade. Other sought-after traits are good performance in low or erratic rains, tolerance to maize lethal necrosis, reduced lodging, and efficiency in nitrogen use.

Jackline Wanja, 25, relies on her one-acre farm for survival. “On average, I harvest about 25 bags per acre. On the demo farm, I got to know of a variety than can yield at least 30 bags per acre. I also learnt that the variety is not only drought-resilient but can also mature in about three and a half months. This is the variety that I plan to plant my farm next season,” Wanja said.

For John Njiru, 52, a higher-yielding variety with a lot of foliage, which remains green even after the maize cob has dried, is what he came looking for. For this farmer with 12 acres of land, the green maize foliage is a significant source of income when sold to livestock keepers. Njiru feeds his own livestock with it, making substantial savings on animal feed expenditure. “If this variety is as high yielding as I have been made to understand and can offer me at least 30 bags per acre, I would be a happy farmer. My farming would be very profitable,” he says.

John Njiru on a demo plot of the variety he liked. (Photo: Joshua Masinde/CIMMYT)
John Njiru on a demo plot of the variety he liked. (Photo: Joshua Masinde/CIMMYT)

MLN Gene Editing Project

The Maize Lethal Necrosis (MLN) Gene Editing Project uses gene editing technology to transform four elite CIMMYT maize lines which are susceptible to a devastating maize disease known as MLN. The disease first appeared in Kenya in 2011, and by 2013 it had reduced maize yields across the country by an average of 22%, resulting in loss of production worth $180 million and forcing many smallholder farmers to abandon planting maize. By 2014 it had spread to D.R. Congo, Ethiopia, Kenya, Rwanda, Tanzania and Uganda, hence posing a major threat to the food security and livelihoods of millions of Africans.

CIMMYT and its partners have responded to the problem by successfully developing MLN-tolerant hybrids through conventional backcrossing, which takes approximately 4-5 years. On the other hand, with the use of a gene editing technology known as CRISPR-Cas9, the breeding process can be accelerated, thereby reducing the time required to 2-3 years only, so that smallholders get faster access to improved maize varieties.

In partnership with Corteva Agriscience — which has significant expertise in the genome-editing field and who is the technology owner — and KALRO (Kenya Agricultural and Livestock Research Organization), CIMMYT scientists have been able to make a breakthrough via the CRISPR-Cas9 technology. The technology, Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR) along with CRISPR-associated System (Cas) containing Protein 9, functions to replicate natural mutations in maize that will help strengthen its resistance to MLN. At the same time, this precisely targeted crop improvement process eliminates the transfer of many undesirable genes that would often accompany the desired ones as with the case in traditional backcrossing.

Under this project, four CIMMYT inbred lines, that are parents of two commercial hybrids in eastern Africa but susceptible to MLN, have been selected to undergo gene editing to become MLN-resistant. The edited, MLN-resistant lines will in turn be used to produce MLN-resistant hybrids which will still carry all the farmer-preferred agronomic traits including drought tolerance, similar to other elite maize hybrids developed by CIMMYT and released through partners.

CIMMYT is working in close collaboration with KALRO and other partners from the public and private sectors to increase the number of MLN-resistant Africa-adapted inbred lines and hybrids, as well as to make deployment efforts. By 2025, subject to compliance with regulatory procedures, commercial seeds of the gene-edited MLN-resistant elite maize hybrids will be available to up to 20,000 smallholder farmers for approximately 40,000 hectares of planting. In line with the CGIAR Principles on the Management of Intellectual Assets and CIMMYT’s constant endeavor to treat its improved germplasm as international public good, the MLN-resistant hybrids will be available royalty-free and seed companies entering into commercialization/licensing agreements in connection with this project will not be allowed to charge smallholder farmers higher seed cost. In this way, more farmers in MLN-affected countries in eastern and Central Africa can eventually benefit from increased supply of high-yielding, MLN-resistant and affordable maize products.

Related documents:

MLN Gene Editing project brief

MLN Gene Editing project: FAQs