Data collector reading data from offline groundwater level logger – one of the three tested monitoring technologies. (Credit: Subash Adhikari/CIMMYT)
Based on a pilot study regarding the feasibility and cost effectiveness of several groundwater monitoring approaches for agriculture in Nepal’s Terai region, a water and food security specialist who led the research has recommended the use of phone-based systems.
Speaking to diverse experts at the recent World Water Week 2022 in Stockholm, Sweden, Anton Urfels, a systems agronomist at the International Maize and Wheat Improvement Center (CIMMYT), said that manual monitoring with phone-based data uploading is relatively low-cost and effective and could be scaled up across the Terai.
“One alternate monitoring approach studied — online data uploading — has substantially lower staff time requirements and technology costs and higher temporal resolution than phone-based monitoring, but does not provide real-time data and entails high technical skills, capital costs, and risks of theft and damage,” said Urfels in his presentation, ‘Upgrading Groundwater Monitoring Networks in Low-Income Countries’.
Urfels and partners also developed a prototype of an open-source groundwater monitoring dashboard to engage stakeholders, help translate raw data into actionable information, and detect water depletion trends.
Water has become a key part of food research and innovation, critical for sustainable and ecological intensification in agriculture, according to the scientist.
“Collecting groundwater data is difficult and the technology for monitoring is unreliable, which impairs effective modeling, decision-making, and learning,” Urfels explained. “Like other countries in the region, Nepal is increasing its agricultural groundwater consumption, particularly through private investment in irrigation wells and pumps that open irrigation to more farmers. This and climate change have altered groundwater recharge rates and availability, but national data on these trends are incomplete.”
An extensive lowland region bordering India and comprising one-fifth of the nation’s territory, the Terai is Nepal’s breadbasket.
Held yearly since 1991, World Water Week attracts a diverse mix of participants from many professions to develop solutions for water-related challenges including poverty, the climate crisis, and biodiversity loss. The 2022 theme was “Seeing the Unseen: The Value of Water”.
“I’d recommend more pilot studies on phone-based groundwater monitoring for other areas of Nepal, such as the Mid-hill districts,” Urfels said. “We also need to fine-tune and expand the system dashboard and build cross-sectoral coordination to recognize and take into account groundwater’s actual economic value.”
Urfels said the Nepal Ministry of Energy, Water Resources and Irrigation has requested the nationwide scale-out of a digital monitoring system, and CIMMYT and Nepal experts will support this, as well as improving the system, which would be freely available for use and development by researchers and agencies outside of Nepal.
The Asia Regional Resilience to a Changing Climate (ARRCC) program is managed by the UK Met Office, supported by the World Bank and the UK’s Department for International Development (DFID). The four-year program, which started in 2018, aims to strengthen weather forecasting systems across Asia. The program will deliver new technologies and innovative approaches to help vulnerable communities use weather warnings and forecasts to better prepare for climate-related shocks.
Since 2019, as part of ARRCC, CIMMYT has been working with the Met Office and Cambridge University to pilot an early warning system to deliver wheat rust and blast disease predictions directly to farmers’ phones in Bangladesh and Nepal.
The system was first developed in Ethiopia. It uses weather information from the Met Office, the UK’s national meteorological service, along with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge, to construct and deploy a near real-time early warning system.
Phase I: 12-Month Pilot Phase
Around 50,000 smallholder farmers are expected to receive improved disease warnings and appropriate management advisories in the first 12 months as part of a proof-of-concept modeling and pilot advisory extension phase focused on three critical diseases:
Wheat stripe rust in Nepal: extend and test the modelling framework developed in Ethiopia to smallholder farmers in Nepal as proof-of concept;
Wheat stem rust in Bangladesh and Nepal: while stem rust is currently not widely established in South Asia, models indicate that devastating incursion from neighboring regions is likely. This work will prepare for potential incursions of new rust strains in both countries;
Wheat blast in Bangladesh: this disease is now established in Bangladesh. This work will establish the feasibility of adapting the dispersal modelling framework to improve wheat blast predictability and deploy timely preventative management advisories to farmers.
Phase II: Scaling-out wheat rust early warning advisories, introducing wheat blast forecasting and refinement model refinement
Subject to funding approval the second year of the project will lead to validation of the wheat rust early warnings, in which researchers compare predictions with on-the-ground survey results, increasingly supplemented with farmer response on the usefulness of the warnings facilitated by national research and extension partners. Researchers shall continue to introduce and scale-out improved early warning systems for wheat blast. Concomitantly, increasing the reach of the advice to progressively larger numbers of farmers while refining the models in the light of results. We anticipate that with sufficient funding, Phase II activities could reach up to 300,000 more farmers in Nepal and Bangladesh.
Phase III: Demonstrating that climate services can increase farmers’ resilience to crop diseases
As experience is gained and more data is accumulated from validation and scaling-out, researchers will refine and improve the precision of model predictions. They will also place emphasis on efforts to train partners and operationalize efficient communication and advisory dissemination channels using information communication technologies (ICTs) for extension agents and smallholders. Experience from Ethiopia indicates that these activities are essential in achieving ongoing sustainability of early warning systems at scale. Where sufficient investment can be garnered to support the third phase of activities, it is expected that an additional 350,000 farmers will receive disease management warnings and advisories in Nepal and Bangladesh, totaling 1 million farmers over a three-year period.
Objectives
Review the feasibility of building resilience to wheat rust through meteorologically informed early warning systems.
Adapt and implement epidemiological forecasting protocols for wheat blast in South Asia.
Implement processes to institutionalize disease early warning systems in Nepal and Bangladesh.
An early warning system set to deliver wheat disease predictions directly to farmers’ phones is being piloted in Bangladesh and Nepal by interdisciplinary researchers.
Experts in crop disease, meteorology and computer science are crunching data from multiple countries to formulate models that anticipate the spread of the wheat rust and blast diseases in order to warn farmers of likely outbreaks, providing time for pre-emptive measures, said Dave Hodson, a principal scientist with the International Maize and Wheat Improvement Center (CIMMYT) coordinating the pilot project.
Around 50,000 smallholder farmers are expected to receive improved disease warnings and appropriate management advisories through the one-year proof-of-concept project, as part of the UK Aid-funded Asia Regional Resilience to a Changing Climate (ARRCC) program.
Early action is critical to prevent crop diseases becoming endemic. The speed at which wind-dispersed fungal wheat diseases are spreading through Asia poses a constant threat to sustainable wheat production of the 130 million tons produced in the region each year.
“Wheat rust and blast are caused by fungal pathogens, and like many fungi, they spread from plant to plant — and field to field — in tiny particles called spores,” said Hodson. “Disease strain mutations can overcome resistant varieties, leaving farmers few choices but to rely on expensive and environmentally-damaging fungicides to prevent crop loss.”
“The early warning system combines climate data and epidemiology models to predict how spores will spread through the air and identifies environmental conditions where healthy crops are at risk of infection. This allows for more targeted and optimal use of fungicides.”
The system was first developed in Ethiopia. It uses weather information from the Met Office, the UK’s national meteorological service, along with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge, to construct and deploy a near real-time early warning system.
CIMMYT consultant Madan Bhatta conducts field surveys using Open Data Kit (ODK) in the mid-hills of Nepal. (Photo: D. Hodson/CIMMYT)
Initial efforts focused on adapting the wheat stripe and stem rust model from Ethiopia to Bangladesh and Nepal have been successful, with field surveillance data appearing to align with the weather-driven disease early warnings, but further analysis is ongoing, said Hodson.
“In the current wheat season we are in the process of comparing our disease forecasting models with on-the-ground survey results in both countries,” the wheat expert said.
“Next season, after getting validation from national partners, we will pilot getting our predictions to farmers through text-based messaging systems.”
CIMMYT’s strong partnerships with governmental extension systems and farmer associations across South Asia are being utilized to develop efficient pathways to get disease predictions to farmers, said Tim Krupnik, a CIMMYT Senior Scientist based in Bangladesh.
“Partnerships are essential. Working with our colleagues, we can validate and test the deployment of model-derived advisories in real-world extension settings,” Krupnik said. “The forecasting and early warning systems are designed to reduce unnecessary fungicide use, advising it only in the case where outbreaks are expected.”
Local partners are also key for data collection to support and develop future epidemiological modelling, the development of advisory graphics and the dissemination of information, he explained.
The second stage of the project concerns the adaptation of the framework and protocols for wheat blast disease to improve existing wheat blast early warning systems already pioneered in Bangladesh.
Example of weekly stripe rust spore deposition forecast in Nepal. Darker colors represent higher predicted number of spores deposited. The early warning system combines weather information from the Met Office with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge. (Graphic: University of Cambridge and Met Office)
Strong scientific partnership champions diversity to achieve common goals
The meteorological-driven wheat disease warning system is an example of effective international scientific partnership contributing to the UN Sustainable Development Goals, said Sarah Millington, a scientific manager at Atmospheric Dispersion and Air Quality Group with the Met Office.
“Diverse expertise from the Met Office, the University of Cambridge and CIMMYT shows how combined fundamental research in epidemiology and meteorology modelling with field-based disease observation can produce a system that boosts smallholder farmers’ resilience to major agricultural challenges,” she said.
The atmospheric dispersion modeling was originally developed in response to the Chernobyl disaster and since then has evolved to be able to model the dispersion and deposition of a range of particles and gases, including biological particles such as wheat rust spores.
“The framework together with the underpinning technologies are transferable to forecast fungal disease in other regions and can be readily adapted for other wind-dispersed pests and disease of major agricultural crops,” said Christopher Gilligan, head of the Epidemiology and Modelling Group at the University of Cambridge.
Fungal wheat diseases are an increasing threat to farmer livelihoods in Asia
Wheat leaf rust can be spotted on a wheat plant of a highly susceptible variety in Nepal. The symptoms of wheat rust are dusty, reddish-orange to reddish-brown fruiting bodies that appear on the leaf surface. These lesions produce numerous spores, which are spread by wind and splashing water. (Photo: D Hodson/CIMMYT)
While there has been a history of wheat rust disease epidemics in South Asia, new emerging strains and changes to climate pose an increased threat to farmers’ livelihoods. The pathogens that cause rust diseases are continually evolving and changing over time, making them difficult to control.
Stripe rust threatens farmers in Afghanistan, India, Nepal and Pakistan, typically in two out of five seasons, with an estimated 43 million hectares of wheat vulnerable. When weather conditions are conducive and susceptible cultivars are grown, farmers can experience losses exceeding 70%.
Populations of stem rust are building at alarming rates and previously unseen scales in neighboring regions. Stem rust spores can spread across regions on the wind; this also amplifies the threat of incursion into South Asia and the ARRCC program’s target countries, underscoring the very real risk that the disease could reemerge within the subcontinent.
The devastating wheat blast disease, originating in the Americas, suddenly appeared in Bangladesh in 2016, causing wheat crop losses as high as 30% on a large area, and continues to threaten South Asia’s vast wheat lands.
In both cases, quick international responses through CIMMYT, the CGIAR research program on Wheat (WHEAT) and the Borlaug Global Rust Initiative have been able to monitor and characterize the diseases and, especially, to develop and deploy resistant wheat varieties.
The UK aid-funded ARRCC program is led by the Met Office and the World Bank and aims to strengthen weather forecasting systems across Asia. The program is delivering new technologies and innovative approaches to help vulnerable communities use weather warnings and forecasts to better prepare for climate-related shocks.
The early warning system uses data gathered from the online Rust Tracker tool, with additional fieldwork support from the Cereal Systems Initiative for South Asia (CSISA), funded by USAID and the Bill & Melinda Gates Foundation, both coordinated by CIMMYT.