Skip to main content

funder_partner: Kenya Agricultural & Livestock Research Organization (KALRO)

Going further down the path to bolster Africa’s maize sector

 The long-running Drought Tolerant Maize for Africa (DTMA) Project started in 2007 and ends this month. What next after this long-distance runner, and, more importantly, what will happen to DTMA products?

Enter DTMASS, which stands for Drought Tolerant Maize for Africa Seed Scaling. It’s to be a seamless transition to the next stage on the research-to-development continuum, albeit with a switch in terms of who takes the lead and is firmly in the front seat, and who plays a facilitating role and now settles in the back seat.

DTMASS stands on the shoulders of DTMA ‒ and other projects ‒ the fundamental difference being that now seed companies will be the main drivers of the project. In essence, this is in fact the rationale for DTMASS. Also, to avoid duplication, the geographical areas DTMASS shall concentrate on are different from DTMA sites.

FIGURES: The DTMA scorecard in 2014

  • 13: the number of countries covered in Africa
  • 72: the percentage these 13 countries which jointly account for, as a proportion of all maize grown in sub-Saharan Africa
  • 205: the cumulative number of maize varieties released (mostly hybrids)
  • 184: the distinct varieties represented by the 205 varieties above

FACTS

  1. 49%: the additional yield from hybrids, on average, compared to open pollinated varieties
  2. Going up: popularity of hybrids in Africa

“We’ve noted the good products that come from DTMA, and we are keen to forge partnerships to take these products further down the research-to-development path and make a difference,” said Dr. John McMurdy, International Research Advisor at the United States Agency for International Development (USAID), which is funding DTMASS.

DTMASS was launched at continental level late last year in November 2014 (see page 1 here), followed by focused country-level launches in each of the participating countries. Implementation began in March 2015.

Continuing conundrum on women and men: let’s talk business Studies show that gender gaps continue to persist, from seed access to seed production. Therefore, a gender-responsive approach is core to DTMASS’ work, recognizing that gender-responsiveness is not a single silver bullet. Rather, it is an accumulation of small efforts done at each of the five steps of seed access and production which will lead to gender-equitable outcomes. The facilitative five steps are (1) seed production (2) processing and branding (3) promotion, (4) distribution and network, and (5) monitoring and evaluation).

“These gender-equitable outcomes are not a work of charity,” stressed Vongai Kandiwa, CIMMYT’s Gender Specialist. “It makes business sense. Seed companies are losing business opportunities by failing to target a large sector of the market – women.”

And while men not only own most of the land but are also twice as likely to walk into an agrodealer shop (observation research in Eastern Kenya), anecdotal evidence as well as sample – but representative – research has shown that men generally consult their wives first before purchasing. Their wives will not help them make informed decisions if they themselves are not aware of the options available.

The curious puzzle of Kenya’s paradox, and some shocks for locals During the launch of DTMASS in Kenya on 2nd February 2015, it was revealed that maize productivity in Kenya has been on a debilitating downward spiral. Yet Kenya has bona fide and well-established seed companies with significant knowledge and experience. While productivity in the 1980s was well over two tonnes per hectare, it has since dipped to 1.6 tonnes, even as Kenya’s potential production stands at an impressive and life-changing 10 tonnes.

“Good partnerships would turn around that situation, and there’s every reason why Kenya should do better,” observed Dr. Tsedeke Abate, DTMASS Project Leader, who also leads DTMA.

The DTMASS goal for Kenya is 1,600 tonnes of certified seed by 2019. CIMMYT will work in partnership with the Kenya Agricultural and Livestock Research Organization (KALRO) and local seed companies, whose representatives attended the meeting. Some of the seed-company representatives said they were shocked by Kenya’s dismal performance on production: they said they knew it was low, but had not known it was that low.

Dr. Joyce Malinga, Acting Director of KALRO’s Food Crops Research Institute, observed that seed has the greatest potential to increase on-farm production and enhance productivity. She said KALRO is keen on commercialization of released drought-tolerant varieties, as a means to ensure that these varieties reach farmers.

The Kenya launch in Nairobi was preceded by country launches in Mozambique, Tanzania and Zambia. DTMASS encourages cross-country learning, and the experience from the Kenya launch would be taken to Uganda the following week, in the same manner Kenya had benefitted from lessons for the three preceding country launches.

Uganda: countering counterfeits, the heat is on, and onwards and upwards! “This project is at the right place at the right time,” said Dr Imelda Kashaija, Deputy Director, National Agricultural Research Organisation (NARO), Uganda, on 4th February 2015. She was speaking at the launch of the DTMASS Project in Kampala.

She observed that in Uganda, formal players offering certified seed currently account for a mere 35 percent of the market, leaving 65 percent to informal players. This is an untenable situation, inherent with many problems with the spread of disease as the biggest risk (see maize lethal necrosis, for example). It is estimated that nearly half (40 percent) of the hybrid seed sold in Uganda is fake. “We all know that if we don’t improve the formal seed system, we continue to encourage the bad habit of counterfeit seed that is rampant in Uganda. One way to reduce counterfeit is to strengthen the formal system so farmers get good-quality seed,” Dr. Kashaija added.

Maize affected by drought A WangalachiWPoor pickings that will lead to a paltry harvest: a maize cob from a crop hard-hit by drought.
Photo: A. Wangalachi CIMMYT

She said the project will bring in drought-tolerant maize varieties that will help Uganda fight climate change. In the 19th century, Uganda was dubbed ‘the pearl of Africa’ by Victorian-era traveler and journalist, Henry Morton Stanley, for good reason. The country sits astride the broad shores of the world’s second-largest freshwater lake (Victoria) which drains into the mighty River Nile, evoking images of glistening green lush landscapes, water in plenty and banana fronds waving in the tropical breeze. But this postcard-perfect picture is beginning to shatter. “We’re getting more dry than wet days,” revealed Dr. Kashaija. “Distribution of rain has changed, even if not the amount. Not only are there now fewer days of rain, the rains are also now unpredictable. So, crops that take longer in the field have poor harvests.” It is also important to remember eastern Uganda falls firmly in the drylands.

Describing seed companies as “our other arm when reaching communities,” Dr. Kashaija observed that seed companies take the seed NARO produces and use it for business. But they focus on more than money by delivering quality seed, thereby helping the government in its objective to improve formal systems. “Through this project, more farmers are going to be able to access improved drought-tolerant seed,” Dr. Kashaija concluded.

Dr. McMurdy described DTMASS as “a strategic project for USAID. DTMASS is part of a suite of new investments, and part of the Feed the Future initiative. This meeting is an opportunity to discuss constraints, and also to foster partnerships and more cooperation. We are looking for synergies with other stakeholders and efforts, including the Alliance for a Green Revolution in Africa.”

“We have the knowledge and technology, and what remains is translating knowledge to action,” added Dr. Abate. He said that Uganda has made significant progress in terms of maize productivity, as indicated by the latest FAO statistics.

The acreage devoted to maize has also doubled over the past several years. Through DTMASS, by 2019, Uganda is expected to produce 1,800 tonnes of improved maize. “I have no doubt Uganda can exceed this projection, given the good team, good partnership and experienced players,” Dr. Abate predicted.

A helping hand Capacity-building to help meet project goals is an integral part of DTMASS, starting with ‘servicing the engine’ – the seed companies that will drive DTMASS.

To this end, in-country seed business management and production courses were held for participating companies. First up was Malawi in June 2015, with Uganda, Tanzania and Mozambique in July, Kenya in August, and concluding with Ethiopia in September.

Links:

Uganda launch cropWParticipants at the DTMASS project launch in Uganda, 4th February 2015. Photo: CIMMYT

KALRO and CIMMYT: cementing a longstanding relationship

All this week, CIMMYT headquarters in Texcoco, Mexico, has the honor of hosting Dr. Eliud Kireger, the Acting Director General of the Kenya Agricultural and Livestock Research Organization (KALRO). Today, we sit with him for a candid conversation on crop research in Africa.

According to Dr. Kireger, one of the burning issues in agriculture today in Eastern and Southern Africa is “low productivity per unit area. The increase we’ve seen in yields across different countries is largely due to expansion in land area.” He attributes this low productivity per unit area to lack of technologies and knowledge that can boost productivity. This dearth translates itself in many ways such as not using fertilizers, improved seed or mechanization.

Another key factor hampering production is climate change, which in Eastern and Southern Africa manifests itself mainly through drought, floods, frost and hail. “There is also an increase in new pests and diseases, as well as postharvest losses, low value addition and lack of regulated markets which erodes the incentive to work hard and produce more. All these are the issues we need to address in our research and development agenda,” Dr Kireger says.

Finance and romance
The crunch in all this is low funding for the agricultural sector. African heads of state committed to devoting a minimum of 10 percent of their national budgets to agriculture in the 2003 Maputo Declaration. Not only have few nations honored this commitment, it is also a disadvantageous relationship, as Dr Kireger reveals. “For example, in Kenya, agriculture accounts for 30 percent of the GDP but the exchequer allocates less than two percent to agriculture, and even less to research. We therefore rely on our partners and collaborators in funding most of our research and development work, and that is where partners like CIMMYT come in to help us bridge the gap by accessing funding we would not otherwise have got, by training our scientists, and by helping us obtain high-quality germplasm.”

Dr. Eliud Kireger (left), KALRO Director General, in deep discussions with CIMMYT scientists during his visit to CIMMYT headquarters. He was accompanied by Stephen Mugo (right), CIMMYT’S Regional Representative for Africa and also country representative for Kenya. Dr. Kireger also met with CIMMYT's senior leadership.
Dr. Eliud Kireger (left), KALRO Director General, in deep discussions with CIMMYT scientists during his visit to CIMMYT headquarters. He was accompanied by Stephen Mugo (right), CIMMYT’S Regional Representative for Africa and also country representative for Kenya. Dr. Kireger also met with CIMMYT’s senior leadership.

But it is a reciprocal relationship between CIMMYT and KALRO, with CIMMYT too enjoying KALRO’s generosity through a rich potpourri of priceless resources – land for field and laboratory work; a robust nationwide network covering all corners of Kenya; immense social capital accumulated through time by a known, tested and trusted name; community mobilization; and local liaison with policy- and decision-makers on sensitive matters such as germplasm exchange and other weighty issues. “In Kenya CIMMYT does not have land, but since we work together, KALRO allows us to use their land for our work,” notes Stephen Mugo, CIMMYT–Africa Regional Representative and also Kenya Country Representative, who has accompanied Dr Kireger to CIMMYT Headquarters. “These are the benefits of synergy: ‘What you do not have, and I have, we share’. There is no single institution — working alone — that can be able to address all the challenges facing agriculture. From very early on, CIMMYT decided that the only way was to team up with national institutions and work together, so that CIMMYT-developed germplasm , know-how and technologies reach intended beneficiaries countrywide for the benefit of maize and wheat farmers. CIMMYT and KALRO jointly design common projects on clear and specific areas to improve maize and wheat, then seek funding for these projects to address drought tolerance, crop pests and emerging diseases.”

CIMMYT–KALRO MLN screening facility at KALRO's premises in Naivasha, Kenya.
CIMMYT–KALRO MLN screening facility at KALRO’s premises in Naivasha, Kenya.

One such emerging disease is maize lethal necrosis (MLN), which CIMMYT and KALRO are jointly tackling through ultra-modern shared facilities for MLN screeing and for doubled haploid (DH) technology that both stand on KALRO land. “With these facilities, we are able to screen a large volume of germplasm from both the public and private sectors. DH technology allows breeders to very rapidly— especially for cross-pollinated crops like maize — develop parental lines in about 18 months than can then be used to develop hybrids,” says Mugo. “With conventional methods, the same process could take anywhere between six and eight years. Once we identify maize types that are disease-resistant, drought-tolerant or good for low-nitrogen soils, we can fast-track them for rapid hybrid development. KALRO also facilitates exchange of germplasm — particularly important now in the face of MLN — by liaising with other government agents such as the Kenya Plant Health Inspectorate Service. This helps not only Kenya but also other countries, including both the public and private sector. By working together, institutions are able to solve problems that at first glance seem insurmountable,” Mugo observes.

KALRO and CIMMYT started working on climate-smart crops long before the term was coined. The goal was ‘insurance’ to increase production during drought. CIMMYT embarked on research from the late 1980s to increase production even when drought strikes. Collaboration with KALRO in this work started in the early 1990s, and did not stop there. “We now have a large network of research sites in Eastern and Southern Africa,” says Mugo.

The next frontier, and the future we need not fear if we prepare
Touching on genetically modified crops, Dr. Kireger laments “the negative publicity and misinformation on transgenics. To counter this, one of the first courses of action we are taking is making information available to the general public. Transgenic materials have the potential to resolve some of the problems that we have in Eastern and Southern Africa. We are working together with CIMMYT to provide information to the public because the largest fault-line is lack of information, which opens the door for misinterpretation. This hampers and dents the good work that is being done.”

Mugo concurs: “The only way to address this is for research institutions like KALRO and CIMMYT to provide the correct information, based on authoritative and impartial research findings, for informed public debate on benefits and risks, and how to mitigate risks. For example, research has shown the economic and environmental benefits of transgenic insect-resistant maize which eliminates pesticide use. This shows that transgenics can be deployed to solve problems that conventional means are at present unable to solve. One of these is the need to produce more food for an ever-increasing global population. To achieve this goal, we need to deploy all the technologies at our disposal, including transgenics.”

And switching emphasis from maize and headquarters to wheat and the field, Dr Kireger’s next stop in Mexico this week is Obregon, to get first-hand experience on CIMMYT’s work on this other crop that both institutes work on – not very common in Africa, as most of CIMMYT’s partnerships there focus exclusively on maize. Watch this space for more updates including videos!

And may this fruitful and mutually beneficial collaboration endorsed at the highest levels continue to grow from strength to strength!

Links:

Improved maize to boost yields in nitrogen-starved African soils

Sub-Saharan African farmers typically apply less than 20 kilograms of fertilizer per hectare of cropland — far less than their peers in any other region of the world. In 2014, partners in the Improved Maize for African Soils (IMAS) project developed 41 Africa-adapted maize varieties that respond better to low amounts of nitrogen fertilizer and are up for release in nine African countries through 24 seed companies.

A farmer applies nitrogen fertilizer to her hybrid maize. Photo: CIMMYT/IMAS

After water, nitrogen is the single most important input for maize production; lack of it is the main constraint to cereal yields in Africa, in areas with enough rain to raise a crop. Year after year, infertile soils and high fertilizer prices (in rural areas as much as six times the global average) combine to reduce harvests of maize, sub-Saharan Africa’s number-one cereal crop and chief source of calories and protein for the poor. With funding from the Bill & Melinda Gates Foundation and the U.S. Agency for International Development (USAID) and led by the International Maize and Wheat Improvement Center (CIMMYT), an initiative launched in 2010 has made dramatic progress to address this by exploiting natural genetic variation for nutrient-use efficiency in tropical maize. “Partners have been breeding maize varieties that respond better to the small amounts of nitrogen fertilizer African farmers can afford to apply,” said Biswanath Das, CIMMYT maize breeder and coordinator of the Improved Maize for African Soils (IMAS) project. “We’re aiming to raise maize yields by 50 percent and benefit up to 60 million maize farmers in eastern and southern Africa.”

Smallholder Farmer Conditions: A Maize “Reality Check”

A public-private partnership that, along with CIMMYT, involves national research organizations such as the Kenya Agricultural & Livestock Research Organization (KALRO) and South Africa’s Agricultural Research Council (ARC), African seed companies and DuPont Pioneer, IMAS has advanced quickly in part because participants share breeding lines and technical knowhow, according to Das.

“But a real key to success – and a significant legacy of the project – is that IMAS has established in eastern and southern Africa the world’s largest low-nitrogen screening network for maize,” Das explained. “There are 25 sites in 10 countries and a total of over 120,000 experimental plots. Partners can test breeding lines and quickly and reliably spot the ones with superior nitrogen-use efficiency under smallholder farmers’ conditions.” According to Das, nearly a quarter of the plots are managed by seed companies, which recognize the value of nitrogen-use efficiency as a key trait for their farmer clients.

In an exciting 2014 development, regulatory agencies in eastern Africa began evaluating maize national performance trials — which varieties must pass as a prerequisite for release — under nitrogen stress in the IMAS network. “This is a clear recognition by policymakers of poor soil fertility as a critical constraint for African maize farmers,” said Das. “To meet farmers’ needs, IMAS varieties are also bred for drought tolerance and resistance to the region’s major maize diseases.”

Also Yielding Under Well Fertilized Conditions

Partners are augmenting conventional breeding with DNA-marker-assisted selection and use of “doubled haploids,” a high-tech shortcut to genetically-uniform maize inbred lines. Experimental breeding stocks thus developed are field tested under low-nitrogen stress through “high-precision phenotyping,” involving careful measurement of key traits in live plants.

Low nitrogen trials in Kiboko, Kenya, where new maize varieties are tested. Photo: CIMMYT/IMAS.

“In this way, we’ve quickly developed maize varieties that yield up to 50 percent more than existing varieties under low-fertility stress, characteristic of smallholder farming systems,” Das explained. “Crucially for farmers, these varieties also perform well under well- fertilized conditions, whilst several carry resistance to maize lethal necrosis, a devastating viral disease spreading through eastern Africa.” In 2014, 41 such varieties were nominated for release in nine countries in Africa, in partnership with 24 seed companies.

This year IMAS also worked with seed companies to support the production and dissemination of 3,000 tons of seed of nitrogen-use efficient maize hybrids in Kenya, Mozambique, Tanzania and Zimbabwe, potentially benefitting more than 120,000 smallholder maize farmers and helping to enhance food security for over half a million household members, according to Das. “Close collaboration with the private seed sector has been instrumental to IMAS since its inception,” Das said. “These partners host over a quarter of the regional nitrogen stress screening network and have helped with the quick increase of seed of nitrogen-use efficient varieties and with managing farmer demonstrations and field days to support the fast release of new varieties.”

A December 2014 report by the Montpellier Panel – comprising agricultural, trade and ecology experts from Europe and Africa – details the economic and ecological threats of degrading soils in Africa, and is highlighted in an 04 December BBC feature.