Skip to main content

funder_partner: Kenya Agricultural & Livestock Research Organization (KALRO)

Breaking Ground: Mandeep Randhawa fights wheat diseases using genetic resistance tools

With new pathogens of crop diseases continuously emerging and threatening food production and security, wheat breeder and wheat rust pathologist Mandeep Randhawa and his colleagues at the International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agricultural and Research Organization (KALRO) are working tirelessly to identify new sources of rust resistance through gene mapping tools and rigorous field testing.

With wheat accounting for around 20% of the world’s calories and protein, outbreaks of disease can pose a major threat to global food security and farmer livelihoods. The most common and prevalent diseases are wheat rusts — fungal diseases that can be dispersed by wind over long distances, which can quickly cause devastating epidemics and dramatically reduce wheat yields.

To tackle the problem, Randhawa and his colleagues work on developing improved wheat varieties by combining disease-resistant traits with high yielding ones, to ensure that farmers can get the best wheat yields possible while evading diseases.

Screening for disease

A native of the Punjab state of India, Randhawa joined CIMMYT as a Post-doctoral Fellow in Wheat Rust Resistance Genetics in 2015. He now works as a CIMMYT scientist and manages the Stem Rust Screening Platform in Njoro, Kenya, which supports screening against stem rust of up to 50,000 wheat lines per year from as many as 20 countries. Over the last 10 years about 650,000 wheat lines have been evaluated for stem rust resistance at the facility.

“The platform’s main focus is on evaluation of wheat lines against the stem rust race Ug99 and its derivative races prevalent in Eastern to Southern Africa, the Middle East and Iran,” explains Randhawa. Ug99 is a highly virulent race of stem rust, first discovered two decades ago in Uganda. The race caused major epidemics in Kenya in 2002 and 2004.

“East African highlands are also a hotspot for stripe wheat rust so, at the same time, we evaluate wheat lines for this disease,” adds Randhawa.

The facility supports a shuttle breeding scheme between CIMMYT Mexico and Kenya, which allows breeders to plant at two locations, select for stem rust (Ug99) resistance and speed up the development of disease-resistant wheat lines.

“Wheat rusts in general are very fast evolving and new strains are continuously emerging. Previously developed rust-resistant wheat varieties can succumb to new virulent strains, making the varieties susceptible. If the farmers grow susceptible varieties, rust will take on those varieties, resulting in huge yield losses if no control measures are adopted,” explains Randhawa.

Helping and sharing

For Randhawa, helping farmers is the main goal. “Our focus is on resource-poor farmers from developing countries. They don’t have enough resources to buy the fungicide. Using chemicals to control diseases is expensive and harmful to the environment. So in that case we provide them solutions in the form of wheat varieties which are high yielding but they have long-lasting resistance to different diseases as well.”

Under the Borlaug Global Rust Initiative, Randhawa and his team collaborate with KALRO to facilitate the transfer of promising wheat lines with high yield potential and rust resistance to a national pipeline for soon-to-be-released wheat varieties.

When he is not screening for wheat rusts diseases, Randhawa  also organizes annual trainings on stem rust diagnosis and germplasm evaluation for young wheat breeders and pathologists from developing countries. More than 220 wheat researchers have been trained over the last decade.

Mandeep Randhawa (left) talks to the participants of the 11th annual training on stem rust notetaking and germplasm evaluation. (Photo: Jerome Bossuet/CIMMYT)
Mandeep Randhawa (left) talks to the participants of the 11th annual training on stem rust notetaking and germplasm evaluation. (Photo: Jerome Bossuet/CIMMYT)

A farmer at heart

Randhawa always had an interest in agricultural science. “Initially, my parents wanted me to be a medical doctor, but I was more interested in teaching science to school students,” he says. “Since my childhood, I used to hear of wheat and diseases affecting wheat crops, especially yellow rust — which is called peeli kungi in my local language.” This childhood interest led him to study wheat genetics at Punjab Agricultural University in Ludhiana, India.

His mentors encouraged him to pursue a doctorate from the Plant Breeding Institute (PBI) Cobbitty at the University of Sydney in Australia, which Randhawa describes as “the mecca of wheat rust research.” He characterized two new stripe rust resistance genes formally named as Yr51 and Yr57 from a wheat landrace. He also contributed to the mapping of a new adult plant stem rust resistance gene Sr56.

Coming from India, his move to Australia was a pivotal moment for him in his career and his identity — he now considers himself Indian-Australian.

If he had not become a scientist, Randhawa would be a farmer, he says. “Farming is my passion, as I like to grow crops and to have rich harvest using my scientific knowledge and modern technologies.”

At CIMMYT, Randhawa has a constant stream of work identifying and characterizing new sources of rust resistance. “Dealing with different types of challenges in the wheat field is what keeps me on my toes. New races of diseases are continuously emerging. As pests and pathogens have no boundaries, we must work hand-in-hand to develop tools and technologies to fight fast evolving pests and pathogens,” says Randhawa.

He credits his mentor Ravi Singh, Scientist and Head of Global Wheat Improvement at CIMMYT, for motivating him to continue his work. “Tireless efforts and energetic thoughts of my professional guru Dr. Ravi Singh inspire and drive me to achieve research objectives.”

Screening cycle for deadly MLN virus set to begin in Kenya in January 2020

Maize plants at the MLN screening facility in Naivasha, Kenya. (Photo: Jennifer Johnson/CIMMYT)
Maize plants at the MLN screening facility in Naivasha, Kenya. (Photo: Jennifer Johnson/CIMMYT)

The maize lethal necrosis (MLN) artificial inoculation screening site in Naivasha, Kenya, will begin its phenotyping (screening/indexing) cycle of 2020 at the beginning of January 2020, which will continue in four other intervals throughout the year. Interested organizations from both the private and public sectors are invited to send maize germplasm for screening.

In 2013, the International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agricultural & Livestock Research Organization (KALRO) jointly established the MLN screening facility at the KALRO Naivasha research station in Kenya’s Rift Valley, with support from the Bill & Melinda Gates Foundation and the Syngenta Foundation for Sustainable Agriculture.

MLN was first discovered in Kenya in 2011 and quickly spread to other parts of eastern Africa. The disease causes premature plant death and unfilled, poorly formed maize cobs, which can lead to up to 100% yield loss in farmers’ fields.

CIMMYT and partners are dedicated to stopping the spread of this deadly maize disease by effectively managing the risk of MLN on maize production through screening and identifying MLN-resistant germplasm. The MLN screening facility supports countries in sub-Saharan Africa to screen maize germplasm — for hybrid, inbred and open pollinated varieties — against MLN in a quarantined environment.

This is the largest dedicated MLN screening facility in East Africa. Since its inception in 2013, the facility has evaluated more than 200,000 accessions — more than 300,000 rows of maize — from more than 15 multinational and national seed companies and national research programs.

Partners can now plan for annual MLN phenotyping (screening/indexing) during 2020 with the schedule below. The improved and streamlined approach for MLN phenotyping should enable partners to accelerate breeding programs to improve resistance for MLN for sub-Saharan Africa.

2020 annual phenotyping (indexing/screening) schedule:

When the seeds are available  Planting period (planned) MLN Screening / Indexing
December Second week of January MLN Indexing
March Second week of April MLN Screening
June Second week of July MLN Indexing
August Second week of September MLN Screening
October Second week of November MLN Indexing

More information about the disease and resources for farmers can be found on CIMMYT’s MLN portal.

Please note that it can take up to six weeks to process imports and clear shipments.

For assistance in obtaining import permits and necessary logistics for the upcoming screening, please contact:

L.M. Suresh
Tel.: +254 20 7224600 (direct)
Email: l.m.suresh@cgiar.org

CIMMYT–Kenya, ICRAF House
United Nations Avenue, Gigiri
P.O. Box 1041–00621
Nairobi, Kenya.

How a disease without borders was contained

It’s been eight years since maize lethal necrosis (MLN) was first reported on the African continent. When it appeared in Kenya’s Bomet County in 2011, a sense of panic swept across the maize sector. Experts quickly realized that all maize varieties on the market were susceptible to this viral disease, which could wipe out entire maize fields.

Spearheaded by the International Maize and Wheat Improvement Center (CIMMYT), a rapid regional response involving national agriculture research systems (NARS), national plant protection organizations and seed sector partners was set up. The response involved multiple approaches: rigorous surveillance, epidemiology research, disease management across the seed value chain, and screening and fast-tracking of the MLN-tolerant maize breeding program.

Now, CIMMYT and its partners are reflecting on the tremendous impact of transboundary coalition to contain the devastating disease.

“Country reports show there are now much less incidents of MLN in the region. We have effectively contained this disease as no new country in sub-Saharan Africa reported MLN since Ethiopia in 2014. This is a great achievement of an effective public private partnership,” noted B.M. Prasanna, Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize.

He was speaking at the closure workshop for the MLN Diagnostics and Management project and the MLN Epidemiology project on October 15-17, 2019, in Nairobi, Kenya. Experts from research, plant health and seed sector organizations from eastern and southern Africa reflected on the tremendous impact of the transboundary coalition to contain MLN across the region.

“The outbreak of the disease in Uganda in 2012 was a huge challenge as all the maize varieties and hybrids on the market were susceptible. With the support of CIMMYT and other partners in the national agriculture research systems, we got access to Bazooka, a high-yielding, drought- and MLN-tolerant maize variety that has helped in containing the disease,” said Godfrey Katwere, marketing manager for NASECO.

Until now, 19 MLN-tolerant and -resistant hybrids have been released, helping to keep the disease away from farmers’ fields and to stop its spillover to non-endemic countries in sub-Saharan Africa.

CIMMYT team members check for traces of the maize chlorotic mottle virus (MCMV) in maize plants during a visit to the MLN screening facility in Naivasha, Kenya. (Photo: Joshua Masinde/CIMMYT)
CIMMYT team members check for traces of the maize chlorotic mottle virus (MCMV) in maize plants during a visit to the MLN screening facility in Naivasha, Kenya. (Photo: Joshua Masinde/CIMMYT)

Science in action

The MLN screening facility, established in Naivasha in 2013, has been key to a better understanding of the disease and to setting up MLN hybrid tolerance and resistance breeding efforts. The facility, funded by the Bill & Melinda Gates Foundation and the Syngenta Foundation for Sustainable Agriculture, has supported public and private partners to screen over 200,000 germplasm with around 300,000 rows of maize.

State-of-the-art epidemiology research has been carried out to identify how the disease could be transmitted and the best diagnostics methods along the seed value chain.

MLN is caused by the combination of the maize chlorotic mottle virus (MCMV) and any of the viruses belonging to the Potyviridae family.

As part of the project, studies showed that moist soil had higher MCMV virus loads than dry soil. The studies — conducted by Benham Lockhart of University of Minnesota and Peg Redinbaugh, a professor at Ohio State University and Research Leader and Research Plant Molecular Geneticist at USDA — indicated that MCMV can stay active in runoff water, and helped in understanding how the disease is transmitted and how to define management protocols.

“Crop debris may also act as source of MCMV inoculum but for a limited period of up to two months,” said L.M. Suresh, CIMMYT Maize Pathologist, in reference to soil transmission studies conducted by CIMMYT. “A host-free period of two months is, therefore, recommended for effective management of MLN,” he noted.

Rapid and low-cost MLN-causing virus detection methods such as immunostrips and ELISA-based tests were adopted at scale.

“After optimizing the protocols for MLN viruses’ diagnosis suitable for African systems, we transferred these technologies to [national plant protection organizations] and seed companies, not just within the endemic countries but also to the non-endemic countries in southern and west Africa, through intensive trainings,” Prasanna explained. “We created a digital MLN surveillance tool under the Open Data Kit (ODK) app for NPPOs and other stakeholders to effectively carry out MLN surveillance on the ground. The survey information is captured in real time in farmers’ and seed production fields coupled with rapid immunostrips MLN tests,” he remarked.

According to Francis Mwatuni, Project Manager of the MLN Diagnostics and Management project, this proactive and collaborative surveillance network has been an important outcome that helped curb MLN from spreading to non-endemic regions. “In 2016, we only had 625 surveillance points. By 2019, the surveillance points in all the target countries stood at 2,442, which intensified the alertness on MLN presence and how to effectively deal with it,” Mwatuni said. In total, 7,800 surveillance points were covered during the project implementation period.

Over 100 commercial seed firms have also been trained on how to produce MLN-free seed to facilitate trade within the endemic nations and to ensure the disease is not transferred to the non-endemic countries via contaminated seeds.

Participants at the MLN projects closure workshop stand for a group photo. (Photo: Joshua Masinde/CIMMYT)
Participants at the MLN projects closure workshop stand for a group photo. (Photo: Joshua Masinde/CIMMYT)

Sustaining the fight

Researchers continue to work to lessen MLN’s resurgence or new outbreaks. In 2018, incidents in all endemic countries, except Ethiopia, declined sharply. One suggested explanation for the upsurge in Ethiopia, especially in the northwestern region, was reduced use of pesticide for fall armyworm control, as compared to previous years where heavy application of these pesticides also wiped out MLN insect vectors, such as maize thrips and aphids.

At the end of the projects, partners urged for the scale-up of second-generation MLN-tolerant and -resistant varieties. They explained farmers would fully benefit from recent genetic gains of the new improved varieties and its protection against MLN.

“Despite the success registered, MLN is still a major disease requiring constant attention. We cannot rest as we redirect our energies at sustaining and building on the gains made,” said Beatrice Pallangyo, principal agricultural officer in Tanzania’s Ministry of Agriculture, Food Security and Cooperatives.

After the success containing MLN, stakeholders suggested the need to stay alert on other transboundary pests and diseases such as the tar spot complex, which could be a major threat to Africa’s food security in case of an outbreak.

What it takes to bring the best seed to farmers

Partnerships and how to increase impact were two of the key issues discussed by the Board of Trustees of the International Maize and Wheat Improvement Center (CIMMYT) during their meeting in Kenya in October 6-10, 2019. Management and strategy discussions were combined with field trips and interactions with CIMMYT researchers and partners. Board members visited the research stations in Kiboko and Naivasha, as well as two partner seed companies in Machakos and Nairobi.

“To ensure CIMMYT’s crop breeding research benefits smallholder farmers, it is important for us to better understand how partnerships between CIMMYT and seed companies work on the ground, to know how seeds move from our research stations to the farmers,” said Marianne Bänziger, CIMMYT’s deputy director general for research and partnership.

CIMMYT board members and staff stand for a group photo outside the offices of East African Seed. (Photo: Jerome Bossuet/CIMMYT)
CIMMYT board members and staff stand for a group photo outside the offices of East African Seed. (Photo: Jerome Bossuet/CIMMYT)

East African Seed, a family-owned seed business established in Nairobi in the 1970s, sells over 300 products, from maize and vegetable seeds to phytosanitary solutions. The company works through a large network of stockists and distributors across Burundi, the Democratic Republic of Congo, Kenya, Rwanda, South Sudan, Tanzania and Uganda.

Rogers Mugambi, chief business manager of East African Seed, underlined the successful partnership with CIMMYT, getting access to high-yielding disease-resistant germplasm and receiving technical support for the company’s breeding team. Mugambi highlighted CIMMYT’s contribution to contain the devastating maize lethal necrosis (MLN) outbreak since 2011. Most commercial varieties on the market fared badly against this new viral disease, but in 2020 East African Seed will launch two new MLN-tolerant varieties on the market thanks to CIMMYT’s breeding work.

Dryland Seed, another partner seed company, was established in 2005 in Kenya’s Machakos County. It commercializes the drought-tolerant SAWA maize hybrid, based on CIMMYT lines. Featured recently on Bill Gates’s blog, this hybrid is a success among farmers, thanks to earliness, nitrogen use efficiency and good yield potential in water-stressed regions. Dryland Seed’s production grew from 25 to 500 tons of seed per year, reaching out 42,000 farmers a year.

General view of the East African Seed warehouse. (Photo: Jerome Bossuet/CIMMYT)
General view of the East African Seed warehouse. (Photo: Jerome Bossuet/CIMMYT)

Keeping seeds in business

When asked about the uniqueness of East African Seed, Mugambi highlighted trust and consistency in quality. They nurture their agrodealer network by investing in extension services and organizing evening meetings with stockists to discuss how to farm and be profitable. “Knowing and supporting the agrodealers selling your products is crucial, to make sure the stockists sell the right seeds and inputs, and store them well,” Mugambi explained.

Marianne Banziger (right), CIMMYT's deputy director for research and partnership, listens to a Dryland Seed sales manager during a visit to a farm supplies shop in Machakos, Kenya. (Photo: Jerome Bossuet/CIMMYT)
Marianne Banziger (right), CIMMYT’s deputy director for research and partnership, listens to a Dryland Seed sales manager during a visit to a farm supplies shop in Machakos, Kenya. (Photo: Jerome Bossuet/CIMMYT)

“Many seed companies could learn from you. Quality control is crucial for any seed business as you sell genetics and any crop failure at farm level will jeopardize farmers’ trust in the company’ seeds,” said Bill Angus, CIMMYT Board member.

Ngila Kimotho, managing director of Dryland Seed, pointed out the financial challenges for a small local seed company to grow in this risky but important agribusiness. The company has to pay out-growers, sometimes face default payment by some agrodealers, while low-interest credit offers are scarce as “banks and microfinance institutions target short-term reliable businesses, not climate-risky rainfed farming,” Kimotho explained. Combining drought-tolerant crops with insurance products could lower business risks for banks.

Bringing top-notch research to farmers

“I am worried about the mutating stem rust which seems to break down the resistance of some popular wheat varieties,” stressed Joseph Nalang’u, a farmer in Narok with 600 acres dedicated to wheat and 100 to maize. “The unpredictable weather is another major concern. When I started farming, we knew exactly when the planting season would start, and this helped us in our planning. That is no longer the case.”

African farmers need agricultural research. A research that is responsive to develop rapidly scalable and affordable solutions against numerous emerging pests and diseases like wheat rusts, MLN or fall armyworm. They need advice on how to adapt to unpredictable climate.

While visiting the MLN Quarantine and Screening Facility in Naivasha, CIMMYT’s Board members discussed research priorities and delivery pathways with farmers, seed and input companies, and representatives of Kenya Agricultural and Livestock Research Organization (KALRO), Kenya Plant Health Inspectorate Service (KEPHIS) and the Ministry of Agriculture.

CIMMYT board members, staff, partners and farmers listen to a researcher at the MLN Screening Facility in Naivasha, Kenya. (Photo: Joshua Masinde/CIMMYT)
CIMMYT board members, staff, partners and farmers listen to a researcher at the MLN Screening Facility in Naivasha, Kenya. (Photo: Joshua Masinde/CIMMYT)

“When you visit Naivasha MLN research facility or Njoro wheat rust phenotyping platform, both co-managed by CIMMYT and KALRO, you see a partnership that works very well,” said Zachary Kinyua, the assistant director for crop health research at KALRO. “These facilities are open to public-private collaboration, they generate important public goods for farmers, large and small.”

“If we develop or co-develop wonderful technologies but they don’t reach the farmers, that would be a fun and wonderful experience but with no impact,” said Kevin Pixley, CIMMYT’s director of the Genetic Resources program. “We depend on partners in the national agricultural research systems, seed companies and other private and public partners to realize the desired impact.”

“It is always so inspiring to see on the ground the results of years of research, to hear some of our partners talking about the real impact this research makes. The multiplier effect of what we do never ceases to amaze me,” expressed Nicole Birell, chair of CIMMYT’s Board of Trustees.

Cover image: CIMMYT board members and staff visited Riziki Farm Supplies, one of the agrodealers in Machakos which sells SAWA hybrid maize. (Photo: Jerome Bossuet/CIMMYT)

Climate, nutrition and security challenges require global food system transformation

“Can we sustainably feed the nine to ten billion people in our planet in 30 years?” asked Kenneth M. Quinn, president of the World Food Prize Foundation. “This question becomes even more challenging with two current game changers: conflict and climate change.”

Food and agriculture experts met in Des Moines, Iowa, to discuss these issues at the Borlaug Dialogue and awarding of the 2019 World Food Prize.

The focus has shifted over the last few years from food to food systems, now including health and nutrition. “We need an integrated agri-food systems approach for food security, nutrition, nature conservation and human security,” said Bram Govaerts, director of the Integrated Development program at the International Maize and Wheat Improvement Center (CIMMYT).

Speakers agreed that to meet the current challenges of nutrition and climate change, we need a transformation of the global food system. “We have something very positive — this narrative of food system transformation,” said Ruben Echeverría, Director General of the International Center for Tropical Agriculture (CIAT).

In the discussions, speakers highlighted several areas that must be taken into consideration in this transformation.

Hale Ann Tufan, recipient of the 2019 Norman E. Borlaug Award for Field Research and Application, speaks at the award ceremony. (Photo: Mary Donovan/CIMMYT)
Hale Ann Tufan, recipient of the 2019 Norman E. Borlaug Award for Field Research and Application, speaks at the award ceremony. (Photo: Mary Donovan/CIMMYT)

Food security for peace and development

The theme of this year’s Borlaug Dialogue was “Pax Agricultura: Peace through agriculture.” Panels addressed the interconnected issues of food security, conflict and development.

In the keynote address, USAID Administrator Mark Green issued a call to action and challenged participants “to take on the food and economic insecurity issues that are emerging from this era’s unprecedented levels of displacement and forced migration.” Ambassadors, ministers and development experts gave examples of the interdependence of agriculture and peace, how droughts and floods could create conflict in a country, and how peace can be rebuilt through agriculture.

“Agriculture could root out the insurgency better than anything we did,” said Quinn about the Khmer Rouge surrender in Cambodia, where he served as an ambassador.

In the 1994 genocide in Rwanda, more than 1 million people died in 100 days. Geraldine Mukeshimana, Rwanda’s minister of Agriculture and Animal Resources, explained that in the country’s rebuilding process, all policies centered on agriculture.

“Almost no country has come out of poverty without an agricultural transformation,” said Rodger Voorhies, president of Global Growth and Opportunity at the Bill & Melinda Gates Foundation, in a fireside chat with 2009 World Food Prize Laureate Gebisa Ejera.

Agriculture is vital because without food, we cannot build institutions, processes or economies. “You cannot talk about human rights if you don’t have any food in your stomach,” said Chanthol Sun, Cambodia’s minister of Public Works and Transportation.

Josette Sheeran, president and CEO of Asia Society, echoed this thought, “Nothing is more important to human stability than access to food.”

In a luncheon keynote, Víctor M. Villalobos, Mexico’s Secretary of Agriculture and Rural Development, spoke about CIMMYT, the MasAgro project, and the need to improve food systems and agriculture to fight violence and forced migration. “Agriculture, prosperity and peace are inextricably linked together.”

CGIAR had a booth at the 2019 World Food Prize and Borlaug Dialogue, and participated in several events and panels. (Photo: World Food Prize)
CGIAR had a booth at the 2019 World Food Prize and Borlaug Dialogue, and participated in several events and panels. (Photo: World Food Prize)

How to make technological innovations work

Innovations and technology can support a global food system transformation and help to achieve the Sustainable Development Goals.

In a panel on food security in the next decade, speakers shared the agricultural technologies they are excited about: data, gene editing, synthetic biology, data science and precision farming.

Josephine Okot, managing director of Victoria Seeds Ltd said, “We must have mechanization.” She described the fact that Ugandan women farmers still rely on hand tools as a “disgrace to humanity.”

The CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) organized a session where panelists discussed how to realize a transformation in food systems through next generation technologies, highlighting the role regulatory frameworks and policies play in the adoption of new technologies.

Making innovations work is about more than developing the product. “It takes a lot more than just a good seed to get a farmer to use it,” said 2019 World Food Prize Laureate Simon Groot. “It includes good distribution, good marketing, good training, etcetera.”

Technology adoption requires a human emphasis and cultural element in addition to technology development.

The Executive Director of CGIAR, Elwyn Grainger-Jones (left), 2019 World Food Prize Laureate, Simon Groot (second from left) and other speakers present CGIAR's Crops to End Hunger initiative. (Photo: Mary Donovan/CIMMYT)
The Executive Director of CGIAR, Elwyn Grainger-Jones (left), 2019 World Food Prize Laureate, Simon Groot (second from left) and other speakers present CGIAR’s Crops to End Hunger initiative. (Photo: Mary Donovan/CIMMYT)

Breeding demand-driven crops for all

“The real enemy of farmers is lousy seeds,” said Simon Groot in his speech after receiving the World Food Prize.

CGIAR took the occasion of the World Food Prize to launch a new initiative, Crops to End Hunger. “We are looking for big solutions at CGIAR. Crops to End Hunger is one of them,” said CIMMYT Director General Martin Kropff. This program aims to meet the food, nutrition and income needs of producers and consumers, respond to market demands and increase resilience to challenges of the climate crisis.

“CGIAR released 417 new varieties last year. However, we can do more. Crops to End Hunger will rapidly excel breeding cycles,” said Elwyn Grainger-Jones, CGIAR Executive Director.

Felister Makini, deputy director general for Crops at Kenya Agricultural & Livestock Research Organization (KALRO), explained that focusing on the end users is what will have real impact. “It is important to develop technologies that are demand-driven so that farmers want to grow them and consumers want to buy and eat them.”

In a session to unpack the Crops to End Hunger initiative hosted by Corteva Agriscience and CGIAR, Marco Ferroni, Chair of the CGIAR System Management Board, said that CGIAR is shifting toward a more demand-driven agenda for plant breeding, where markets dictate what the research priorities should be.

“We must consider the human aspect in breeding,” said Michael Quinn, Director of the CGIAR Excellence in Breeding Platform (EiB). “This is where success will really come.”

Panelists discussed gender-conscious breeding, or taking both women and men’s desired traits into account.

The theme of gender was also emphasized by 2019 Norman Borlaug Field Award winner Hale Ann Tufan. She asked the Dialogue attendees to question gender biases and “not only to ‘take it to the farmer’ but take it to all farmers.”

CIMMYT's Director General, Martin Kropff (right), speaks at a session to share the details of CGIAR's Crops to End Hunger initiative. (Photo: Mary Donovan/CIMMYT)
CIMMYT’s Director General, Martin Kropff (right), speaks at a session to share the details of CGIAR’s Crops to End Hunger initiative. (Photo: Mary Donovan/CIMMYT)

Cover photo: Plenary session of the 2019 Borlaug Dialogue. (Photo: World Food Prize)

Collaborative product profiling captures farmers’ demand for greater impact

The International Maize and Wheat Improvement Center (CIMMYT) organized its first ever Maize Product Profile-based Breeding and Varietal Turnover workshop for eastern Africa in Nairobi, on August  29 and 30, 2019. The workshop, funded by USAID, was attended by maize breeders from national research institutes in Kenya, Uganda, Tanzania, Rwanda, Ethiopia and South Sudan, and by several partner seed companies including Seedco, Kenya Seeds, Western Seeds, Naseco and Meru Agro.

Participants from CIMMYT, EiB, NARs and seed companies attending the Product Profile workshop held in Nairobi on August 29-30, 2019. (Photo: CIMMYT/Joshua Masinde)

A product profile is defined as a list of “must-have” maize characteristics or traits that are the unique selling points for the target beneficiaries who are looking for these qualities. The breeders also consider additional traits in their breeding strategy, “value-added” or desirable traits that could be future unique selling points.

“A product profile is not a secret sauce” nor a checkbox to tick, explained Georges Kotch, a renowned expert in the seed industry and lead for Module 1 of the Excellence in Breeding (EiB) platform on product profiling. A product profile is a blueprint to help maize breeding programs ensure their new varieties released respond to a true need with a clear comparative advantage for seed companies and ultimately for maize farmers. This demand-driven process “starts with the end in mind” by understanding what the customers want. The end goal is to replace leading old varieties on the market with better ones that will improve farmers’ livelihoods, for example, with greater climate resilience and productivity.

Steering the breeding program through “healthy tensions”

Breeders may have had the tendency to focus on optimum yield for a certain agroecology, yet their priority traits may not reflect exactly the market or what farmers want. In addition to good yield, drought or disease resistance, grain color, taste, nutritional value, and appearance of plants and cobs are important in farmers’ choice of seed. Socio-economic research tools like participatory varietal selection (PVS) or willingness-to-pay experiments help us weigh the importance of each trait to trigger adoption.

Boiled and roasted maize tasting during a farmer participatory varietal selection exercise in Embu, Kenya in August 2019. Flavors of varieties are very distinct and could explain why some old varieties are still preferably grown by farmers. (Photo: CIMMYT/S. PALMAS)

There may be tensions between farmers’ needs, what suits seed companies like the seed reproducibility ratio, and what is possible and cost-effective from a breeder’s perspective. CIMMYT does not only look through the lens of economic return. The social impact new varieties could have is also considered, for example developing provitamin A or quality protein maize (QPM) as a solution to combat malnutrition even if there is not a major demand from private seed companies in Africa for nutritious maize.

Qualities valued by some actors may be overlooked by others. For example, some maize varieties have leafy ears with deceptively small cobs, which may protect the grain against pests but could be rejected by farmers.

It is important to have a wide array of expertise from breeding, market research and socio-economic analysis so that the different trait choices are weighed according to different lenses and a clear strategy for varietal turnover is defined.

High performing hybrids may not be enough for large-scale adoption

In southern Africa, climate experts warn that farmers could face drought every three years. CIMMYT has rightly prioritized drought tolerance (DT) over the last decade under the Stress Tolerant Maize for Africa initiative. Recently developed DT maize hybrids often outperform the popular varieties on the market, yet the varietal turnover has been slow in some regions. Farmers’ perceptions of what is a good maize may influence the success or rejection of a new variety. The risk for farmers and seed companies to try out a new variety is an important factor in adoption as well.

An appropriate seed marketing strategy is key, often seen only as the responsibility of private seed companies, but should be considered by public research as well.

CIMMYT has been selecting maize that can withstand drought during the critical phase just before and during the flowering stage, when the silks of the future cobs form. Even if rains stop at this stage, farmers growing DT maize will harvest some decent grain. If a long dry spell occurs just after planting, the crop will fail regardless of drought-tolerant breeding efforts. Farmers may then reject DT maize after such failure if the messaging is not clear.

Product profiling is a collaborative process, not an imposing one

Redefining the breeding strategy through product profiling is not set in stone. Kotch recommends annual review as a vehicle for constant improvement. B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize (MAIZE) explained that the product profiles could vary among various partners, as each partner looks at their own comparative advantage to reach success.

It is important to have everyone from the maize seed value chain on board to succeed. Regina Tende, maize breeder and entomologist at the Kenya Agricultural & Livestock Research Organization (KALRO), warned that regulatory bodies who review and authorize new varieties to reach the market must be integrated in the discussion “as their interest, primarily yield, may not be the final requirement for the target market.”

Seed systems specialists are also crucial to operationalize a successful breeding and delivery strategy, to address the different scaling bottlenecks and identify “the market changer.”

According to Kotch, CGIAR and national research organizations should avoid developing products too similar to the popular varieties on the market. Adoption occurs when something very different, for example new resistance to the devastating maize lethal necrosis, gives an innovation edge to seed companies. In Ethiopia, the replacement of an old popular variety BH660 by climate resilient BH661 was successful for various reasons including superior hybrid seed production with grey leaf spot resistance built in the seed parent population.

This demand-driven, multi-lens approach of product profiling including breeding, gender, socio-economic and policy dimensions will help to ensure that new varieties are more likely to be picked by farmers and partner seed companies, and increase the impact of CIMMYT’s Global Maize Program.

Seed production innovations, conservation agriculture and partnerships are key for Africa’s food security

Members of the International Maize Improvement Consortium Africa (IMIC – Africa) and other maize and wheat research partners discovered the latest innovations in seed and agronomy at Embu and Naivasha research stations in Kenya on August 27 and 28, 2019. The International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agriculture & Livestock Research Organization (KALRO) held their annual partner field days to present sustainable solutions for farmers to cope with poor soils, a changing climate and emerging diseases and pests, such as wheat rust, maize lethal necrosis or fall armyworm.

Versatile seeds and conservation agriculture offer farmers yield stability

“Maize is food in Kenya. Wheat is also gaining importance for our countries in eastern Africa,” KALRO Embu Center Director, Patrick Gicheru, remarked. “We have been collaborating for many years with CIMMYT on maize and wheat research to develop and disseminate improved technologies that help our farmers cope against many challenges,” he said.

Farmers in Embu, like in most parts of Kenya, faced a month delay in the onset of rains last planting season. Such climate variability presents a challenge for farmers in choosing the right maize varieties. During the field days, CIMMYT and KALRO maize breeders presented high-yielding maize germplasm adapted to diverse agro-ecological conditions, ranging from early to late maturity and from lowlands to highlands.

João Saraiva, from the Angolan seed company Jardins d’Ayoba, said having access to the most recent improved maize germplasm is helpful for his young seed company to develop quality seeds adapted to farmers’ needs. He is looking for solutions against fall armyworm, as the invasive species is thriving in the Angolan tropical environment. He was interested to hear about CIMMYT’s progress to identify promising maize lines resistant to the caterpillar. Since fall armyworm was first observed in Africa in 2016, CIMMYT has screened almost 1,200 inbred lines and 2,900 hybrids for tolerance to fall armyworm.

“Hopefully, we will be developing and releasing the first fall armyworm-tolerant hybrids by the first quarter of 2020,” announced B.M. Prasanna, director of CIMMYT’s Global Maize Programme and the CGIAR Research Program on Maize (MAIZE).

“Through continuous innovations to build varieties that perform well despite dry spells, heat waves or disease outbreak, maize scientists have been able to deliver significant yield increases each year across various environments,” explained Prasanna. “This genetic gain race is important to respond to growing grain demands despite growing climate risks and declining soil health.”

Berhanu Tadesse, maize breeder at the Ethiopian Institute for Agricultural Research (EIAR), was highly impressed by the disease-free, impeccable green maize plants at Embu station, remembering the spotted and crippled foliage during a visit more than a decade ago. This was “visual proof of constant progress,” he said.

For best results, smallholder farmers should use good agronomic practices to conserve water and soil health. KALRO agronomist Alfred Micheni demonstrated different tillage techniques during the field tour including the furrow ridge, which is adapted to semi-arid environments because it retains soil moisture.

Late maturity hybrid demonstration plot at Embu station. (Photo: Jérôme Bossuet/CIMMYT)

Innovations for a dynamic African seed sector

A vibrant local seed industry is needed for farmers to access improved varieties. Seed growers must be able to produce pure, high-quality seeds at competitive costs so they can flourish in business and reach many smallholder farmers.

Double haploid technology enables breeders to cut selection cycles from six to two, ultimately reducing costs by one third while ensuring a higher level of purity. Sixty percent of CIMMYT maize lines are now developed using double haploid technology, an approach also available to partners such as the Kenyan seed company Western Seeds.

The Seed Production Technology for Africa (SPTA) project, a collaboration between CIMMYT, KALRO, Corteva Agriscience and the Agricultural Research Council, is another innovation for seed companies enabling cheaper and higher quality maize hybrid production. Maize plants have both female and male pollen-producing flowers called tassels. To produce maize hybrids, breeders cross two distinct female and male parents. Seed growers usually break the tassels of female lines manually to avoid self-pollination. SPTA tested a male sterility gene in Kenya and South Africa, so that female parents did not produce pollen, avoiding a detasseling operation that damages the plant. It also saves labor and boosts seed yields. Initial trial data showed a 5 to 15% yield increase, improving the seed purity as well.

World-class research facilities to fight new and rapidly evolving diseases

The KALRO Naivasha research station has hosted the maize lethal necrosis (MLN) quarantine and screening facility since 2013. Implementing rigorous phytosanitary protocols in this confined site enables researchers to study the viral disease first observed in Africa 2011 in Bomet country, Kenya. Working with national research and plant health organizations across the region and the private sector, MLN has since been contained.

A bird’s eye view of the demonstration plots is the best testimony of the impact of MLN research. Green patches of MLN-resistant maize alternate with yellow, shrivelled plots. Commercial varieties are susceptible to the disease that can totally wipe out the crop, while new MLN-resistant hybrids yield five to six tons per hectare. Since the MLN outbreak in 2011, CIMMYT has released 19 MLN-tolerant hybrids with drought-tolerance and high-yielding traits as well.

Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)

A major challenge to achieving food security is to accelerate the varietal replacement on the market. CIMMYT scientists and partners have identified the lengthy and costly seed certification process as a major hurdle, especially in Kenya. The Principal Secretary of the State Department for Research in the Ministry of Agriculture, Livestock, and Fisheries, Hamadi Boga, pledged to take up this issue with the Kenya Plant and Health Inspectorate Service (KEPHIS).

“Such rapid impact is remarkable, but we cannot rest. We need more seed companies to pick up these new improved seeds, so that our research reaches the maximum number of smallholders,’’ concluded Prasanna.

What farmers want

Tabitha Kamau, 29, is scrutinizing a maize demonstration plot on which 12 different varieties were planted in November 2018. “What I am looking for is a maize variety that produces a lot, even when there is scarce rainfall,” says the single mother of three, who lives in Katheini, in Kenya’s Machakos County, on a quarter of an acre of land.

Together with 350 other smallholder farmers from Katheini and neighboring villages, Kamau is assessing the maize crops and ranking them based on her preferred traits.

Like her peers when asked what makes a good maize variety, she gives high scores to drought-tolerant varieties and those that can yield large and nicely filled cobs despite the dry spell that has affected the area over the last two months.

For five years, Kamau has been planting KDV4, a drought-tolerant open pollinated variety on the family land and another piece of leased plot. This early variety matures in 100 to 110 days and is adapted to dry mid-altitude conditions.

Tabitha Kamau examines drought-tolerant KDV4 maize in her plot in the village of Kavilinguni, Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)

KDV4 was released by the Kenya Agricultural & Livestock Research Organization (KALRO) using the International Maize and Wheat Improvement Center (CIMMYT)’s germplasm. It is currently marketed by Dryland Seed Limited and Freshco Seeds, targeting farmers in the water-stressed counties of Kitui, Machakos and Makueni, in the lower eastern regions of Kenya.

The early maturing of varieties like KDV4 presents a good opportunity for its adopters, says Kamau. “If I am able to harvest in three and a half months or less, compared to four months or more for other varieties, I can sell some grain to neighbors still awaiting their harvest who want to feed their families.”

“I heard of new varieties that can germinate well and produce lots of leaves,” explains Catherine Musembi. This farmer from Kivaani looks for maize that performs well even under heat and drought. She likes maize plants with high biomass, as the foliage is used to feed the family’s three cows and two goats.

An enumerator (left) collects a farmer’s details and socioeconomic data before she participates in the evaluation of maize varieties. (Photo: Joshua Masinde/CIMMYT)
An enumerator (left) collects a farmer’s details and socioeconomic data before she participates in the evaluation of maize varieties. (Photo: Joshua Masinde/CIMMYT)

Farmers’ picks

The International Maize and Wheat Improvement Center (CIMMYT) has been undertaking participatory maize variety evaluations since 2016 in Kenya, Rwanda, Tanzania and Uganda. Every year, during the main maize growing season, researchers plant on-farm trials that can be evaluated by farmers.

Kamau and Musembi attended a selection trial in Machakos County, facilitated by a team from KALRO on February 18-19, 2019. This exercise was part of the 2018 mid-season evaluations, which were followed up by end-season assessments a month later.

Participatory farmer evaluations are used to give crucial feedback to CIMMYT’s maize breeding work. First, farmers get an opportunity to state what traits are important for them and rank them according to their importance. Then, participants evaluate varieties planted in the trial and give a score on individual trait and the overall performance for each variety planted. And they conclude the exercise by rating the best three plots.

In the drier eastern part of Kenya, farmers might be more interested in traits such as drought tolerance, early maturity and disease resistance. In central Kenya, where dairy farming is commonly practiced, a variety with more biomass could be preferred.

“Our work is to tease out the information regarding which traits contribute to a good score in the overall score,” explains Bernard Munyua, a socioeconomics research assistant at CIMMYT. Statistical analysis of the farmers’ score cards will reveal if the initial rating of criteria plays a strong role in the final overall appreciation of a variety. For instance, farmers may give high importance to height or biomass, yet it may not play a role in their ranking of best varieties.

“Such data is important for maize breeders to support future variety improvement work,” Munyua notes. “Moreover, by disaggregating the farmers opinions by region and socioeconomic attributes such as gender, education and income, we can define the priority traits by region or farmers’ socioeconomic profiles. It helps better target maize breeding work according to the needs on the ground and gives useful knowledge to seed companies for their seed marketing strategy,” he adds.

For instance, in the drier eastern part of Kenya, farmers might be more interested in traits such as drought tolerance, early maturity and disease resistance. In central Kenya, where dairy farming is commonly practiced, a variety with more biomass could be preferred. In western Kenya, they could be more interested in grain yields and cob characteristics to improve their sales after harvest.

Agnes Nthambi (left) and other farmers evaluate maize varieties developed through CIMMYT’s Stress Tolerant Maize for Africa (STMA) project. (Photo: Joshua Masinde/CIMMYT)
Agnes Nthambi (left) and other farmers evaluate maize varieties developed through CIMMYT’s Stress Tolerant Maize for Africa (STMA) project. (Photo: Joshua Masinde/CIMMYT)

Agnes Nthambi, the farmer who hosted the demonstration plot, is very positive about her participation, as she learned about some of the ideal agronomic practices as well as the performance of new varieties. “On this trial, I learned that spacing was about two times shorter than we are generally used to. Even with the more constricted spacing, the maize has performed much better than what we are used to seeing,” she says. She also learned that fertilizer is applied at the time of planting. In her case, she normally applies fertilizer much later after germination has already occurred.

Nthambi says her family cannot afford losing both the fertilizer and the seed in case the rains fail. This time, she expects a good harvest from the one-acre farm, to supplement her family’s income.

Improved Maize for African Soils (IMAS)

African maize farmers must deal with drought, weeds, and pests, but their problems start with degraded, nutrient-starved soils and their inability to purchase enough nitrogen fertilizer. Maize yields of smallholder farmers in sub-Saharan Africa are a fraction of those in the developed world, due mainly to the region’s poor soils and farmers’ limited access to fertilizer or improved maize seed. On average, such farmers apply only 9 kilograms of fertilizer per hectare of cropland. Of that small amount, often less than half is captured by the crop; the rest is leached deep into the soil where plants cannot recover it or otherwise lost.

The Improved Maize for African Soils Project (IMAS) develops maize varieties that are better at capturing the small amount of fertilizer that African farmers can afford, and that use the nitrogen they take up more efficiently to produce grain. Project participants will use cutting-edge biotechnology tools such as molecular markers—DNA “signposts” for traits of interest—and transgenic approaches to develop varieties that ultimately yield 30 to 50 percent more than currently available varieties, with the same amount of nitrogen fertilizer applied or when grown on poorer soils.

The varieties developed will be made available royalty-free to seed companies that sell to the region’s smallholder farmers, meaning that the seed will become available to farmers at the same cost as other types of improved maize seed.

In four years or less, African farmers should have access to IMAS varieties developed using conventional breeding that offer a 20 percent yield advantage over current varieties. Improved varieties developed using DNA marker techniques are expected to be introduced within seven to nine years, and those containing transgenic traits are expected to be available in approximately 10 years, pending product performance and regulatory approvals by national regulatory and scientific authorities, according to the established laws and regulatory procedures in each country.

IMAS is being led by CIMMYT and funded with $19.5 million in grants from the Bill & Melinda Gates Foundation and the U.S. Agency for International Development. The project’s other partners — DuPont-PioneerKenya Agricultural Livestock and Research Organization and the Agricultural Research Council of South Africa — are also providing significant in-kind contributions including staff, infrastructure, seed, traits, technology, training, and know-how.

The second phase of IMAS continues to be implemented through the Seed Production Technology for Africa (SPTA) project.

OBJECTIVES

  • Conventional and marker assisted breeding to develop hybrids and OPVs with improved nitrogen use efficiency (NUE) adapted to southern and eastern Africa
  • Identification and deployment of native trait alleles to enhance yield under low nitrogen conditions through association mapping and Quantitative Trait Loci mapping
  • Development of transgenic maize varieties adapted to southern and eastern Africa with increased yield under severe nitrogen limitation
  • Managing NUE varieties for sustainability in African maize cropping systems
  • Project stewardship, public awareness and capacity building
  • NUE variety registration, release and dissemination in southern and eastern Africa

Maize Doubled Haploid Production Services

CIMMYT provides a maize doubled haploid (DH) production service at cost to maize breeding programs in Africa and Latin America at its DH facilities in Kenya and Mexico.

This service reduces the time required to develop homozygous maize lines to just over one year, instead of three to seven years using more traditional inbreeding methods. This technology also results in better-quality maize lines: DH maize lines are 100% homozygous, whereas traditional inbreeding generates lines with only approximately 99.2% homozygosity. These advantages help breeders increase their rate of genetic gain: the rate at which the genetic potential of a crop increases in yield over time.

CIMMYT established centralized DH line production facilities for Africa at KALRO-Kiboko, Kenya. A similar facility is also in operation for Latin America at CIMMYT’s experimental station in Agua Fría, Mexico. Public and private sector organizations involved in maize breeding can access the DH production service by signing a DH service agreement.

Seed Production Technology for Africa (SPTA)

The Seed Production Technology for Africa (SPTA) project is working to implement an advanced seed production system in Africa for the benefit of smallholder farmers in sub-Saharan Africa.

Hybrids are maize varieties in which the seed is produced by crossing two different parent lines, increasing the yield through heterosis. In hybrid maize seed production, the pollen-producing tassel must be removed on female parent plants to avoid self-pollination. If detasselling is not done in a timely and accurate way, pollen from the female plants can pollinate the ears, causing contamination and reduced seed quality. Currently, African seed production actors prevent self-fertilization during certified seed production by manual detasselling. This process requires considerable time and labor and reduces seed yield potential of the detasselled seed-bearing plants (female plants).

The Seed Production Technology for Africa (SPTA) project was launched to improve access for smallholders to high quality seed of modern maize varieties. The project targets small and medium seed production companies in the region to strengthen their capacity to produce high quality hybrid maize more efficiently, and at reduced cost. These modern hybrids will improve yield in drought prone and low fertility production conditions that are common among resource-constrained African smallholders, particularly those that are not able to access adequate fertilizers.

SPTA efforts will contribute to a more vibrant private seed sector by providing higher quality hybrid seed using a technology that fits well within existing production systems of small and medium enterprise seed companies. This will help to improve productivity gains for smallholder farmers and ease the burden on public funding for development.

The SPTA project originated from the Improved Maize for African Soils (IMAS) project that concluded in 2015. IMAS focused on developing maize hybrids that could use nitrogen fertilizer more efficiently to deliver higher yields under low fertility conditions.

How SPTA works

This project seeks to introduce a proprietary SPTA process that eliminates the detasselling step by utilizing a mutation in the naturally occurring maize gene – Ms44 – that aborts the development of microspores into pollen to create female parent plants that are male-sterile, eliminating the need to manually remove the pollen-producing tassels.

The cross-pollination between this female parent and the male parent is therefore more reliable, efficient, and cost effective. Importantly, whilst the SPTA process utilizes a transgenic maintainer line, no transgene will be present in the single cross production, three-way hybrid production, or the final hybrid seed, sold to farmers. The benefit of SPTA is that it works across genetic backgrounds, unlike cytoplasmic male sterility (CMS). An additional benefit of SPTA is hybrids produced using this technology yield 200 kg ha-1 more as a result of conserving resources for grain production.

Collaboration between Pioneer Hi-Bred International, Inc. (an affiliate of Corteva Agriscience) (Corteva), Agricultural Research Council of South Africa (ARC), Kenyan Agriculture and Livestock Research Organization (KALRO), Qualibasic Seed Company Limited (QBS) and CIMMYT

The SPTA project which is funded by the Bill & Melinda Gates Foundation originated from the Improved Maize for African Soils (IMAS) project that concluded in 2015, where the focus was on developing maize hybrids that could use nitrogen fertilizer more efficiently to deliver higher yields under low fertility conditions. The overall objectives of the project are to:

  • Improve the grain yield potential of stress tolerant maize hybrids in low fertility environments.
  • Develop a new hybrid production platform capable of producing sufficient early generation seed to support production of high-quality certified seed each year.
  • Simplify hybrid maize seed production in sub-Saharan Africa.

Objectives

  • Improve the grain yield potential of stress tolerant maize hybrids in low fertility environments.
  • Develop a new hybrid production platform capable of producing sufficient early generation seed to support production of high quality certified seed each year.
  • Reduce the production costs of seed partners in the sub-Saharan region.

The SPTA concept was confirmed suitable for tropical environments in Kenya, Zimbabwe, and South Africa in the first phase of the project (2017-2022). The current phase (2022-2024) is working towards licensing of the homozygous Ms44 seed to seed companies serving smallholder farmers in Africa. Eventually, the proprietary SPTA Maintainer Event and SPTA process will be licensed royalty-free by Corteva for further sublicensing in the production of SPTA Ms44 Maize in sub-Saharan Africa.

Ms44 and the SPTA Maintainer are introgressed into African-bred germplasm to produce male-sterile female parents (INP) suitable for low-nitrogen and drought environments in Africa. The commercial production of the INP will be carried out by QBS in South Africa after it has achieved full Excellence Through Stewardship (ETS) recognition and executed a royalty-free license agreement for the SPTA Maintainer Event with Corteva.

Seed companies will apply for release/registration and commercialize SPTA Ms44 maize only in sub-Saharan African countries that have acknowledged SPTA Ms44 maize as non-transgenic for the SPTA Maintainer Event. To produce and commercialize SPTA Ms44 maize, seed producers will have to access INP seeds from QBS and agree to implement all stewardship and management practices related to the use of SPTA Ms44 maize. Since the availability of SPTA Ms44 maize will be restricted this way, a percentage of its sales may be required to be paid into the FAO trust fund established by the Governing Body of the International Treaty on Plant Genetic Resources for Food and Agriculture.

 

Documents

SPTA project brief – Overview (updated November 2023)

SPTA project brief – Seed Production Technology for Africa: Efficient Seed Production Process for SMEs in Africa (updated November 2023)

SPTA project brief – Seed Production Technology for Africa: Modern and Pure Hybrids for African Farmers (updated November 2023)

A researcher holds two plants to show the pollen-producing (left) and non-pollen producing plants (right) at a research station in Embu, Kenya. (Photo: Hugo De Groote/CIMMYT)
A researcher holds two plants to show the pollen-producing (left) and non-pollen producing plants (right) at a research station in Embu, Kenya. (Photo: Hugo De Groote/CIMMYT)
Smallholder farmers evaluate Ms44 hybrids in Embu, Kenya. (Photo: Mike Ndegwa/CIMMYT)
Smallholder farmers evaluate Ms44 hybrids in Embu, Kenya. (Photo: Mike Ndegwa/CIMMYT)
Two smallholder farmers evaluate Ms44 hybrids during an on-farm evaluation in Embu, Kenya. (Photo: Hugo De Groote/CIMMYT)
Two smallholder farmers evaluate Ms44 hybrids during an on-farm evaluation in Embu, Kenya. (Photo: Hugo De Groote/CIMMYT)
Farmer Edma Shanguri holds a harvest of Ms44 hybrids from an on-farm trial in Murewa, Zimbabwe. (Photo: J. Cairns/CIMMYT)
Farmer Edma Shanguri holds a harvest of Ms44 hybrids from an on-farm trial in Murewa, Zimbabwe. (Photo: J. Cairns/CIMMYT)
Smallholder farmers evaluate Ms44 hybrids in Embu, Kenya. (Photo: Hugo De Groote/CIMMYT)
Smallholder farmers evaluate Ms44 hybrids in Embu, Kenya. (Photo: Hugo De Groote/CIMMYT)
A farmer holds a cob from a Ms44 hybrid during on-farm evaluations in Kakamega, Kenya. (Photo: Virginia Ndungu/KALRO)
A farmer holds a cob from a Ms44 hybrid during on-farm evaluations in Kakamega, Kenya. (Photo: Virginia Ndungu/KALRO)
Smallholder farmers remove kernels from cobs during an on-farm evaluation of Ms44 hybrids in Kakamega, Kenya. (Photo: Virginia Ndungu/KALRO)
Smallholder farmers remove kernels from cobs during an on-farm evaluation of Ms44 hybrids in Kakamega, Kenya. (Photo: Virginia Ndungu/KALRO)
A non-pollen-producing plant (on the left) on a farm trial in Zimbabwe. (Photo: Jill Cairns/CIMMYT)
A non-pollen-producing plant (on the left) on a farm trial in Zimbabwe. (Photo: Jill Cairns/CIMMYT)

Maize Lethal Necrosis Phenotyping Service

The CIMMYT-Kenya Agriculture and Livestock Research Organization (KALRO) Maize Lethal Necrosis (MLN) Screening Facility quarantine site is used to provide an MLN Phenotyping Service at cost to national agricultural research systems and seed companies in Africa.

KALRO and CIMMYT have been screening germplasm against MLN in Kenya since Nov 2012. The dedicated screening facility at KALRO Naivasha was established in 2013. This facility now represents a high quality phenotyping platform, permitting large-scale screening of germplasm from regional public and private partners.

To date, close to 90 percent of materials screened at Naivasha are susceptible under artificial inoculation. However, resistant and tolerant materials have been identified. Four first-generation MLN tolerant and resistant hybrids have been released in East Africa and a further 15-20 second generation hybrids are at advanced stages of testing.

Drought Tolerant Maize for Africa (DTMA)

The Drought Tolerant Maize for Africa project aims to mitigate drought and other constraints to maize production in sub-Saharan Africa, increasing maize yields by at least one ton per hectare under moderate drought and with a 20 to 30 percent increase over farmers’ current yields, benefiting up to 40 million people in 13 African countries. The project brings together farmers, research institutions, extension specialists, seed producers, farmer community organizations and non-governmental organizations. It is jointly implemented by CIMMYT and the International Institute for Tropical Agriculture, in close collaboration with national agricultural research systems in participating nations. Millions of farmers in the region are already benefiting from the outputs of this partnership, which includes support and training for African seed producers and promoting vibrant, competitive seed markets.

Achievements:

  • Between 2007 and 12, participants marketed or otherwise made available 60 drought tolerant hybrids and 57 open-pollinated varieties to smallholder farmers
  • In addition to drought tolerance, the new varieties and hybrids also possess such desirable traits as resistance to major diseases
  • Engage government officials in policy dialogue to help fast-track varietal releases and fosters competitive seed markets and more
    widespread access to quality seed at affordable prices
  • Help ensure farmers’ access to the best possible products and services, coordinate various capacity-building events and
    activities for maize breeders, technicians, seed producers, extension workers, non-government organizations and farmer groups
  • Provide technical and advisory support to 50 African undergraduate and 28 African graduate students
  • Expand smallholder farmers’ use of drought and other stress tolerant maize seed to benefit 30 to 40 million people and provide added grain worth $160-200 million each year in drought-affected areas of sub-Saharan Africa

Principal coordinator

Tsedeke Abate