Skip to main content

funder_partner: Mohammed VI Polytechnic University

UniversitƩ Mohammed VI Polytechnique
https://www.um6p.ma/en

A climate-smart remodeling of South Asia’s rice-wheat cropping is urgent

A climate change hotspot region that features both small-scale and intensive farming, South Asia epitomizes the crushing pressure on land and water resources from global agriculture to feed a populous, warming world. Continuous irrigated rice and wheat cropping across northern India, for example, is depleting and degrading soils, draining a major aquifer, and producing a steady draft of greenhouse gases.

Through decades-long Asian and global partnerships, the International Maize and Wheat Improvement Center (CIMMYT) has helped to study and promote resource-conserving, climate-smart solutions for South Asian agriculture. Innovations include more precise and efficient use of water and fertilizer, as well as conservation agriculture, which blends reduced or zero-tillage, use of crop residues or mulches as soil covers, and more diverse intercrops and rotations. Partners are recently exploring regenerative agriculture approaches — a suite of integrated farming and grazing practices to rebuild the organic matter and biodiversity of soils.

Along with their environmental benefits, these practices can significantly reduce farm expenses and maintain or boost crop yields. Their widespread adoption depends in part on enlightened policies and dedicated promotion and testing that directly involves farmers. We highlight below promising findings and policy directions from a collection of recent scientific studies by CIMMYT and partners.

Getting down in the dirt

A recent scientific review examines the potential of a suite of improved practices — reduced or zero-tillage with residue management, use of organic manure, the balanced and integrated application of plant nutrients, land levelling, and precise water and pest control — to capture and hold carbon in soils on smallholder farms in South Asia. Results show a potential 36% increase in organic carbon in upper soil layers, amounting to some 18 tons of carbon per hectare of land and, across crops and environments, potentially cutting methane emissions by 12%. Policies and programs are needed to encourage farmers to adopt such practices.

Another study on soil quality in India’s extensive breadbasket region found that conservation agriculture practices raised per-hectare wheat yields by nearly half a ton and soil quality indexes nearly a third, over those for conventional practices, as well as reducing greenhouse gas emissions by more than 60%.

Ten years of research in the Indo-Gangetic Plains involving rice-wheat-mungbean or maize-wheat-mungbean rotations with flooded versus subsoil drip irrigation showed an absence of earthworms — major contributors to soil health — in soils under farmers’ typical practices. However, large earthworm populations were present and active under climate-smart practices, leading to improved soil carbon sequestration, soil quality, and the availability of nutrients for plants.

The field of farmer Ram Shubagh Chaudhary, Pokhar Binda village, Maharajganj district, Uttar Pradesh, India, who has been testing zero tillage to sow wheat directly into the unplowed paddies and leaving crop residues, after rice harvest. Chaudhary is one of many farmer-partners in the Cereal Systems Initiative for South Asia (CSISA), led by CIMMYT. (Photo: P. Kosina/CIMMYT)
The field of farmer Ram Shubagh Chaudhary, Pokhar Binda village, Maharajganj district, Uttar Pradesh, India, who has been testing zero tillage to sow wheat directly into the unplowed paddies and leaving crop residues, after rice harvest. Chaudhary is one of many farmer-partners in the Cereal Systems Initiative for South Asia (CSISA), led by CIMMYT. (Photo: P. Kosina/CIMMYT)

Rebooting marginal farms by design

Using the FarmDESIGN model to assess the realities of small-scale, marginal farmers in northwestern India (about 67% of the population) and redesign their current practices to boost farm profits, soil organic matter, and nutritional yields while reducing pesticide use, an international team of agricultural scientists demonstrated that integrating innovative cropping systems could help to improve farm performance and household livelihoods.

More than 19 gigatons of groundwater is extracted each year in northern India, much of this to flood the region’s puddled, transplanted rice crops. A recent experiment calibrated and validated the HYDRUS-2D model to simulate water dynamics for puddled rice and for rice sown in non-flooded soil using zero-tillage and watered with sub-surface drip irrigation. It was found that the yield of rice grown using the conservation agriculture practices and sub-surface drip irrigation was comparable to that of puddled, transplanted rice but required only half the irrigation water. Sub-surface drip irrigation also curtailed water losses from evapotranspiration and deep drainage, meaning this innovation coupled with conservation agriculture offers an ecologically viable alternative for sustainable rice production.

Given that yield gains through use of conservation agriculture in northern India are widespread but generally low, a nine-year study of rice-wheat cropping in the eastern Indo-Gangetic Plains applying the Environmental Policy Climate (EPIC) model, in this case combining data from long-term experiments with regionally gridded crop modeling, documented the need to tailor conservation agriculture flexibly to local circumstances, while building farmers’ capacity to test and adapt suitable conservation agriculture practices. The study found that rice-wheat productivity could increase as much as 38% under conservation agriculture, with optimal management.

Key partner organizations in this research include the following: Indian Council of Agricultural Research (ICAR); Central Soil Salinity Research Institute (CSSRI), Indian Agricultural Research Institute (IARI), Indian Institute of Farming Systems Research (IIFSR), Agriculture University, Kota; CCS Haryana Agricultural University, Hisar; Punjab Agricultural University, Ludhiana; Sri Karan Narendra Agriculture University, Jobner, Rajasthan; the Borlaug Institute for South Asia (BISA); the Trust for Advancement of Agricultural Sciences, Cornell University; Damanhour University, Damanhour, Egypt; UM6P, Ben Guerir, Morocco; the University of Aberdeen; the University of California, Davis; Wageningen University & Research; and IFDC.

Generous funding for the work cited comes from the Bill & Melinda Gates Foundation, The CGIAR Research Programs on Wheat Agri-Food Systems (WHEAT) and Climate Change, Agriculture and Food Security (CCAFS), supported by CGIAR Fund Donors and through bilateral funding agreements), The Indian Council of Agricultural Research (ICAR), and USAID.

Cover photo: A shortage of farm workers is driving the serious consideration by farmers and policymakers to replace traditional, labor-intensive puddled rice cropping (shown here), which leads to sizable methane emissions and profligate use of irrigation water, with the practice of growing rice in non-flooded soils, using conservation agriculture and drip irrigation practices. (Photo: P. Wall/CIMMYT)

Digital nutrient management tool reduces emissions, improves crop yields and boosts farmers’ profits

A farmer in the Ara district, in India's Bihar state, applies NPK fertilizer, composed primarily of nitrogen, phosphorus and potassium. (Photo: Dakshinamurthy Vedachalam/CIMMYT)
A farmer in the Ara district, in India’s Bihar state, applies NPK fertilizer, composed primarily of nitrogen, phosphorus and potassium. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

An international team of scientists, led by the International Maize and Wheat Improvement Center (CIMMYT), has demonstrated how better nutrient management using digital tools, such as the Nutrient Expert decision support tool, can boost rice and wheat productivity and increase farmers’ income while reducing chemical fertilizer use and greenhouse gas emissions.

Reported today in Nature Scientific Reports, the results show how the farmer-friendly digital nutrient management tool can play a key role in fighting climate change while closing the yield gap and boosting farmers’ profits.

The researchers tested the Nutrient Expert decision tool against typical farmer fertilization practices extensively using approximately 1600 side-by side comparison trials in rice and wheat fields across the Indo-Gangetic Plains of India.

The study found that Nutrient Expert-based recommendations lowered global warming potential by 12-20% in wheat and by around 2.5% in rice, compared to conventional farmers’ fertilization practices. Over 80% of farmers were also able to increase their crop yields and incomes using the tool.

Agriculture is the second largest contributor of greenhouse gas emissions in India. To tackle these emissions, crop scientists have been working on new ways to make farming more nutrient- and energy-efficient. Of the many technologies available, improving nutrient-use-efficiency through balanced fertilizer application — which in turn reduces excess fertilizer application — is key to ensuring food security while at the same time contributing to the UN’s Sustainable Development Goals on climate change.

The work was carried out by CIMMYT in collaboration with farmers, and funded by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), the CGIAR Research Program on Wheat (WHEAT), and the Indian Council of Agricultural Research (ICAR). Scientists from the Borlaug Institute for South Asia (BISA), the International Rice Research Institute (IRRI), the Alliance of Bioversity International and CIAT, and the former International Plant Nutrition Institute (IPNI) also contributed to this study.

Researchers tested the Nutrient Expert decision tool against typical farmer fertilization practices extensively using approximately 1600 side-by side comparison trials in rice and wheat fields across the Indo-Gangetic Plains of India (Graphic: CIMMYT).
Researchers tested the Nutrient Expert decision tool against typical farmer fertilization practices extensively using approximately 1600 side-by side comparison trials in rice and wheat fields across the Indo-Gangetic Plains of India (Graphic: CIMMYT).

Precise recommendations

Nutrient Expert, which was launched back in 2013, works by analysing growing conditions, natural nutrients in the soil, and even leftover nutrients from previous crops to provide tailored fertilizer recommendations directly to farmers phones. The tool also complements the Government of India’s Soil Health Cards for balanced and precise nutrient recommendations in smallholder farmers’ fields.

Each farmer’s field is different, which is why blanket fertilizer recommendations aren’t always effective in producing better yields. By using nutrient management tools such as Nutrient Expert, farmers can obtain fertilizer recommendations specific to the conditions of their field as well as their economic resources and thus avoid under-fertilizing or over-fertilizing their fields.

ā€œWhile efficient nutrient management in croplands is widely recognized as one of the solutions to addressing the global challenge of supporting food security in a growing global population while safeguarding planetary health, Nutrient Expert could be an important tool to implement such efficient nutrient management digitally under smallholder production systems,ā€ said Tek Sapkota, CIMMYT climate scientist and first author of the study.

Sapkota also argues that adoption of the Nutrient Expert tool in rice-wheat systems of India alone could provide almost 14 million tonnes (Mt) of extra grain with 1.4 Mt less nitrogen fertilizer use, and a reduction of 5.3 Mt of carbon (CO2) emissions per year over current practices.

However, technological innovation alone will not achieve these positive outcomes.

ā€œGiven the magnitude of potential implications in terms of increasing yield, reducing fertilizer consumption and greenhouse gas emissions, governments need to scale-out Nutrient Expert-based fertilizer management through proper policy and institutional arrangements, especially for making efficient use of the nearly 200 million Soil Health Cards that were issued to farmers as part of the Soil Health mission of the Government of India,ā€ said ML Jat, CIMMYT principal scientist and co-author of the study.

Read the study:
Crop nutrient management using Nutrient Expert improves yield, increases farmers’ income and reduces greenhouse gas emissions.