Skip to main content

funder_partner: International Wheat Improvement Network (IWIN)

The International Wheat Improvement Network (IWIN), which involves hundreds of partners and testing sites worldwide, is coordinated by the International Maize and Wheat Improvement Center (CIMMYT). The IWIN has underpinned increases in wheat productivity in the developing world ever since the Green Revolution, and currently develops and disseminates approximately 1,000 new wheat lines each year, with well documented up-to-date genetic gains . In addition, IWIN germplasm is sought after by public and private entities in the developed world, where its impacts are also well documented.

The race against time to breed a wheat to survive the climate crisis

CIMMYT scientists are using biodiversity, testing forgotten wheat varieties from across the world, to find those with heat- and drought-tolerant traits. The aim is to outpace human-made global heating and breed climate-resilient varieties so yields do not collapse, as worst-case scenarios predict.

Reporter visited CIMMYT’s experimental station in Ciudad Obregon, in Mexico’s Sonora state, and witnessed CIMMYT’s unique role in fighting climate change through the development of resilient varieties as “international public goods”.

Read more: https://www.theguardian.com/environment/2022/jun/12/wheat-breeding-climate-crisis-drought-resistant

Climate change slows wheat breeding progress for yield and wide adaptation, new study finds

Nearly four decades of repeated crossing and selection for heat and drought tolerance have greatly improved the climate resilience of modern wheat varieties, according to new research emerging from a cross-continental science collaboration.

At the same time, climate change has likely slowed breeding progress for high-yielding, broadly adapted wheat, according to the new study, published recently in Nature Plants.

“Breeders are usually optimistic, overlooking many climate change factors when selecting,” said Matthew Reynolds, wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT) and co-author of the publication. “Our findings undermine this optimism and show that the amplified interaction of wheat lines with the environment due to climate change has made it harder for breeders to identify outstanding, broadly adapted lines.”

What do 10 million data points tell scientists?

Each year for nearly half a century, wheat breeders taking part in the CIMMYT-led International Wheat Improvement Network (IWIN) have tested approximately 1,000 new, experimental wheat lines and varieties at some 700 field sites in over 90 countries.

Promising lines are taken up by wheat breeding programs worldwide, while data from the trials is used to guide global breeding and other critical wheat research, explained Wei Xiong, CIMMYT crop modeler/physiologist based in China and lead author of the new paper.

“To date, this global testing network has collected over 10 million data points, while delivering wheat germplasm estimated to be worth several billion dollars annually in extra productivity to hundreds of millions of farmers in less developed countries,” Xiong said.

Xiong and his colleagues analyzed “crossover interactions” — changes in the relative rankings of pairs of wheat lines — in 38 years of data from four kinds of wheat breeding trials, looking for the extent to which climate change or breeding progress have flipped those rankings. Two of the trials whose data they examined focused on yield in bread wheat and durum wheat, while the other two assessed wheat lines’ performance under high temperatures and in semi-arid environments, respectively.

In addition to raising yields, wheat breeders are endowing the crop with added resilience for rising temperatures.

“We found that warmer and more erratic climates since the 1980s have increased ranking changes in global wheat breeding by as much as 15 percent,” Xiong said. “This has made it harder for breeders to identify superior, broadly adapted lines and even led to scientists discarding potentially useful lines.”

Conversely, wheat cultivars emerging from breeding for tolerance to environmental stresses, particularly heat, are showing substantially more stable yields across a range of environments and fostering wheat’s adaptation to current, warmer climates, while opening opportunities for larger and faster genetic gains in the future, according to the study.

Past research has shown that modern wheat varieties not only increase maximum yields but also guarantee more reliable yields, a benefit that adds millions of dollars each year to farm income in developing countries and greatly reduces farmers’ risk.

“Among other things, our findings argue for more targeted wheat breeding and testing to address rapidly shifting and unpredictable farming conditions,” Reynolds added.

Read the full study:
Increased ranking change in wheat breeding under climate change

Cover photo: Wheat fields at CIMMYT’s experimental station in Ciudad Obregón, Sonora state, Mexico. Photo: M. Ellis/CIMMYT.

Scientists bridge theory and practice to boost climate resilience in wheat

With the past decade identified as the warmest on record and global temperatures predicted to rise by as much as 2 degrees Celsius over preindustrial levels by 2050, the world’s staple food crops are increasingly under threat.

A new review published this month in the Journal of Experimental Botany describes how researchers from the International Maize and Wheat Improvement Center (CIMMYT) and collaborators are boosting climate resilience in wheat using powerful remote sensing tools, genomics and big data analysis. Scientists are combining multiple approaches to explore untapped diversity among wheat genetic resources and help select better parents and progeny in breeding.

The review — authored by a team of 25 scientists from CIMMYT, Henan Agricultural University, the University of Adelaide and the Wheat Initiative — also outlines how this research can be harnessed on a global level to further accelerate climate resilience in staple crops.

“An advantage of understanding abiotic stress at the level of plant physiology is that many of the same tools and methods can be applied across a range of crops that face similar problems,” said first author and CIMMYT wheat physiologist Matthew Reynolds.

Abiotic stresses such as temperature extremes and drought can have devastating impacts on plant growth and yields, posing a massive risk to food security.

Harnessing research across a global wheat improvement network for climate resilience: research gaps, interactive goals, and outcomes.
Harnessing research across a global wheat improvement network for climate resilience: research gaps, interactive goals, and outcomes.

Addressing research gaps

The authors identified nine key research gaps in efforts to boost climate resilience in wheat, including limited genetic diversity for climate resilience, a need for smarter strategies for stacking traits and addressing the bottleneck between basic plant research and its application in breeding.

Based on a combination of the latest research advances and tried-and-tested breeding methods, the scientists are developing strategies to address these gaps. These include:

  • Using big data analysis to better understand stress profiles in target environments and design wheat lines with appropriate heat and drought adaptive traits.
  • Exploring wheat genetic resources for discovery of novel traits and genes and their use in breeding.
  • Accelerating genetic gains through selection techniques that combine phenomics with genomics.
  • Crowd-sourcing new ideas and technologies from academia and testing them in real-life breeding situations.

These strategies will be thoroughly tested at the Heat and Drought Wheat Improvement Network (HeDWIC) Hub under realistic breeding conditions and then disseminated to other wheat breeding programs around the world facing similar challenges.

One factor that strongly influences the success and acceleration of climate resilience technologies, according to Reynolds, is the gap between theoretical discovery research and crop improvement in the field.

“Many great ideas on how to improve climate-resilience of crops pile up in the literature, but often remain ‘on the shelf’ because the research space between theory and practice falls between the radar of academia on the one hand, and that of plant breeders on the other,” Reynolds explained.

Translational research — efforts to convert basic research knowledge about plants into practical applications in crop improvement — represents a necessary link between the world of fundamental discovery and farmers’ fields and aims to bridge this gap.

Main research steps involved in translating promising technologies into genetic gains (graphical abstract, adapted from Reynolds and Langridge, 2016). Reprinted under licence CC BY-NC-ND.
Main research steps involved in translating promising technologies into genetic gains (graphical abstract, adapted from Reynolds and Langridge, 2016). Reprinted under licence CC BY-NC-ND.

The impacts of this research, conducted under HeDWIC — a project led by CIMMYT in partnership with experts around the world — will be validated on a global scale through the International Wheat Improvement Network (IWIN), with the potential to reach at least half of the world’s wheat-growing area.

The results will benefit breeders and researchers but, most importantly, farmers and consumers around the world who rely on wheat for their livelihoods and their diets. Wheat accounts for about 20% of all human calories and protein, making it a pillar of food security. For about 1.5 billion resource-poor people, wheat is their main daily staple food.

With the world population projected to rise to almost ten billion by 2050, demand for food is predicted to increase with it. This is especially so for wheat, being a versatile crop both in terms of where it can grow and its many culinary and industrial uses. However, current wheat yield gains will not meet 2050 demand unless serious action is taken. Translational research and strategic breeding are crucial elements in ensuring that research is translated into higher and stable yields to meet these challenges.

Read the full study:
Harnessing translational research in wheat for climate resilience

Cover photo: Wheat fields at CIMMYT’s experimental stations near Ciudad ObregĂłn, Sonora state, Mexico. (Photo: M. Ellis/CIMMYT)

Heat and Drought Wheat Improvement Consortium (HeDWIC)

The Heat and Drought Wheat Improvement Consortium (HeDWIC) is a global research and capacity building network that takes wheat research from the theoretical to the practical by incorporating the best science into real-life breeding scenarios.

By harnessing the latest technologies in crop physiology, genetics and breeding, HeDWIC makes it easier for wheat scientists to work together on solutions to the complex problems of heat and drought adaptation, contributing to the development of new, climate-resilient wheat varieties for farmers. HeDWIC-associated scientists examine current breeding material and collections held in germplasm banks and apply genomic and phenomic tools to identify novel diversity for heat, drought adaptative traits. This results in novel pre-bred lines in terms of genetic diversity for key stress-adaptive traits suitable for use in breeding programs and/or re-selection as cultivars.

The consortium delivers these lines to public and private wheat programs worldwide via the International Wheat Improvement Network (IWIN) — coordinated for more than half a century by the International Maize and Wheat Improvement Center (CIMMYT) — as international public goods whose global impacts are well documented. Through PhD sponsorships and other opportunities for involvement in research, HeDWIC also provides hands-on training to young scientists, preparing a new generation of crop experts to tackle the pressing issues of crop adaptation under future climate scenarios.

HeDWIC adds value to developing more climate-resilient wheat varieties by:

  • Facilitating global coordination of wheat research related to heat and drought stress in partnership with the Wheat Initiative.
  • Developing research and breeding technologies in response to the priorities of stakeholders: researchers, breeders, farmers, seed companies, national programs, and funding organizations.
  • Connecting geographically and agro-climatically diverse sites for rigorous testing of promising concepts.
  • Curating data resources for use by the global wheat research community.
  • Accelerating the deployment of new knowledge and strategies for developing more climate resilient wheat.
  • Preparing a new generation of promising young scientists from climate-affected regions to tackle crop improvement challenges faced by their own countries.
  • Building additional scientific capacity of wheat researchers in a coordinated fashion that enables a faster response to productivity threats associated with climate change.
  • Enabling farmers to adapt to wheat production in a hotter and drier climate faster due to the coordinated effort and synergy lent by HeDWIC.

HeDWIC is directly funded by the Foundation for Food and Agriculture Research (FFAR) and is supported by in-kind contributions from IWIN, the Bill & Melinda Gates Foundation/UK Foreign, Commonwealth and Development Office (FCDO)-funded Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project, the CGIAR Research Program on Wheat (WHEAT), the International Wheat Yield Partnership, the Wheat Initiative’s AHEAD, and many international partners who support research and capacity building activities through ongoing collaboration.

It also builds on decades of breeding and collaborative research under abiotic stress coordinated by CIMMYT, with support from agencies including Mexico’s Secretariat of Agriculture and Rural Development (SADER), the CGIAR Trust Fund —in particular the Australian Centre for International Agricultural Research (ACIAR), the UK Foreign, Commonwealth and Development Office (FCDO), and the US Agency for International Development (USAID) — Australia’s Grains Research Development Corporation (GRDC), Germany’s Ministry of Agriculture (BMEL), the Bill & Melinda Gates Foundation, the US Department of Agriculture (USDA), and others.

FFAR grant develops climate-resilient wheat

Durum wheat drought tolerance trials in Ciudad Obregon, Mexico, 2017. (Photo: Alfonso Cortés/CIMMYT)
Durum wheat drought tolerance trials in Ciudad Obregon, Mexico, 2017. (Photo: Alfonso Cortés/CIMMYT)

Wheat constitutes 20% of all calories and protein consumed, making it a cornerstone of the human diet, according to the United Nations. However, hotter and drier weather, driven by a changing climate, threatens the global wheat supply. To address this threat, the Foundation for Food and Agriculture Research (FFAR) awarded a $5 million grant to the International Maize and Wheat Improvement Center (CIMMYT) to develop climate-resilient wheat. CIMMYT leads global research programs on maize and wheat, sustainable cropping systems and policies to improve farmers’ livelihoods. These activities have driven major gains in wheat variety improvement across the globe for decades; in the US alone, for example, over 50% of the wheat acreage is sown with CIMMYT-related varieties.

Wheat is among the most widely grown cereal crops in the world and the third-largest crop grown in the US by acre. Nearly all US wheat crops are improved and supported by public agriculture research. As most wheat in the US is dependent on rainfall and has no access to irrigation, this research is critical for helping the plants — and producers — weather climatic changes including extreme heat and drought. Additionally, the demand for wheat is expected to rise in the coming years — as much as 60% by 2050. Without public research, wheat production could decrease by nearly 30% over the same period due to extreme climate conditions.

“FFAR leverages public agriculture research funding through public-private partnerships to pioneer actionable research. With temperatures on the rise and water becoming scarcer, we are committed to supporting wheat farmers and providing new wheat varieties designed with future environmental challenges in mind,” said FFAR’s Executive Director Sally Rockey.

Using the FFAR grant, CIMMYT researchers are pioneering wheat breeding technologies to produce heat-tolerant, drought-resistant and climate-resilient wheat.

CIMMYT researchers and collaborators are applying cutting-edge approaches in genomics, remote sensing and big data analysis to develop new breeding technologies. A key intervention will explore the vast and underutilized reserve of wheat genetic resources to fortify the crop against current and future climate-related stresses.

“This project will help bridge a longstanding gap between state-of-the-art technological findings and crop improvement to deliver climate resilient wheat to farmers as quickly as possible,” said Matthew Reynolds, head of Wheat Physiology at CIMMYT and principal investigator of the project.

Breakthroughs from the FFAR funded project will achieve impact for growers via the International Wheat Improvement Network (IWIN) that supplies new wheat lines to public and private breeding programs worldwide, and has boosted productivity and livelihoods for wheat farmers for over half a century, especially in the Global South.

The research and breeding supported by FFAR will be conducted under the Heat and Drought Wheat Improvement Consortium (HeDWIC), a project led by CIMMYT in partnership with experts across the globe, designed to ensure wheat’s long-term climate resilience. Under the umbrella of the Wheat Initiative’s AHEAD unit, the most relevant advances in academia will be channeled to HeDWIC to help further boost impacts.

“‘Heat,’ ‘drought’ and ‘wheat’ are three of the most important words for billions of people,” said CIMMYT Interim Deputy Director for Research Kevin Pixley. “This partnership between CIMMYT and FFAR will help ensure that the best agricultural science is applied to sustainably raise production of one of the world’s most important staple crops, despite unprecedented challenges.”

CIMMYT Director General Martin Kropff said, “This project represents not only a breakthrough to develop wheat for the future, but also an emerging partnership between CIMMYT and FFAR. I look forward to a productive collaboration that will move us all closer to our mission of maize and wheat science for improved livelihoods.”

FFAR’s investment was matched by co-investments from the CGIAR Research Program on Wheat (WHEAT) and Accelerating Genetic Gains for Maize and Wheat (AGG), a project which is jointly funded by  the Bill & Melinda Gates Foundation and the UK Foreign, Commonwealth, and Development Office (FCDO).


FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT:

Marcia MacNeil, Communications Officer, CGIAR Research Program on Wheat, CIMMYT. +52 5951148943, m.macneil@cgiar.org

Brian Oakes, FFAR. +1 202-604-5756, boakes@foundationfar.org

About the Foundation for Food & Agriculture Research

The Foundation for Food & Agriculture Research (FFAR) builds public-private partnerships to fund bold research addressing big food and agriculture challenges. FFAR was established in the 2014 Farm Bill to increase public agriculture research investments, fill knowledge gaps and complement USDA’s research agenda. FFAR’s model matches federal funding from Congress with private funding, delivering a powerful return on taxpayer investment. Through collaboration and partnerships, FFAR advances actionable science benefiting farmers, consumers and the environment.

Connect: @FoundationFAR | @RockTalking

About CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies.

For more information, visit staging.cimmyt.org

Bottlenecks between basic and applied plant science jeopardize life-saving crop improvements

Visitors at CIMMYT’s experimental station in Obregon, Mexico, where elite wheat lines are tested for new traits.
Visitors at CIMMYT’s experimental station in Obregon, Mexico, where elite wheat lines are tested for new traits.

For a number of reasons, including limited interdisciplinary collaboration and a dearth of funding, revolutionary new plant research findings are not being used to improve crops.

“Translational research” — efforts to convert basic research knowledge about plants into practical applications in crop improvement — represents a necessary link between the world of fundamental discovery and farmers’ fields. This kind of research is often seen as more complicated and time consuming than basic research and less sexy than working at the “cutting edge” where research is typically divorced from agricultural realities in order to achieve faster and cleaner results; however, modern tools — such as genomics, marker-assisted breeding, high throughput phenotyping of crop traits using drones, and speed breeding techniques — are making it both faster and cost-effective.

In a new article in Crop Breeding, Genetics, and Genomics, wheat physiologist Matthew Reynolds of the International Maize and Wheat Improvement Center (CIMMYT) and co-authors make the case for increasing not only funding for translational research, but the underlying prerequisites: international and interdisciplinary collaboration towards focused objectives and a visionary approach by funding organizations.

“It’s ironic,” said Reynolds. “Many breeding programs have invested in the exact technologies — such as phenomics, genomics and informatics — that can be powerful tools for translational research to make real improvements in yield and adaptation to climate, disease and pest stresses. But funding to integrate these tools in front-line breeding is quite scarce, so they aren’t reaching their potential value for crop improvement.”

Members of the International Wheat Yield Partnership (IWYP) which focuses on translational research to boost wheat yields.
Members of the International Wheat Yield Partnership (IWYP) which focuses on translational research to boost wheat yields.

Many research findings are tested for their implications for wheat improvement by the International Wheat Yield Partnership (IWYP) at the IWYP Hub, a centralized technical platform for evaluating innovations and building them into elite wheat varieties, co-managed by CIMMYT at its experimental station in Obregon, Mexico.

IWYP has its roots with the CGIAR Research Program on Wheat (WHEAT), which in 2010 formalized the need to boost both wheat yield potential as well as its adaptation to heat and drought stress. The network specializes in translational research, harnessing scientific findings from around the world to boost genetic gains in wheat, and capitalizing on the research and pre-breeding outputs of WHEAT and the testing networks of the International Wheat Improvement Network (IWIN). These efforts also led to the establishment of the Heat and Drought Wheat Improvement Consortium (HeDWIC).

“We’ve made extraordinary advances in understanding the genetic basis of important traits,“ said IWYP’s Richard Flavell, a co-author of the article. “But if they aren’t translated into crop production, their societal value is lost.”

The authors, all of whom have proven track records in both science and practical crop improvement, offer examples where exactly this combination of factors led to the impactful application of innovative research findings.

  • Improving the Vitamin A content of maize: A variety of maize with high Vitamin A content has the potential to reduce a deficiency that can cause blindness and a compromised immune system. This development happened as a result of many translational research efforts, including marker-assisted selection for a favorable allele, using DNA extracted from seed of numerous segregating breeding crosses prior to planting, and even findings from gerbil, piglet and chicken models — as well as long-term, community-based, placebo-controlled trials with children — that helped establish that Vitamin A maize is bioavailable and bioefficacious.
  • Flood-tolerant rice: Weather variability due to climate change effects is predicted to include both droughts and floods. Developing rice varieties that can withstand submergence in water due to flooding is an important outcome of translational research which has resulted in important gains for rice agriculture. In this case, the genetic trait for flood tolerance was recognized, but it took a long time to incorporate the trait into elite germplasm breeding programs. In fact, the development of flooding tolerant rice based on a specific SUB 1A allele took over 50 years at the International Rice Research Institute in the Philippines (1960–2010), together with expert molecular analyses by others. The translation program to achieve efficient incorporation into elite high yielding cultivars also required detailed research using molecular marker technologies that were not available at the time when trait introgression started.

Other successes include new approaches for improving the yield potential of spring wheat and the discovery of traits that increase the climate resilience of maize and sorghum.

One way researchers apply academic research to field impact is through phenotyping. Involving the use of cutting edge technologies and tools to measure detailed and hard to recognize plant traits, this area of research has undergone a revolution in the past decade, thanks to more affordable digital measuring tools such as cameras and sensors and more powerful and accessible computing power and accessibility.

Scientists are now able to identify at a detailed scale plant traits that show how efficiently a plant is using the sun’s radiation for growth, how deep its roots are growing to collect water, and more — helping breeders select the best lines to cross and develop.

An Australian pine at CIMMYT’s experimental station in Texoco, Mexico, commemorates the 4th symposium of the International Plant Phenotyping Network.
An Australian pine at CIMMYT’s experimental station in Texoco, Mexico, commemorates the 4th symposium of the International Plant Phenotyping Network.

Phenotyping is key to understanding the physiological and genetic bases of plant growth and adaptation and has wide application in crop improvement programs. Recording trait data through sophisticated non-invasive imaging, spectroscopy, image analysis, robotics, high-performance computing facilities and phenomics databases allows scientists to collect information about traits such as plant development, architecture, plant photosynthesis, growth or biomass productivity from hundreds to thousands of plants in a single day. This revolution was the subject of discussion at a 2016 gathering of more than 200 participants at the International Plant Phenotyping Symposium hosted by CIMMYT in Mexico and documented in a special issue of Plant Science.

There is currently an explosion in plant science. Scientists have uncovered the genetic basis of many traits, identified genetic markers to track them and developed ways to measure them in breeding programs. But most of these new findings and ideas have yet to be tested and used in breeding programs, wasting their potentially enormous societal value.

Establishing systems for generating and testing new hypotheses in agriculturally relevant systems must become a priority, Reynolds states in the article. However, for success, this will require interdisciplinary, and often international, collaboration to enable established breeding programs to retool. Most importantly, scientists and funding organizations alike must factor in the long-term benefits as well as the risks of not taking timely action. Translating a research finding into an improved crop that can save lives takes time and commitment. With these two prerequisites, basic plant research can and should positively impact food security.

Authors would like to acknowledge the following funding organizations for their commitment to translational research.

The International Wheat Yield Partnership (IWYP) is supported by the Biotechnology and Biological Sciences Research Council (BBSRC) in the UK; the U. S. Agency for International Development (USAID) in the USA; and the Syngenta Foundation for Sustainable Agriculture (SFSA) in Switzerland.

The Heat and Drought Wheat Improvement Consortium (HeDWIC) is supported by the Sustainable Modernization of Traditional Agriculture (MasAgro) Project by the Ministry of Agriculture and Rural Development (SADER) of the Government of Mexico; previous projects that underpinned HeDWIC were supported by Australia’s Grains Research and Development Corporation (GRDC).

The Queensland Government’s Department of Agriculture and Fisheries in collaboration with The Grains Research and Development Corporation (GRDC) have provided long-term investment for the public sector sorghum pre-breeding program in Australia, including research on the stay-green trait. More recently, this translational research has been led by the Queensland Alliance for Agriculture and Food Innovation (QAAFI) within The University of Queensland.

ASI validation work and ASI translation and extension components with support from the United Nations Development Programme (UNDP) and the Bill and Melinda Gates Foundation, respectively.

Financial support for the maize proVA work was partially provided by HarvestPlus (www.HarvestPlus.org), a global alliance of agriculture and nutrition research institutions working to increase the micronutrient density of staple food crops through biofortification. The CGIAR Research Program MAIZE (CRP-MAIZE) also supported this research.

The CGIAR Research Program on Wheat (WHEAT) is led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Center for Agricultural Research in the Dry Areas (ICARDA) as a primary research partner. Funding comes from CGIAR, national governments, foundations, development banks and other agencies, including the Australian Centre for International Agricultural Research (ACIAR), the UK Department for International Development (DFID) and the United States Agency for International Development (USAID).

Governments must raise, not cut, funding for food security

A Financial Times editorial by CIMMYT wheat physiologist Matthew Reynolds presents a new proposal for expanding the wheat network to include other major food crops and speed farmers’ adoption of vital technologies that can end hunger and address climate change. The idea has the support of experts from leading funding and development agencies.

https://www.ft.com/content/b3d07616-c3d3-11e7-a1d2-6786f39ef675

 

A network for future-proof foods to combat hunger, conflict and migration

CIMMYT wheat physiologist Matthew Reynolds presents a new proposal for expanding the wheat network to include other major food crops and speed farmers’ adoption of vital technologies. Photo: CIMMYT archives.
CIMMYT wheat physiologist Matthew Reynolds presents a new proposal for expanding the wheat network to include other major food crops and speed farmers’ adoption of vital technologies. Photo: CIMMYT archives.

A little-known global research network founded 50 years ago and supported by diverse funders — including the United States, the United Kingdom, and Australia — has helped keep the daily bread of over 2.5 billion resource-poor consumers from disappearing under the onslaught of rising temperatures and virulent new crop disease strains, to mention a few threats. Nowadays, the International Wheat Improvement Network (IWIN) shares and tests as many as 1,000 breeding lines yearly at 700 field stations representing the world’s 12 major wheat-growing environments.

Now, a Financial Times editorial by CIMMYT wheat physiologist Matthew Reynolds presents a new proposal for expanding the wheat network to include other major food crops and speed farmers’ adoption of vital technologies that can end hunger and address climate change. The idea has the support of experts from leading funding and development agencies.

Click here to read the editorial on the Financial Times website.

Click here to download a PDF version of the editorial.

Global wheat community discusses research, partnerships at Obregon pilgrimage

Scientist Sukhwinder Singh (L) hosts a discussion in the wheat fields at the CIMMYT research station in Obregon, Mexico. CIMMYT/Julie Mollins
Scientist Sukhwinder Singh (L) hosts a discussion in the wheat fields at the CIMMYT research station in Obregon, Mexico. CIMMYT/Julie Mollins

OBREGON, Mexico (CIMMYT) — For  hundreds of international agricultural development experts, an annual gathering in northern Mexico provides a vital platform for sharing and debating the latest wheat breeding news and research.

This year, more than 200 members of the wheat community from more than 30 countries met in the legendary wheat fields of Ciudad Obregon in Mexico’s state of Sonora to participate in Visitors’ Week, hosted by the Global Wheat Program (GWP) of the International Maize and Wheat Improvement Center (CIMMYT).

The event coincides with the birthday of Norman Borlaug, the late CIMMYT wheat breeder and Nobel Peace Prize laureate, known as the father of the Green Revolution for his contributions to global food security, many of which were undertaken in Obregon. This year, Visitors’ Week delegates toasted  his 102nd birthday at the Norman E. Borlaug Experimental Field research station.

The month of March also marks the peak wheat-growing season in Obregon, and participants attended a field day tour to see old and new wheat varieties, learn about CIMMYT programs and the latest research findings. Additionally, meetings and discussions were held with the goal of contributing to the improvement of wheat research across the globe by identifying key priorities.

INTERNATIONAL DIALOGUES

A brainstorming session between representatives from the British government and CIMMYT included discussions on collaborating on breeding for tolerance to high ambient temperatures, durable disease resistance, nitrogen use efficiency, and quality and nutrition.

Future collaborations between CIMMYT and Australia were explored with the Grains Research and Development Corporation and the CIMMYT-Australia-ICARDA Germplasm Exchange (CAIGE) group. 2Blades, a U.S.-based organization supporting the development of durable disease resistance in crop plants, joined the discussion and expressed the need to use safe, sustainable crop production strategies.

As part of discussions regarding international collaboration, the second meeting of the Expert Working Group on Nutrient Use Efficiency in wheat aimed to improve international coordination on NUE (nitrogen and other nutrients) research among Australia, Britain, France, Mexico, Italy, Spain and Germany.

During the NUE meeting, an executive committee was appointed, with Malcolm Hawksford, head of Plant Biology and Crop Science at Rothamsted Research as chair and Jacques Le Gouis, of the French National Institute for Agricultural Research, as vice chair.

As well, the International Wheat Yield Partnership (IWYP) held its first official conference during which IWYP director Jeff Gwyn discussed outcomes and objectives for the next 20 years.

Due to the large audience of global wheat researchers, the Borlaug Global Rust Initiative took the opportunity to launch its new project, Delivering Genetic Gain in Wheat (DGGW), supported by a $24 million grant from the Bill & Melinda Gates Foundation. Under the DGGW, CIMMYT scientists aim to mitigate serious threats to wheat brought about by climate change by developing and deploying new heat-tolerant, disease-resistant wheat varieties.

ENCOURAGING ENGAGEMENT

With the hope of increasing data and information sharing, the International Wheat Improvement Network (IWIN) awarded Mehmet Nazım Dincer of Turkey the IWIN Cooperator Award for contributing data on international nurseries. Through a lottery, Dincer was selected from among researchers who provided data on international seed nurseries to IWIN in 2015. Dincer was awarded a one-week paid visit to ObregĂłn during GWP Visitors’ Week, and was also congratulated for his collaborative efforts during the festivities.

Another lottery will be held in November to select the next winner from among cooperators who return 2016 international nursery data. GWP director Hans Braun joked that he is not aware of other lotteries with so few participants in which the jackpot is a trip to Obregon, encouraging  IWIN cooperators to return their data and win.

Visitors’ Week is not only an important time for international collaborations and brainstorming, but also for capacity development and training early career scientists. Coinciding with this year’s Visitors’ Week was the GWP Basic Wheat Improvement Course (BWIC), a three-month training course for young and mid-career scientists focusing on applied breeding techniques in the field. In addition to attending Visitors’ Week events, trainees were offered special courses with guest lecturers.

Joining the BWIC at this time were winners of the 2016 Women in Triticum Award who alongside women trainees attended a “Women in Agriculture” discussion led by Jeannie Borlaug, daughter of Norman Borlaug, to discuss difficulties and successes women face in achieving equality in the science and agriculture sectors.