CIMMYT scientists and private sector partners photographed during a dinner hosted by CIMMT Director General Bram Govaerts in Lilongwe, Malawi. (Photo: Tawanda Hove/CIMMYT)
Goal 17 of the United Nations’ Sustainable Development Goals calls to “Strengthen the means of implementation and revitalize the global partnership for sustainable development”. The International Maize and Wheat Improvement Center (CIMMYT) answered this call to action by recently hosting a collaborative dinner to strengthen ties between the Center, the private sector and government partners in Malawi.
Hosted by CIMMYT Director General Bram Govaerts, the dinner followed a visit by US Special Envoy for Global Food Security Cary Fowler, Dina Esposito, Assistant to the Administrator, USAID Bureau of Resilience and Food Security and other USAID staff to discuss and witness the new Accelerated Innovation for Delivery Initiative (AID-I) in action.
“The challenges of today do not require a single sector approach but a pluralistic one in which partners from the private, public sectors agree to work hand in hand with science for impact organizations like CIMMYT and other CGIAR centers,” said Govaerts in his keynote address at the event. “I am very grateful for your support and your presence today is a testimony or our harmonious solidarity and spirit of collaboration in addressing food and nutrition security.”
Govaerts engages with government and agro industry captains in a dinner hosted in Lilongwe, Malawi. (Photo: Tawanda Hove/CIMMYT)
The meeting was attended by seed industry players, agricultural input distributors, food processors and Government representatives including Director of Agriculture Research Services Grace Kaudzu, who expressed her appreciation for the gathering.
“As government, our role is to create an enabling environment for the private sector to thrive and progressive development partners are always welcome. Such gatherings enable us to hear the needs of colleagues and partners from other sectors to create this environment,” she said.
Malawi has established an ambitious roadmap where legume exports and maize production are to be significantly scaled up. The AID-I project dovetails with this roadmap as it focuses on strengthening maize and legume seed systems and addressing systemic constraints in both value chains.
The dinner further facilitated private sector players to meet various CIMMYT specialists ranging from seed system experts, soil scientists, breeders and plant physiologists. According to Peter Setimela, a seed system specialist at CIMMYT, such meetings are critical as they enable a diversity of partners to know what the other has to offer.
“CIMMYT has a lot of expertise which these private sector partners can take advantage of,” Setimela said.
The AID-I project seeks to scale up existing and high potential innovations, technologies and business models as opposed to initiating new ones. This only makes sense considering that the implementation period is only two years and scaling up existing innovations give greater prospects for success.
CIMMYT Regional Representative Moses Siambi labelled the event a success citing the huge turnout of the partners.
“The effectiveness of our interventions is dependent on the strength of the relationships we have with our partners. Such a massive attendance is indicative of cordial relations between CIMMYT and the private sector in conjunction with the government,” Siambi said.
Govaerts closed the event by stressing that through harnessing the potential of convening power, the future is bright regardless of the reality of climate change and geopolitical conflicts.
For a decade, scientists at the International Maize and Wheat Improvement Center (CIMMYT) have been at the forefront of a multidisciplinary and multi-institutional effort to contain and effectively manage maize lethal necrosis (MLN) disease in Africa.
The manual is relevant to stakeholders in countries where MLN is already present, and also aims to offer technical tips to “‘high-risk’ countries globally for proactive implementation of practices that can possibly prevent the incursion and spread of the disease,” writes B.M. Prasanna, director of CIMMYT’s Global Maize Program and MAIZE, in the foreword.
“While intensive multi-disciplinary and multi-institutional efforts over the past decade have helped in containing the spread and impact of MLN in sub-Saharan Africa, we cannot afford to be complacent. We need to continue our efforts to safeguard crops like maize from devastating diseases and insect-pests, and to protect the food security and livelihoods of millions of smallholders,” says Prasanna, who is presently leading the OneCGIAR Plant Health Initiative Design Team.
The overall objective of the 5-year EU-funded DeSIRA action, led by the International Potato Center (CIP), is to improve climate change adaptation of agricultural and food systems in Malawi through research and uptake of integrated technological innovations.
CIMMYT’s role is focused on the following project outputs:
Identify and develop integrated technology options that effectively provide management options to contribute to reducing risks and increasing resilience and productivity of the smallholder farmers’ agrifood systems in Malawi. Towards this objective, CIMMYT will evaluate drought-tolerant and nutritious maize varieties under conservation agriculture and conventional practices, and assess the overall productivity gains from agronomic and germplasm improvements versus current farming practices.
Develop, test and promote robust integrated pest and disease management strategies to predict, monitor and control existing and emerging biotic threats to agriculture while minimizing risks to farmers’ health and damage to the environment. Towards this objective, CIMMYT will evaluate the effect of striga on maize performance under conservation agriculture and conventional practices; evaluate farmer methods and other alternatives to chemical sprays for the control of fall armyworm; and study the effect of time of planting for controlling fall armyworm.
The food security and livelihoods of smallholder farming families in sub-Saharan Africa depend on maize production. The region accounts for up to two-thirds of global maize production, but is facing challenges related to extreme weather events, climate-induced stresses, pests and diseases, and deteriorating soil quality. These require swift interventions and innovations to safeguard maize yields and quality.
In this Q&A, we reflect on the results and impact of the long-term collaborative work on drought-tolerant maize innovations spearheaded by two CGIAR Research Centers: the International Maize and Wheat Improvement Center (CIMMYT) and International Institute of Tropical Agriculture (IITA). This innovative work has changed guises over the years, from the early work of the Drought Tolerant Maize for Africa (DTMA) and Drought Tolerant Maize for Africa Seed Scaling (DTMASS) projects through later iterations such as Stress Tolerant Maize for Africa (STMA) and the newest project, Accelerating Genetic Gains in Maize and Wheat (AGG).
In this Q&A, three leaders of this collaborative research reflect on the challenges their work has faced, the innovations and impact it has generated for smallholder farmers, and possible directions for future research. They are: B.M Prasanna, director of CIMMYT’s Global Maize Program and of the CGIAR Research Program on Maize (MAIZE); Abebe Menkir, a maize breeder and maize improvement lead at IITA; and Cosmos Magorokosho, project lead for AGG-Maize at CIMMYT.
Briefly describe the challenges confronting small-scale farmers prior to the introduction of drought-tolerant maize and how CIMMYT and IITA responded to these challenges?
B.M.P.: Maize is grown on over 38 million hectares in sub-Saharan Africa, accounting for 40% of cereal production in the region and providing at least 30% of the population’s total calorie intake. The crop is predominantly grown under rainfed conditions by resource-constrained smallholder farmers who often face erratic rainfall, poor soil fertility, increasing incidence of climatic extremes — especially drought and heat — and the threat of devastating diseases and insect pests.
Around 40% of maize-growing areas in sub-Saharan Africa face occasional drought stress with a yield loss of 10–25%. An additional 25% of the maize crop suffers frequent drought, with yield losses of up to 50%. Climate change is further exacerbating the situation, with devastating effects on the food security and livelihoods of the millions of smallholder farmers and their families who depend on maize in sub-Saharan Africa. Therefore, the improved maize varieties with drought tolerance, disease resistance and other farmer-preferred traits developed and deployed by CIMMYT and IITA over the last ten years in partnership with an array of national partners and seed companies across sub-Saharan Africa are critical in effectively tackling this major challenge.
A.M.: Consumption of maize as food varies considerably across sub-Saharan Africa, exceeding 100 kg per capita per year in many countries in southern Africa. In years when rainfall is adequate, virtually all maize consumed for food is grown in sub-Saharan Africa, with a minimal dependence on imported grain. Maize production, however, is highly variable from year to year due to the occurrence of drought and the dependence of national maize yields on seasonal rainfall. One consequence has been widespread famine occurring every five to ten years in sub-Saharan Africa, accompanied by large volumes of imported maize grain as food aid or direct imports.
This places a significant strain on resources of the World Food Programme and on national foreign exchange. It also disincentivizes local food production and may not prevent or address cyclical famine. It also leaves countries ill-equipped to address famine conditions in the period between the onset of the crisis and the arrival of food aid. Investment in local production, which would strengthen the resilience and self-sufficiency in food production of smallholder farming families, is a far better option to mitigate food shortages than relying on food aid and grain imports.
C.M.: Smallholder farmers in sub-Saharan Africa face innumerable natural and socioeconomic constraints. CIMMYT, in partnership with IITA and national agricultural research system partners, responded by developing and catalyzing the commercialization of new maize varieties that produce reasonable maize yields under unpredictable rainfall-dependent growing season.
Over the life of the partnership, more than 300 new climate-adaptive maize varieties were developed and released in more than 20 countries across sub-Saharan Africa where maize is a major staple food crop. Certified seed of over 100 stress-tolerant improved maize varieties have been produced by seed company partners, reaching more than 110,000 tons in 2019. The seeds of these drought-tolerant maize varieties have benefited more than 8 million households and were estimated to be grown on more than 5 million hectares in eastern, southern and west Africa in 2020.
A farmer in Mozambique stands for a photograph next to her drought-tolerant maize harvest. (Photo: CIMMYT)
In what ways did the drought-tolerant maize innovation transform small-scale farmers’ ability to respond to climate-induced risks? Are there any additional impacts on small scale farmers in addition to climate adaptation?
B.M.P.: The elite drought-tolerant maize varieties can not only provide increased yield in drought-stressed crop seasons, they also offer much needed yield stability. This means better performance than non-drought-tolerant varieties in both good years and bad years to a smallholder farmer.
Drought-tolerant maize varieties developed by CIMMYT and IITA demonstrate at least 25-30% grain yield advantage over non-drought-tolerant maize varieties in sub-Saharan Africa under drought stress at flowering. This translates into at least a 1 ton per hectare enhanced grain yield on average, as well as reduced downside risk in terms of lost income, food insecurity and other risks associated with crop yield variability. In addition to climate adaptation, smallholder farmers benefit from these varieties due to improved resistance to major diseases like maize lethal necrosis and parasitic weeds like Striga. We have also developed drought-tolerant maize varieties with enhanced protein quality — such as Quality Protein Maize or QPM — and provitamin A, which improve nutritional outcomes.
We must also note that drought risk in sub-Saharan Africa has multiple and far-reaching consequences. It reduces incentives for smallholder farmers to intensify maize-based systems and for commercial seed companies to invest and evolve due to a limited seed market.
Drought-tolerant maize is, therefore, a game changer as it reduces the downside risk for both farmers and seed companies and increases demand for improved maize seed, thus strengthening the commercial seed market in sub-Saharan Africa. Extensive public-private partnerships around drought-tolerant maize varieties supported the nascent seed sector in sub-Saharan Africa and has enabled maize-based seed companies to significantly grow over the last decade. Seed companies in turn are investing in marketing drought-tolerant maize varieties and taking the products to scale.
A.M.: The DTMA and STMA projects were jointly implemented by CIMMYT and IITA in partnership with diverse national and private sector partners in major maize producing countries in eastern, southern and western Africa to develop and deploy multiple stress-tolerant and productive maize varieties to help farmers adapt to recurrent droughts and other stresses including climate change.
These projects catalyzed the release and commercialization of numerous stress-resilient new maize varieties in target countries across Africa. Increasing the resilience of farming systems means that smallholder farmers need guaranteed access to good quality stress resilient maize seeds. To this end, the two projects worked with public and private sector partners to produce large quantities of certified seeds with a continual supply of breeder seeds from CIMMYT and IITA. The availability of considerable amount of certified seeds of resilient maize varieties has enabled partners to reach farmers producing maize under stressful conditions, thus contributing to the mitigation of food shortages that affect poor people the most in both rural and urban areas.
C.M.: The drought-tolerant maize innovation stabilized maize production under drought stress conditions in sub-Saharan Africa countries. Recent study results showed that households that grew drought-tolerant maize varieties had at least half a ton more maize harvest than the households that did not grow the drought-tolerant maize varieties, thus curbing food insecurity while simultaneously increasing farmers’ economic benefits. Besides the benefit from drought-tolerant innovation, the new maize varieties developed through the partnership also stabilized farmers’ yields under major diseases, Striga infestation, and poor soil fertility prevalent in sub-Saharan Africa.
How is the project addressing emerging challenges in breeding for drought-tolerant maize and what opportunities are available to address these challenges in the future?
Margaret holds an improved ear of drought-tolerant maize. Margaret’s grandmother participated in an on-farm trial in Murewa district, 75 kilometers northeast of Zimbabwe’s capital Harare. (Photo: Jill Cairns/CIMMYT)
B.M.P.: A strong pipeline of elite, multiple-stress-tolerant maize varieties — combining other relevant adaptive and farmer-preferred traits — has been built in sub-Saharan Africa through a strong germplasm base, partnerships with national research partners and small- and medium-sized seed companies, an extensive phenotyping and multi-location testing network, and engagement with farming communities through regional on-farm trials for the identification of relevant farmer-preferred products.
CGIAR maize breeding in sub-Saharan Africa continues to evolve in order to more effectively and efficiently create value for the farmers we serve. We are now intensively working on several areas: (a) increasing genetic gains (both on-station and on-farm) through maize breeding in the stress-prone environments of sub-Saharan Africa by optimizing our breeding pipelines and effectively integrating novel tools, technologies and strategies (e.g., doubled haploids, genomics-assisted breeding, high-throughput and precise phenotyping, improved breeding data management system, etc.); (b) targeted replacement of old or obsolete maize varieties in sub-Saharan Africa with climate-adaptive and new varieties; (c) developing next-generation climate-adaptive maize varieties with traits such as native genetic resistance to fall armyworm, and introgressed nutritional quality traits (e.g., provitamin A, high Zinc) to make a positive impact on the nutritional well-being of consumers; and (d) further strengthening the breeding capacity of national partners and small and medium-sized seed companies in sub-Saharan Africa for a sustainable way forward.
A.M.: The DTMA and STMA projects established effective product pipelines integrating cutting-edge phenotyping and molecular tools to develop stress-resilient maize varieties that are also resistant or tolerant to MLN disease and fall armyworm. These new varieties are awaiting release and commercialization. Increased investment in strengthening public and private sector partnerships is needed to speed up the uptake and commercialization of new multiple stress-resilient maize varieties that can replace the old ones in farmers’ fields and help achieve higher yield gains.
Farmers’ access to new multiple-stress-tolerant maize varieties will have a significant impact on productivity at the farm level. This will largely be due to new varieties’ improved response to fertilizer and favorable growing environments as well as their resilience to stressful production conditions. Studies show that the adoption of drought-tolerant maize varieties increased maize productivity, reduced exposure to farming risk among adopters and led to a decline in poverty among adopters. The availability of enough grain from highly productive and stress-resilient maize varieties can be the cheapest source of food and release land to expand the cultivation of other crops to facilitate increased access to diversified and healthy diets.
C.M.: The project is tackling emerging challenges posed by new diseases and pests by building upon the successful genetic base of drought-tolerant maize. This is being done by breeding new varieties that add tolerance to the emerging disease and pest challenges onto the existing drought-tolerant maize backgrounds. Successes have already been registered in breeding new varieties that have high levels of resistance to MLN disease and the fall armyworm pest.
Opportunities are also available to address new challenges including: pre-emptively breeding for threats to maize production challenges that exist in other regions of the world before these threats reach sub-Saharan Africa; enhancing the capacity of national partners to build strong breeding programs that can address new threats once they emerge in sub-Saharan Africa; and sharing knowledge and novel high-value breeding materials across different geographies to immediately address new threats once they emerge.
Cover photo: Alice Nasiyimu stands in front of a drought-tolerant maize plot at her family farm in Bungoma County, in western Kenya. (Photo: Joshua Masinde/CIMMYT)
The Biofortified Maize for Improved Human Nutrition project conducts field research both at CIMMYT and with partners on breeding for increased pro-vitamin A and Zinc content in both Africa and Latin America. The project grant is renewed annually and has been in operation since 2004.
Key activities include supporting early and mid-late product development, evaluation and release in Mexico and target countries in southern Africa, food science and retention studies. Molecular breeding and biochemical analysis are key components for successful breeding, and the project also involves technical backstopping for partners in both regions.
Objectives
Conduct field research on breeding for increased pro-vitamin A for target countries in Africa
Conduct field research on breeding for increased Zinc for product evaluation and release
Conduct essential research to deploy analytical tools and marker assisted selection or genomic selection methods in micronutrient breeding work
Facilitate the dissemination, promotion and consumption of biofortified crops
When farmers in rural Kasungu, Malawi, are asked to list some of the challenges they face, much of what they say is to be expected. Crop pests, climate change, low soil fertility, and lack of improved seed and purchasing power — these are faced by smallholders across districts and the country as a whole.
But there is one surprising response. “Sometimes it’s difficult to get feedback from research centers on what does and doesn’t work,” says Maxwell Phiri.
Capacity building and knowledge transfer are key elements of agricultural development work, but there is often a gap between research, outreach and extension to farmers. New techniques and crop varieties tested at experimental stations can take a while to reach rural communities, who want solutions to the challenges they are facing in real time.
“But now it’s easier for us because the research is being done here.” Phiri points to the farmer field school in Msambafumu, a few hectares of communal land where 23 smallholders from the surrounding area meet regularly to learn about new technologies and farming techniques.
At the school they have been able to learn first-hand about improved and new agricultural practices and technologies. Following an introduction to climate-smart agriculture practices, they have moved on to agroforestry, learning about the benefits of intercropping drought-tolerant maize with pigeon peas and fruit trees. “We’ve even started practicing climate-smart agriculture in our own fields and planting agroforestry trees,” says Ntendeleza Mwale, a member of the field school in Msambafumu and chair of a network of 17 schools in the district. “Now everybody is growing fruit trees at home.”
“We didn’t know that potatoes, millet and sorghum could grow here, because we thought the soil wasn’t suitable, but the school has showed us what is possible,” explains Maxwell Phiri (first from left). “You learn a lot of things in a group that you might not learn on your own.” (Photo: Emma Orchardson/CIMMYT)
Back to school
A farmer field school is a group of 25-30 farmers, led by a master trainer, who come together to solve common challenges faced in their local area, such as soil degradation or poor water availability. Since 2014, the Government of Malawi has been using this innovative approach to help farmers learn about and improve their production systems through the KULIMA project. With support from a CGIAR consortium led by the International Potato Center (CIP), 15 schools have been established across the districts of Kasungu, Mulanje and Mzuzu, including master training hubs and outreach centers run by NGOs.
The overall objective is to increase agricultural productivity and diversification by upscaling climate-smart technologies,” explains Mathinda Sopo, a monitoring and evaluation specialist and project manager at the International Maize and Wheat Improvement Center (CIMMYT). “Master trainer candidates are selected in each district and then invited to sit down with researchers and identify their core production challenges. The plans are then developed collaboratively and based on agroecological zone.”
In February 2020, a new cohort of trainees arrived at the Lisasadizi Regional Training Center in Kasungu, where the Ministry of Agriculture coordinates trainings on four key topics — soil health, climate change, pests and diseases and nutrition — in collaboration with the UN Food and Agriculture Organization (FAO) and the CGIAR consortium, supported by the German development agency GIZ.
The 13-week residential course is mostly practical but does include some classroom-based study and a community outreach component. Guided by a facilitator — usually a researcher or extension worker — participants are encouraged to learn from their experiences as they conduct experiments in their own fields, make observations and evaluate results throughout the cropping season. Outside of the core curriculum, they are free to investigate additional topics of their own choice.
After completing the course, master trainers move back to their respective areas to help train facilitators, who are ultimately responsible for running the field schools with support from NGO extension staff.
“The CGIAR centers bring in technologies they want to promote like improved crop varieties, but there are ongoing evaluations throughout the process to respond to newly emerging challenges such as fall armyworm,” says Sopo. “There’s also a review at the end of each season to discuss lessons learned and knowledge gaps.”
CIMMYT, for example, is focusing on promoting drought-tolerant, quality protein maize (QPM), and provitamin A maize, as well as climate-smart agriculture practices. At Msambafumu, the group have been comparing five improved maize varieties with local ones. “So far we’ve seen that the new varieties have bigger yields and cob sizes,” says Mwale. “Varieties like Chitedze 2 QPM and MH43A are also early maturing and are more nutritious.”
Farmers at the field schools in Msambafumu and Tiyese, in Malawi, have been surprised to find that banana trees can be grown in their area. (Photo: Emma Orchardson/CIMMYT)
At the field school in Tiyese, Malawi, farmers are using two adjacent maize plots to compare the effects of leaving crop residue on their field. (Photo: Emma Orchardson/CIMMYT)
Learning by doing
A few kilometers down the road, in Galika village, members of the Tiyese field school have been learning how to control a variety of pests and diseases. So far, they have been taught about different pesticides and the benefits of using inoculant on soya beans and ground nuts to improve soil fertility, and how to identify and mitigate disease in susceptible potato varieties. They have also been learning how to apply Aflasafe while crops are still in the field to reduce aflatoxins in maize and groundnuts.
But the most pressing challenge is fall armyworm, says Matolino Zimba, a member of the Tiyese field school. “We’ve been trying new methods for controlling it,” he explains. “Last year we planted mucuna beans in our banana orchard as a cover crop. Later we soaked mucuna leaves in water and poured the solution on the infested maize and noticed that the worms were dying.”
Zimba is satisfied with the learning methods at the field school. “This approach is better for us because we get to see the process, rather than just receiving an explanation.”
Emily Kaponda agrees. She first joined the group after noticing that participating farmers were getting higher yields by using new planting methods. “The school has a smaller plot of land than I do, but their bundles of maize were much larger,” she explains.
Since joining the field school, she has learned how to increase her yields, how to conserve moisture in the soil using zero-tillage farming and the importance of diversifying her family’s diets. “We’re learning how we can use cassava or sweet potato as a starch, instead of only using maize.”
Zimba and Kaponda are both excited to be trying out QPM and provitamin A maize varieties, as well as new varieties of cassava, orange-fleshed sweet potato, improved groundnuts, biofortified beans and bananas. Much like their peers at Msambafumu, they had not known that many of these could be grown in the area, and the group has already started planning to multiply planting materials to use in their own fields next year.
“These groups are really inspirational,” says Sopo. “Most members are already practicing things they’ve learned at their school and are getting positive results.”
Sopo is already seeing success stories from schools established one year ago, but collaboration will need to be sustained to ensure lasting progress. A new research initiative, Development-Smart Innovations through Research in Agriculture (DeSIRA), will help to maintain the positive feedback loop by investigating emerging issues raised during on-farm experiments. “We can take farmer observations from the study plots to DeSIRA for further research, and the outputs from that will complement KULIMA.”
Farmers at the field school in Msambafumu, Malawi, begin preparing the soil for their next set of experiments. (Photo: Emma Orchardson/CIMMYT)
Matolino Zimba checks on the emerging maize crop, which has been covered in crop residue to conserve moisture, at the field school in Tiyese, Malawi. (Photo: Emma Orchardson/CIMMYT)
Sixteen years of consistent learning and practice of climate-smart agriculture, led by the International Maize and Wheat Improvement Center (CIMMYT), are paying off for Luganu Mwangonde. Together with her husband Kenson, she has established herself as a successful smallholder farmer in Malawi’s Balaka district. She enjoys the multiple benefits of high yields from diverse crops, surplus to sell at the markets and improved soil quality.
“I started practicing the farming that does not demand too much labor back in 2004,” she explains at her 2.5-acre farm. “Over the years the process has become easier, because I have a full understanding of the benefits of techniques introduced through the project.”
In Malawi’s family farms, women often carry the burden of land preparation and weeding in the fields while juggling household responsibilities, contributing to widen gender differences already prevalent in the community.
Mwangonde observes that learning climate-smart techniques — such as minimum tillage, mulching and planting on flat land surfaces — has given her an advantage over other farmers practicing conventional agriculture.
Better off
At the beginning, like other farmers in the area, Mwangonde thought conservation agriculture and climate-smart techniques required a lot of work, or even hiring extra labor. As she tried this new approach, however, weed pressure in her plot decreased gradually, with the help of mulching and other techniques, and the labor required to maintain the fields reduced significantly. This allowed her to have extra time to add value to her products and sell them on the markets — and to rest.
The best gain for her is knowing that her family always has enough to eat. “I have enough grain to last until the next harvest,” she says. “My husband and I can provide for our seven children and four grandchildren.” During the 2018/19 season, Mwangonde’s family harvested six bags of maize, two bags of pigeon pea and four bags of groundnuts. The surplus from the harvest is reserved for later, when prices are more competitive.
“I am an equal partner in the farming activities. That means I can make decisions about how we work on our plot, distribute crops and apply everything that I have learnt about conservation agriculture,” Mwangonde explains. She has participated in CIMMYT activities where she could share her experiences on climate-smart agriculture with other women. As a lead farmer, she notes, she can confidently inspire the next generation of smallholders because of the empowering knowledge she has acquired.
Out of the 3,538 smallholder farmers from Balaka, Machinga and Zomba districts, up to 2,218 are women smallholder farmers who have successfully adopted climate-smart technologies.
Mwangonde is one of the beneficiaries of the Africa Research in Sustainable Intensification for the Next Generation (Africa RISING) project. She also benefitted from the support of the German Development Agency (GIZ), the International Fund for Agricultural Development (IFAD), Total Land Care (TLC) and the United States Agency for International Development (USAID).
Kassim Massi and Joyce Makawa have learned how conservation agriculture nurtures the soil of their 2.5-acres farm in Lemu, Malawi, and helps them to better cope with regular dry spells and storm rains. With four children and two grandchildren, their livelihoods depend on rainfed crop farming, in particular maize, the main staple in Malawi, and a few goats and free-range poultry. The International Maize and Wheat Improvement Center (CIMMYT) introduced them to conservation agriculture, along with five other families in their community.
“I have learnt a lot from this experiment. I can see that with crop rotation, mulching and intercropping I get bigger and healthier maize cobs. The right maize spacing, one seed at the time planted in a row, creates a good canopy which preserves the soil moisture in addition to the mulch effect,” Massi explains. “The mulch also helps to limit water runoff when there are heavy rains. I don’t see the streams of mud flowing out of this plot like for my other field where I only planted maize as usual on ridges,” he adds.
Massi and Makawa started small, on a quarter acre, testing maize and maize-pigeon pea intercropping under conservation agriculture. Later they diversified to a maize-groundnut rotation with pigeon pea alleys, while introducing different drought-tolerant maize varieties on their plot. Pigeon pea and groundnut are legume crops that enrich the soil in nitrogen via nodules that host specific bacteria called rhizobia in their root systems. Massi and Makawa also put layers of maize stalks and groundnut haulms on the ground after harvest, creating a mulch that not only enriches the soil in organic matter but retains soil moisture and improves soil structure.
While they got only two bags of 50kg maize grain from their conventionally tilled maize field, they harvested almost three times more maize grain plus three bags of groundnuts, and two and half bags of pigeonpea from the 0.1 hectares grown under conservation agriculture. “This plot has become our food insurance and we plan to expand it.”
Family farmers Kassim Massi and Joyce Makawa in Lemu, Malawi. (Photo: Shiela Chikulo/CIMMYT)
Good for the soil and good for the farmer
“Building healthy soils over the years is one of the great impacts of conservation agriculture,” explains Christian Thierfelder, an agronomist with CIMMYT in Zimbabwe. “With no tillage, legume rotation or intercropping and crop residue management, a beneficial soil pore structure is developed over time. This enables water to infiltrate into the soil where it is available for plant growth in times of drought or during in-season dry spells.”
Under the GIZ-funded Out scaling climate-smart technologies to smallholder farmers in Malawi, Zambia & Zimbabwe initiative, the different ecosystem services that soils bring have been measured against the typical ploughed maize monocropping system. Fifteen year-long experiments show that 48.5mm more water infiltrates per hour under no-till as compared with the conventional method. Soil erosion is reduced by 64% for ripline-seeded maize with legume intercropping. At the Henderson Research station in Zimbabwe where soil erosion loss has been quantified, it means 90 metric tons per hectare of topsoil saved over twelve years.
“Conservation agriculture is good for the soil, and it is good for the farmer. The maize-legume intercropping under conservation agriculture provides very good financial return to labor and investment in most rural communities we worked with,” Thierfelder notes.
Climate mitigation or resilience?
There is growing recognition of the importance of soils in our quest for sustainability.
Soils play for instance an important role in climate regulation. Plants fix carbon dioxide (CO2) through photosynthesis and when those plants die and decompose, the living organisms of the soil, such as bacteria, fungi or earthworms, transform them into organic matter. That way, soils capture huge quantities of the carbon emissions that fuel climate change. This soil organic carbon is also essential for our food security because it retains water, and soil nutrients, essential for growing crops.
The quantity of carbon soils capture depends on the way farmers grow their crops. Conservation agriculture improves soil biodiversity and carbon sequestration by retaining crop residues as mulch, compared to conventional practices.
“Research shows that practices such as conservation agriculture can restore soil organic carbon at the level of four per thousand when farmers apply all principles of conservation agriculture: no-till, soil cover and crop diversification,” explains Marc Corbeels, agronomist seconded to CIMMYT from Cirad. Increasing soil organic content stocks globally by 0.4% per year is the objective of the “4 per 1000” initiative as a way to mitigate climate change and improve food security. At global level, sequestrating 0.4% more soil organic carbon annually combined with stopping deforestation would counteract the annual rise in atmospheric CO2.
“The overall soil organic carbon sequestration potential of conservation agriculture should however not be overestimated,” Corbeels warns. “Carbon sequestration is complex and context-specific. It depends for instance on the type of soils and the initial soil organic status, and the crop and biomass productivity as enough crop residues should be produced.”
“Now farmers in Malawi, Zambia and Zimbabwe are facing prolonged drought and, in some parts, farming communities got hit by flash floods. With degraded and barren soils in this tropical environment, it is a disaster. In my experience, more than mitigation, improved climate resilience is a bigger benefit of conservation agriculture for the farmers”, Corbeels says.
“Science is important to build up solid evidence of the benefits of a healthy soil and push forward much-needed policy interventions to incentivize soil conservation,” Thierfelder states.
Scaling out conservation agriculture practices is what has driven him over the past decade in southern Africa.
“One big lesson I learnt from my years of research with farmers is that if you treat well your soil, your soil will treat you well. Conservation agriculture adopters like Kassim Massi and his family are more resilient to these successive shocks. We need more farmers like them to achieve greater food security and climate resilience in the region,” he concludes.
December 5, we are celebrating World Soil Day under the theme “Stop Soil Erosion, Save our Future!” As CIMMYT’s research shows, farmers cannot deliver sustainable food security without healthy soils, as the farming land producing our staple crops provide important environmental services as well. CIMMYT calls for soil-smart agriculture and food systems.
The United Nations Framework Convention on Climate Change estimates that temperatures in Africa are set to rise significantly in coming years, with devastating results for farmers. Some regions could experience two droughts every five years, and see drastic reductions in maize yields over the next three decades.
Research demonstrates that climate-smart agriculture (CSA) is good method of mitigating the effects of climate change, for both farmers and the planet. Associated practices, which increase soil moisture levels and soil biodiversity have been shown to decrease soil erosion by up to 64%. They also have the potential to increase maize yields by 136% and incomes in dry environments by more than twice as much.
However, adoption rates remain low in some of the countries which stand to benefit the most, such as Malawi, Zambia and Zimbabwe, where the adoption of complete conservation agriculture systems is currently at 2.5%.
A new series of infographics describes some of the farming constraints will have to be addressed in order to scale climate-smart agricultural practices successfully in the region, taking into account both benefits and challenges for farmers.
Mary Twaya is an exemplary farmer in Lemu, a rural drought-prone community in southern Malawi, near Lake Malombe. On her one-hectare farm she grows cotton, maize, and legumes like groundnut and cowpea, which she just picked from her fields. Since agriculture is Twaya’s sole livelihood, it is important for her to get good harvests, so she can support her three children and her elderly mother. She is the only breadwinner since her husband left to sell coffee in the city and never returned.
Agriculture is critically important to the economy and social fabric of Malawi, one of the poorest countries in the World. Up to 84% of Malawian households own or cultivate land. Yet, gender disparities mean that farmland managed by women are on average 25% less productive than men. Constraints include limited access to inputs and opportunities for capacity building in farming.
Mary Twaya stands by her field during the 2018/19 season. (Photo: Christian Thierfelder/CIMMYT)
Twaya was part of a CIMMYT project that brought climate-smart agriculture practices to smallholder farmers in Malawi, Zambia and Zimbabwe.
She was enthusiastic about adopting climate-smart agriculture practices and conservation agriculture strategies in her plot. “I have always considered myself an active farmer, and when my husband left, I continued in the project around 2007 as part of the six lead ‘mother farmers’ with about 30 more ‘baby farmers’ learning through our field trials,” Twaya explained.
“We worked in Lemu since 2007 with Patrick Stanford, a very active and dedicated extension officer who introduced conservation agriculture to the village,” said CIMMYT agronomist Christian Thierfelder. “Farmers highlighted declining yields. The Lemu community was keen to transform their farming system, from conventional ridge tillage to more sustainable and climate-adapted cropping systems.” This was an ideal breeding ground for new ideas and the development of climate-smart solutions, according to Thierfelder.
Mulching, spacing and legume diversification
Showing her demonstration plot, which covers a third of her farm, Twaya highlights some of the climate-smart practices she adopted.
“Mulching was an entirely new concept to me. I noticed that it helps with moisture retention allowing my crops to survive for longer during the periods of dry spells. Compared to the crops without mulching, one could easily tell the difference in the health of the crop.”
“Thanks to mulching and no tillage, a beneficial soil structure is developed over time that enables more sustained water infiltration into the soil’’, explained Thierfelder. “Another advantage of mulching is that it controls the presence of weeds because the mulch smothers weeds unlike in conventional systems where the soil is bare.”
Research shows that conservation agriculture practices like mulching, combined with direct seeding and improved weed control practices, can reduce an average of 25-45 labor days per hectare for women and children in manual farming systems in eastern Zambia and Malawi. This time could be used more productively at the market, at home or in other income-generating activities.
A plate full of pigeon peas harvested from Mary’s plot in Lemu, Malawi. Pigeon pea grain has a high protein content of 21-25%, making it a valuable food for many families who cannot afford dairy and meat. (Photo: Shiela Chikulo/CIMMYT)
After 12 years of practicing conservation agriculture, Twaya confirms that she does not spend too much time in the field because she just uproots the weeds with no need for using a hoe. This makes the weeding task less laborious and allows her to spend her time on other chores such as fetching water, washing laundry or cleaning her homestead. “I have time to also go to the village banking and loan savings club to meet with others”.
Adopting optimum plant density, instead of throwing in three seeds in each planting hole was another transformational change. The “Sasakawa spacing” — where maize seeds are planted 25 centimeters apart in rows spaced every 75 centimeters — saves seed and boosts yields, as each plant receives adequate fertilizer, light and water without competing with the other seeds. This practice was introduced in Malawi in the year 2000 by Sasakawa Global.
Twaya pays more attention to the benefits of planting nitrogen-fixing crops alongside her maize, as she learned that “through crop rotation, legumes like pigeon pea improve the nutrition of my soil.” In the past she threw pigeon pea seeds loosely over her maize field and let it grow without any order, but now she practices a “double-up legume system,” where groundnut and pigeon pea are cropped at the same time. Pigeon peas develop slowly, so they can grow for three months without competition after groundnut is harvested. This system was introduced by the Africa RISING project, funded by USAID.
Groundnuts and pigeon peas grow under the double-up legume system in Mary Twaya’s conservation agriculture plot. (Photo: Christian Thierfelder/CIMMYT)
A mother farmer shows the way
Switching to climate-smart agriculture requires a long-term commitment and knowledge. Some farmers may resist to the changes because they initially find it new and tedious but, like Twaya observed, “it may be because they have not given themselves enough time to see the long-term benefits of some of these practices.”
With all these innovations — introduced in her farm over the years with the support of CIMMYT and the Ministry of Agriculture, Irrigation and Water Development of Malawi — Twaya reaped important economic and social benefits.
When Twaya rotates maize and pigeon pea, the maize stalks are healthy and the cobs are big, giving her higher yields. Passing-by neighbors will often exclaim ‘‘Is this your maize?’’ because they can tell it looks much more vigorous and healthier than what they see in other fields.
For the last season, Twaya harvested 15 bags of 50kg of maize from her demo plot, the equivalent of five tons per hectare. In addition to her pigeon pea and groundnut crops, she was able to feed her family well and earned enough to renovate her family home this year.
This new way of managing her fields has gained Twaya more respect and has improved her status in the community.
Through surplus sales of maize grain, pigeon pea and groundnuts over the past 12 years, Mary has generated enough income to build a new home. Nearing completion, she has purchased iron sheets for roofing this house by the end of 2019. (Photo: Shiela Chikulo/CIMMYT)
The Malawi Improved Seed Systems and Technologies (MISST) consortium project works to make elite, drought- and stress-resistant maize seed available to farmers in Malawi.
The Drought Tolerant Maize for Africa project aims to mitigate drought and other constraints to maize production in sub-Saharan Africa, increasing maize yields by at least one ton per hectare under moderate drought and with a 20 to 30 percent increase over farmers’ current yields, benefiting up to 40 million people in 13 African countries. The project brings together farmers, research institutions, extension specialists, seed producers, farmer community organizations and non-governmental organizations. It is jointly implemented by CIMMYT and the International Institute for Tropical Agriculture, in close collaboration with national agricultural research systems in participating nations. Millions of farmers in the region are already benefiting from the outputs of this partnership, which includes support and training for African seed producers and promoting vibrant, competitive seed markets.
Achievements:
Between 2007 and 12, participants marketed or otherwise made available 60 drought tolerant hybrids and 57 open-pollinated varieties to smallholder farmers
In addition to drought tolerance, the new varieties and hybrids also possess such desirable traits as resistance to major diseases
Engage government officials in policy dialogue to help fast-track varietal releases and fosters competitive seed markets and more
widespread access to quality seed at affordable prices
Help ensure farmers’ access to the best possible products and services, coordinate various capacity-building events and
activities for maize breeders, technicians, seed producers, extension workers, non-government organizations and farmer groups
Provide technical and advisory support to 50 African undergraduate and 28 African graduate students
Expand smallholder farmers’ use of drought and other stress tolerant maize seed to benefit 30 to 40 million people and provide added grain worth $160-200 million each year in drought-affected areas of sub-Saharan Africa