Skip to main content

funder_partner: India's Ministry of Agriculture and Farmers Welfare

Cereal Systems Initiative for South Asia (CSISA) project enters Phase 4.0

CSISA India core team discuss deliverables for CSISA Phase 4 at the planning meeting held in Vizag, India, in November 2021. (Credit: Wasim Iftikar/CIMMYT)

The eastern Indo-Gangetic plains (EIGP) have a higher density of rural poverty and food insecurity than any other region. The region’s intensive rice-wheat cropping system has large yield gaps, which are far higher than anywhere in South Asia, coupled with an increasing environmental footprint due to conventional agricultural practices.

To sustainably enhance cereal crop productivity and improve smallholder farmers’ livelihoods in Bangladesh, India, and Nepal, the Cereal Systems Initiative for South Asia (CSISA), a science-driven and impacts-oriented regional project led by the International Maize and Wheat Improvement Center (CIMMYT), was launched in 2009.

Over the years, working with public and private partners, CSISA has helped smallholder farmers increase their yield and supported widespread adoption of resource-conserving and climate-resilient farming technologies and practices. Through three phases from 2009 to 2021, the project impacted nearly 8.5 million farmers (mainly smallholders) through its research and agri-system innovation interventions.

A new three-and-a-half-year commitment in India by the Bill & Melinda Gates Foundation reinforces the project’s importance and value in reducing food insecurity and improving overall agri-food systems in the region.

“CSISA, over more than a decade, has built up a strong multi-institutional, interactive, and participatory team at all levels in the region,” said Peter Craufurd, project leader of CSISA in India. “It has developed competencies and skills that include problem-solving agronomy research, cross-cutting tools and analytics, policy reform, and capacity development to strengthen cropping systems for smallholder farmers in the region.”

Overview of CSISA Project investments with direct and indirect programs under each phase since its launch in 2009. (Credit: Timothy Krupnik/CIMMYT)

The overarching objective of CSISA 4.0 is to transform how agronomic research and extension are implemented and embedded in decision-making and policy processes, primarily in India, where CSISA has the most experience and influence. Phase 4.0 will leverage the investments made in India in the third phase and focus on institutionalizing interventions through partnerships with the national and state agricultural systems, including on-ground strategic partnerships with civil society and the private sectors. According to Craufurd, Phase 4.0 will further strengthen the pathways established and scale the impact, particularly the institutional research and development capacity and strategic partnerships thus far established in India, through its seven focussed work areas, including gender empowerment.

“We are confident of our strong partnership with the national systems led by the Indian Council of Agricultural Research (ICAR) to support Indian farmers with improved yield and productivity,” said R.K. Malik, CSISA India coordinator. “Over the last decade, CSISA has built a strong track record for agronomy at scale that can help transform agri-research delivery systems in the region. There is also the opportunity to make CSISA outputs and products portable or useable for other stakeholders addressing food insecurity in the region in the future.”

Implemented jointly with CGIAR partners the International Rice Research Institute (IRRI) and the International Food Policy Research Institute (IFPRI), the initiative has been a successful regional approach to impactful agronomy programming. The CSISA team hopes to continue supporting the smallholder farmers in the region to optimize yield and contribute to the region’s food security.

Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems

Among the inputs needed for a healthy soil, nitrogen is unique because it originates from the atmosphere. How it moves from the air to the ground is governed in part by a process called biological nitrogen fixation (BNF), which is catalyzed by specific types of bacteria.

Nitrogen supply is frequently the second most limiting factor after water availability constraining crop growth and so there is great farmer demand for accessible sources of nitrogen, such as synthetic nitrogen in fertilizer. This increasing demand has continued as new cereal varieties with higher genetic yield potential are being released in efforts to feed the world’s growing population.

Currently, the primary source for nitrogen is synthetic, delivered through fertilizers. Synthetic nitrogen revolutionized cereal crop (e.g., wheat, maize, and rice) production by enhancing growth and grain yield as it eliminated the need to specifically allocate land for soil fertility rejuvenation during crop rotation. However, synthetic nitrogen is not very efficient, often causing excess application, which leads to deleterious forms, including ammonia, nitrate, and nitrogen oxides escaping into the surrounding ecosystem, resulting in a myriad of negative impacts on the environment and human health. Nitrogen loss from fertilizer is responsible for a nearly 20% increase in atmospheric nitrous oxide since the industrial revolution. Notably, more nitrogen from human activities, including agriculture, has been released to the environment than carbon dioxide during recent decades, leading climate scientists to consider the possibility that nitrogen might replace carbon as a prime driver of climate change.

New research co-authored by International Maize and Wheat Improvement Center (CIMMYT) scientists, published in Field Crops Research, posits that facilitating natural methods of gathering useable nitrogen in BNF can reduce the amount of synthetic nitrogen being used in global agriculture.

As agricultural systems become more intensive regarding inputs and outputs, synthetic nitrogen has become increasingly crucial, but there are still extensive areas in the world that cannot achieve food and nutrition security because of a lack of nitrogen.

“This, together with increasing and changing dietary demands, shows that the future demand for nitrogen will substantially grow to meet the anticipated population of 9.7 billion people by the middle of the century,” said J.K. Ladha, adjunct professor in the Department of Plant Sciences at University of California, Davis, and lead author of the study.

Before the synthetic nitrogen, the primary source of agricultural nitrogen was gathered through BNF as bacteria living underground that convert atmospheric nitrogen into nitrogen that can be utilized by crops. Therefore, legumes are often employed as a cover crop in rotating fields to replenish nitrogen stocks; their root systems are hospitable for these nitrogen producing bacteria to thrive.

“There are ways in which BNF could be a core component of efforts to build more sustainable and regenerative agroecosystems to meet nitrogen demand with lower environmental footprints,” said Timothy Krupnik, Senior System Agronomist at CIMMYT in Dhaka, Bangladesh.

Plant scientists have often hypothesized that the ultimate solution for solving the ever-growing nitrogen supply challenge is to confer cereals like wheat, maize, rice, with their own capacity for BNF. Recent breakthroughs in the genomics of BNF, as well as improvements in the understanding how legumes and nitrogen bacteria interact, have opened new avenues to tackle this problem much more systematically.

“Enabling cereal crops to capture their own nitrogen is a long-standing goal of plant biologists and is referred to as the holy grail of BNF research,” said P.M. Reddy, Senior Fellow at The Energy Research Institute, New Delhi. “The theory is that if cereal crops can assemble their own BNF system, the crop’s internal nitrogen supply and demand can be tightly regulated and synchronized.”

The study examined four methods currently being employed to establish systems within cereal crops to capture and use their own nitrogen, each with their advantages and limitations. One promising method involves identifying critical plant genes that perceive and transmit nitrogen-inducing signals in legumes. Integrating these signal genes into cereal crops might allow them to construct their own systems for BNF.

“Our research highlights how BNF will need to be a core component of efforts to build more sustainable agroecosystems,” said Mark Peoples, Honorary Fellow at The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia. “To be both productive and sustainable, future cereal cropping systems will need to better incorporate and leverage natural processes like BNF to mitigate the corrosive environmental effects of excess nitrogen leaking into our ecosystems.”

Besides the efforts to bring BNF to cereals, there are basic agronomic management tools that can shift focus from synthetic to BNF nitrogen.

“Encouraging more frequent use of legumes in crop rotation will increase diversification and the flow of key ecosystem services, and would also assist the long-term sustainability of cereal-based farming systems­,” said Krupnik.

Read the study: Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems

Cover photo: A farmer in the Ara district, in India’s Bihar state, applies NPK fertilizer, composed primarily of nitrogen, phosphorus and potassium. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

Conservation agriculture practices revive saline and sodic soils

In arid and semi-arid regions, soil salinity and sodicity pose challenges to global food security and environmental sustainability. Globally, around 932 million hectares are affected by salinization and alkalinization. Due to growing populations, anthropogenic activities and climate change, the prominence of salt stress in soil is rising both in irrigated and dryland systems.

Scientists from the International Maize and Wheat Improvement Center (CIMMYT) and the Indian Council of Agricultural Research (ICAR) employed long-term conservation agriculture practices in different agri-food systems to determine the reclamation potential of sodic soil after continuous cultivation for nine years, with the experiment’s results now published.

Using different conservation agriculture techniques on areas cultivating combinations of maize, wheat, rice and mungbean, the study used soil samples to identify declines in salinity and sodicity after four and nine years of harvesting.

Evidence demonstrates that this approach is a viable route for reducing soil sodicity and improving soil carbon pools. The research also shows that the conservation agriculture-based rice-wheat-mungbean system had more reclamation potential than other studied systems, and therefore could improve soil organic carbon and increase productive crop cultivation.

Read the full publication: Long-term conservation agriculture helps in the reclamation of sodic soils in major agri-food systems

Cover photo: Comparison of crop performance under conservation agriculture and conventional tillage in a sodic soil at Karnal, Haryana, India. (Credit: HS Jat/ICAR-CSSRI)

Earlier wheat planting will boost yields in eastern India

“For several years, we’ve been building dense data sets with colleagues from the Indian Agricultural Research Council, which have allowed us to unravel complex farm realities through big data analytics, and to determine what agricultural management practices really matter in smallholder systems,” said Andrew McDonald ’94, M.S. ’98, Ph.D. ’03, associate professor of soil and crop sciences in the College of Agriculture and Life Sciences. “This process has confirmed that planting dates are the foundation for climate resilience and productivity outcomes in the dominant rice-wheat cropping systems in the eastern sector in India.”

McDonald is first author of “Time Management Governs Climate Resilience and Productivity in the Coupled Rice-Wheat Cropping Systems of Eastern India,” published July 21 in Nature Food with a consortium of national and international partners, including scientists from the International Maize and Wheat Improvement Center (CIMMYT).

The research was conducted through the  Cereal Systems Initiative for South Asia (CSISA). CSISA, which is led by CIMMYT with the International Rice Research Institute and the International Food Policy Research Institute as research partners, was established in 2009 to promote durable change at scale in South Asia’s cereal-based cropping systems.

Researchers found that farmers in eastern India could increase yield by planting wheat earlier – avoiding heat stress as the crop matures – and quantified the potential gains in yields and farm revenues for the region. They also found that the intervention would not negatively impact rice productivity, a key consideration for farmers. Rice alternates with wheat on the cropping calendar, with many farmers growing rice in the wet season and wheat in the dry season.

The study also provides new recommendations for rice sowing dates and types of cultivars, to accommodate the earlier sowing of wheat.

“Farmers are not just managing single crops. They are managing a sequence of decisions,” said McDonald, who has a joint appointment in the Department of Global Development. “Taking a cropping systems approach and understanding how things cascade and interlink informs our research approach and is reflected in the recommendations that emerged from this analysis. Climate resilient wheat starts with rice.”

The research is the result of years of collaboration with international groups and government agencies in India, which have identified the Eastern Ganges Plain as the area with the most potential growth in production. The region will become essential, McDonald said, as the demand for wheat grows, and climate change makes production more difficult and unpredictable; just this year, record heat waves in March and April and food shortages caused by the war in Ukraine – both of which prompted India’s government to instate a ban on wheat exports – have highlighted the need for increased yields and more sustainable farming practices.

“In the bigger sense, this research is timely because the hazards of climate change aren’t just a hypothetical,” McDonald said. “Many of these areas are stress-prone environments, and extreme weather already constrains productivity. Identifying pragmatic strategies that help farmers navigate current extremes will establish a sound foundation for adapting to progressive climate change.”

Poverty is endemic in the Eastern Ganges Plain, and the region is dominated by small landholders, with varying practices and access to resources. The breadth and specificity of the data collected and analyzed in the study – including field and household survey data, satellite data, and dynamic crop simulations – allowed researchers to understand regional small farms’ challenges and the barriers to change.

“At the end of the day, none of this matters unless farmers opt in,” McDonald said. “There’s a spatial dimension and a household dimension to opportunity.  If we can  target approaches accordingly, then we hope to position farmers to make management changes that will benefit the entire food system.”

The study was co-authored with researchers from the Australian Department of Primary Industries and Regional Development, the International Rice Research Institute, the International Maize and Wheat Improvement Center, the International Food Policy Research Institute, the Indian Council of Agricultural Research and Bihar Agricultural University. The research was supported by the Bill and Melinda Gates Foundation and the U.S. Agency for International Development through grants to the Cereal Systems Initiative for South Asia, which is led by the International Maize and Wheat Improvement Center.

This piece by Caitlin Hayes, was originally posted on the Cornell Chronicle website.

Researchers plan transformation of agrifood systems in South Asia

Representatives from CIMMYT and ICAR begin planning research for the Transforming Agrifood Systems in South Asia (TASSA) CGIAR Initiative. (Photo: Vikram/ICAR-CSSRI)

CGIAR researchers are taking an innovative approach to analyzing crop and farming systems, by emphasizing nutritional yield. “This is an unusual perspective for an agronomist to apply to our work,” said Timothy Krupnik from the International Maize and Wheat Improvement Center (CIMMYT). “However, farmers in India recognize the critical need to produce more nutritious food that is environmentally sustainable without losing yield levels.”To meet this need, more than 25 researchers from CIMMYT and the Indian Council of Agricultural Research’s Central Soil Salinity Research Institute (ICAR-CSSRI) met from 25-27 May in Karnal, in India’s Haryana state, to plan a collaborative research program on nutrition-smart agriculture.

The program is part of Transforming Agrifood Systems in South Asia (TAFSSA), a CGIAR Regional Integrated Initiative aiming to propel evidence into impact through engagement with public and private partners across the farm production-to-consumption continuum. The Initiative will achieve productive, environmentally-sound agrifood systems that support equitable access to sustainable healthy diets in the world’s most poverty-dense region.

Through three days of workshops, attendees met with more than 200 men and women farmers. They developed a common understanding of the research objectives, designed research for multi-criteria analysis of crop and farming systems with an emphasis on nutritional yield, and developed a joint action plan for data collection and analysis.

To provide attendees with context for the research program, Temina Lalani-Shariff, CIMMYT Regional Director for South Asia, presented an overview of CGIAR activities in India and CGIAR Research Initiatives globally. HS Jat, Principal Scientist (Agronomy) from ICAR-CSSRI also presented some of the institute’s ongoing research and experiments that are examining the effects of different crop rotations on the production of nutritious foods. This included a visit to ICAR-CSSRI’s research trials later in the day.

Workshop participants visit ICAR-CSSRI research trials. (Photo: Vikram/ICAR-CSSRI)

From the ground up

To improve on the participatory design of research and to tailor the Initiative’s work to on-the-ground needs, the second day of the program was dedicated to visiting farmers in the states of Haryana and Punjab. There, researchers discussed the proposed research priorities and experimental design with the farmers. The design and priorities were later amended based on this feedback.

During the workshop, researchers had a chance to run focus groups with farmers in India’s Haryana and Punjab states. (Photo: Timothy Krupnik/CIMMYT)

“This was an incredibly useful workshop for us,” said PC Sharma, Director of ICAR-CSSRI. “This represents a new way of thinking about how to approach crop rotations and production. Having the help of farmers and colleagues in the nutrition community to design our research means we can address multiple issues in one research program. This increases the value of our research and spreads the benefits wider.”

To conclude the workshops, groups presented on their field visits and selected crop rotations and management practices as part of agronomic trial design for nutrition-sensitive and environmentally efficient cropping systems, including consideration of implementation and data collection.

A climate-smart remodeling of South Asia’s rice-wheat cropping is urgent

A climate change hotspot region that features both small-scale and intensive farming, South Asia epitomizes the crushing pressure on land and water resources from global agriculture to feed a populous, warming world. Continuous irrigated rice and wheat cropping across northern India, for example, is depleting and degrading soils, draining a major aquifer, and producing a steady draft of greenhouse gases.

Through decades-long Asian and global partnerships, the International Maize and Wheat Improvement Center (CIMMYT) has helped to study and promote resource-conserving, climate-smart solutions for South Asian agriculture. Innovations include more precise and efficient use of water and fertilizer, as well as conservation agriculture, which blends reduced or zero-tillage, use of crop residues or mulches as soil covers, and more diverse intercrops and rotations. Partners are recently exploring regenerative agriculture approaches — a suite of integrated farming and grazing practices to rebuild the organic matter and biodiversity of soils.

Along with their environmental benefits, these practices can significantly reduce farm expenses and maintain or boost crop yields. Their widespread adoption depends in part on enlightened policies and dedicated promotion and testing that directly involves farmers. We highlight below promising findings and policy directions from a collection of recent scientific studies by CIMMYT and partners.

Getting down in the dirt

A recent scientific review examines the potential of a suite of improved practices — reduced or zero-tillage with residue management, use of organic manure, the balanced and integrated application of plant nutrients, land levelling, and precise water and pest control — to capture and hold carbon in soils on smallholder farms in South Asia. Results show a potential 36% increase in organic carbon in upper soil layers, amounting to some 18 tons of carbon per hectare of land and, across crops and environments, potentially cutting methane emissions by 12%. Policies and programs are needed to encourage farmers to adopt such practices.

Another study on soil quality in India’s extensive breadbasket region found that conservation agriculture practices raised per-hectare wheat yields by nearly half a ton and soil quality indexes nearly a third, over those for conventional practices, as well as reducing greenhouse gas emissions by more than 60%.

Ten years of research in the Indo-Gangetic Plains involving rice-wheat-mungbean or maize-wheat-mungbean rotations with flooded versus subsoil drip irrigation showed an absence of earthworms — major contributors to soil health — in soils under farmers’ typical practices. However, large earthworm populations were present and active under climate-smart practices, leading to improved soil carbon sequestration, soil quality, and the availability of nutrients for plants.

The field of farmer Ram Shubagh Chaudhary, Pokhar Binda village, Maharajganj district, Uttar Pradesh, India, who has been testing zero tillage to sow wheat directly into the unplowed paddies and leaving crop residues, after rice harvest. Chaudhary is one of many farmer-partners in the Cereal Systems Initiative for South Asia (CSISA), led by CIMMYT. (Photo: P. Kosina/CIMMYT)
The field of farmer Ram Shubagh Chaudhary, Pokhar Binda village, Maharajganj district, Uttar Pradesh, India, who has been testing zero tillage to sow wheat directly into the unplowed paddies and leaving crop residues, after rice harvest. Chaudhary is one of many farmer-partners in the Cereal Systems Initiative for South Asia (CSISA), led by CIMMYT. (Photo: P. Kosina/CIMMYT)

Rebooting marginal farms by design

Using the FarmDESIGN model to assess the realities of small-scale, marginal farmers in northwestern India (about 67% of the population) and redesign their current practices to boost farm profits, soil organic matter, and nutritional yields while reducing pesticide use, an international team of agricultural scientists demonstrated that integrating innovative cropping systems could help to improve farm performance and household livelihoods.

More than 19 gigatons of groundwater is extracted each year in northern India, much of this to flood the region’s puddled, transplanted rice crops. A recent experiment calibrated and validated the HYDRUS-2D model to simulate water dynamics for puddled rice and for rice sown in non-flooded soil using zero-tillage and watered with sub-surface drip irrigation. It was found that the yield of rice grown using the conservation agriculture practices and sub-surface drip irrigation was comparable to that of puddled, transplanted rice but required only half the irrigation water. Sub-surface drip irrigation also curtailed water losses from evapotranspiration and deep drainage, meaning this innovation coupled with conservation agriculture offers an ecologically viable alternative for sustainable rice production.

Given that yield gains through use of conservation agriculture in northern India are widespread but generally low, a nine-year study of rice-wheat cropping in the eastern Indo-Gangetic Plains applying the Environmental Policy Climate (EPIC) model, in this case combining data from long-term experiments with regionally gridded crop modeling, documented the need to tailor conservation agriculture flexibly to local circumstances, while building farmers’ capacity to test and adapt suitable conservation agriculture practices. The study found that rice-wheat productivity could increase as much as 38% under conservation agriculture, with optimal management.

Key partner organizations in this research include the following: Indian Council of Agricultural Research (ICAR); Central Soil Salinity Research Institute (CSSRI), Indian Agricultural Research Institute (IARI), Indian Institute of Farming Systems Research (IIFSR), Agriculture University, Kota; CCS Haryana Agricultural University, Hisar; Punjab Agricultural University, Ludhiana; Sri Karan Narendra Agriculture University, Jobner, Rajasthan; the Borlaug Institute for South Asia (BISA); the Trust for Advancement of Agricultural Sciences, Cornell University; Damanhour University, Damanhour, Egypt; UM6P, Ben Guerir, Morocco; the University of Aberdeen; the University of California, Davis; Wageningen University & Research; and IFDC.

Generous funding for the work cited comes from the Bill & Melinda Gates Foundation, The CGIAR Research Programs on Wheat Agri-Food Systems (WHEAT) and Climate Change, Agriculture and Food Security (CCAFS), supported by CGIAR Fund Donors and through bilateral funding agreements), The Indian Council of Agricultural Research (ICAR), and USAID.

Cover photo: A shortage of farm workers is driving the serious consideration by farmers and policymakers to replace traditional, labor-intensive puddled rice cropping (shown here), which leads to sizable methane emissions and profligate use of irrigation water, with the practice of growing rice in non-flooded soils, using conservation agriculture and drip irrigation practices. (Photo: P. Wall/CIMMYT)

Two approaches better than one: identifying spot blotch resistance in wheat varieties

Spot blotch, a major biotic stress challenging bread wheat production is caused by the fungus Bipolaris sorokiniana. In a new study, scientists from the International Maize and Wheat Improvement Center (CIMMYT) evaluate genomic and index-based selection to select for spot blotch resistance quickly and accurately in wheat lines. The former approach facilitates selecting for spot blotch resistance, and the latter for spot blotch resistance, heading and plant height.

Genomic selection

The authors leveraged genotyping data and extensive spot blotch phenotyping data from Mexico and collaborating partners in Bangladesh and India to evaluate genomic selection, which is a promising genomic breeding strategy for spot blotch resistance. Using genomic selection for selecting lines that have not been phenotyped can reduce the breeding cycle time and cost, increase the selection intensity, and subsequently increase the rate of genetic gain.

Two scenarios were tested for predicting spot blotch: fixed effects model (less than 100 molecular markers associated with spot blotch) and genomic prediction (over 7,000 markers across the wheat genome). The clear winner was genomic prediction which was on average 177.6% more accurate than the fixed effects model, as spot blotch resistance in advanced CIMMYT wheat breeding lines is controlled by many genes of small effects.

“This finding applies to other spot blotch resistant loci too, as very few of them have shown big effects, and the advantage of genomic prediction over the fixed effects model is tremendous”, confirmed Xinyao He, Wheat Pathologist and Geneticist at CIMMYT.

The authors have also evaluated genomic prediction in different populations, including breeding lines and sister lines that share one or two parents.

Spot blotch susceptible wheat lines (left) and resistant lines. (Photo: Xinyao He and Pawan Singh/CIMMYT)
Spot blotch susceptible wheat lines (left) and resistant lines. (Photo: Xinyao He and Pawan Singh/CIMMYT)

Index selection

One of the key problems faced by wheat breeders in selecting for spot blotch resistance is identifying lines that are genetically resistant to spot blotch versus those that escape and exhibit less disease by being late and tall. “The latter, unfortunately, is often the case in South Asia”, explained Pawan Singh, Head of Wheat Pathology at CIMMYT.

A potential solution to this problem is the use of selection indices that can make it easier for breeders to select individuals based on their ranking or predicted net genetic merit for multiple traits. Hence, this study reports the first successful evaluation of the linear phenotypic selection index and Eigen selection index method to simultaneously select for spot blotch resistance using the phenotype and genomic-estimated breeding values, heading and height.

This study demonstrates the prospects of integrating genomic selection and index-based selection with field based phenotypic selection for resistance in spot blotch in breeding programs.

Read the full study:
Genomic selection for spot blotch in bread wheat breeding panels, full-sibs and half-sibs and index-based selection for spot blotch, heading and plant height

Cover photo: Bipolaris sorokiniana, the fungus causing spot blotch in wheat. (Photo: Xinyao He and Pawan Singh/CIMMYT)

CIMMYT scientists identify novel genomic regions associated with spot blotch resistance

Spot blotch, caused by the fungus Biopolaris sorokiniana poses a serious threat to bread wheat production in warm and humid wheat-growing regions globally, affecting more than 25 million hectares and resulting in huge yield losses.

Chemical control approaches, including seed treatment and fungicides, have provided acceptable spot blotch control. However, their use is unaffordable to resource-poor farmers and poses a hazard to health and the environment. In addition, “abiotic stresses like heat and drought that are widely prevalent in South Asia compound the problem, making varietal genetic resistance the last resort of farmers to combat this disease,” according to Pawan Singh, Head of Wheat Pathology at the International Maize and Wheat Improvement Center (CIMMYT). Therefore, one of CIMMYT’s wheat research focus areas is developing wheat varieties that carry genetic resistance to the disease.

Signs of spot blotch on wheat. (Photo: Philomin Juliana/CIMMYT)
Signs of spot blotch on wheat. (Photo: Philomin Juliana/CIMMYT)

Previously, only four spot blotch resistance genes in bread wheat had been identified. Through a new study, CIMMYT scientists have identified novel genomic regions associated with spot blotch resistance using the genome-wide association mapping approach with 6,736 advanced breeding lines from different years (2013 to 2020), evaluated at CIMMYT’s spot blotch screening platform in Agua Fría, in Mexico’s state of Morelos.

The study’s results are positive and confirmed that:

  • Many advanced CIMMYT breeding lines have moderate to high resistance to spot blotch.
  • Resistance to the disease is conferred quantitatively by several minor genomic regions that act together in an additive manner to confer resistance.
  • There is an association of the 2NS translocation from the wild species Aegilops ventricosa with spot blotch resistance.
  • There is also an association of the spot blotch favorable alleles at the 2NS translocation, and two markers on the telomeric end of chromosome 3BS with grain yield evaluated in multiple environments, implying that selection for favorable alleles at these markers could help obtain higher grain yield and spot blotch resistance.

“Considering the persistent threat of spot blotch to resource-poor farmers in South Asia, further research and breeding efforts to improve genetic resistance to the disease, identify novel sources of resistance by screening different germplasm, and selecting for genomic regions with minor effects using selection tools like genomic selection is essential,” explained Philomin Juliana, Molecular Breeder and Quantitative Geneticist at CIMMYT.

Read the full study:
Genome-Wide Association Mapping Indicates Quantitative Genetic Control of Spot Blotch Resistance in Bread Wheat and the Favorable Effects of Some Spot Blotch Loci on Grain Yield

Cover photo: Researchers evaluate wheat for spot blotch at CIMMYT’s experimental station in Agua Fría, Jiutepec, Morelos state, Mexico. (Photo: Xinyao He and Pawan Singh/CIMMYT)

Q&A: Regenerative agriculture for soil health

South Asia was the epicenter of the Green Revolution, a historic era of agricultural innovation that fed billions of people on the brink of famine.

Yet despite the indisputably positive nutritional and developmental impacts of the Green Revolution of the 1960s, the era of innovation also led to the widespread use of farming practices—like intensive tilling, monoculture, removal and burning of crop residues, and over-use of synthetic fertilizer—that have a deleterious effect on the soil and cause off-site ecological harm. Excess pumping of irrigation water over decades has dried out the region’s chief aquifer.

South Asia’s woes illustrate the environmental costs of intensive food production to feed our densely-populated planet. Currently, one billion hectares of land worldwide suffers from degraded soils.

The International Maize and Wheat Improvement Center (CIMMYT) works with two of the world’s most widely cultivated and consumed cereal crops. To grow enough of these staple foods to feed the world, a second Green Revolution is needed: one that avoids the mistakes of the past, regenerates degraded land and reboots biodiversity in farm areas.

M.L. Jat, a CIMMYT Principal Scientist, has spent 20 years studying and promoting sustainable agricultural practices for maize- and wheat-based farming systems. In the following Q&A, Jat tells us about regenerative agriculture: integrated farming and grazing practices intended to rebuild soil organic matter and restore degraded soil biodiversity.

Q: What major components or practices are part of regenerative agriculture?

A: Regenerative agriculture is a comprehensive system of farming that harnesses the power of soil biology to rebuild soil organic matter, diversify crop systems, and improve water retention and nutrient uptake. The depletion of biodiversity, degradation of soil health, warming, and drier weather in farm areas have necessitated a reversal in agriculture from “degeneration to regeneration.”

The practices address food and nutritional security challenges while protecting natural resources and lowering agriculture’s environmental footprint, in line with the United Nations Sustainable Development Goals. CIMMYT has worked for years to research and promote conservation agriculture, which contributes to the aims of regenerative agriculture, and is already practiced on more than 200 million hectares globally — 15% of all cropland — and is expanding at a rate of 10.5 million hectares per year.

Q: What are the potential roles of major food crops — maize, rice, and wheat — in regenerative agriculture systems?

A: Regenerative agriculture is “crop neutral;” that is, it is applicable to almost all crops and farming systems. The world’s rice, wheat, and maize crops have an enormous physical and ecological footprint on land and natural resources, but play a critical role in food and nutrition security. Considering that anthropogenic climate change has reduced the global agricultural total factor productivity by about 21% in the past six decades, applying regenerative agriculture approaches to these systems represents a momentous contribution toward sustainable farming under increasing climatic risks.

Download "Regenerative Agriculture for Soil Health, Food and Environmental Security: Proceedings and Recommendations” from the Trust for Advancement of Agricultural Sciences.
Download “Regenerative Agriculture for Soil Health, Food and Environmental Security: Proceedings and Recommendations”.

Q: What elements or approaches of regenerative agriculture are applicable in India and how can they be applied?

A: Regenerative practices for maize and wheat systems in India include no-tillage, crop residue recycling, legume inter-cropping and cover crops, crop diversification, integrated nutrient management, and precision water management.

The potential area of adoption for regenerative agriculture in India covers at least 50 million hectares across a diversity of cropping systems and agroecologies — including irrigated, rainfed, and arid farmlands — and can be approached through appropriate targeting, investments, knowledge and capacity enhancement, and enabling policies.

In the breadbasket region of the Indo-Gangetic Plains, regenerative agriculture can help address the aforementioned second-generation problems of the Green Revolution, as well as contributing to the Indian government’s Soil Health Mission and its COP26 commitments.

Q: In order to get regenerative agriculture off the ground in South Asia, who will be involved?

A: Adapting and applying regenerative agriculture’s portfolio of practices will require the participation of all stakeholders associated with farming. Application of these principles is location- and situation-specific, so researchers, extension functionaries, value chain actors, philanthropists, environmentalists, NGOs, farmers, and policy planners all have a role to play in the impact pathway.

CIMMYT, the Borlaug Institute for South Asia (BISA), public and private programs and agencies, and farmers themselves have been developing, refining, and scaling out conservation agriculture-based regenerative agriculture practices for some three decades in South Asia. CIMMYT and BISA will continue to play a key role in mainstreaming regenerative agriculture in local, national, and regional development plans through science-based policy and capacity development.

Q: Farmers constitute a strong economic and political force in India. How can they be brought on board to practice regenerative agriculture, which could be more costly and knowledge-intensive than their current practices?

A: We need to pursue business “unusual” and harness the potential opportunities of regenerative agriculture to sequester soil carbon and reduce greenhouse gas emissions. Regenerative agriculture practices can offer farmers additional income and certainly create a “pull factor” for their adoption, something that has already started and will constitute a strong business case. For example, innovative business models give farmers an opportunity to trade ecosystem services and carbon credits through repurposing subsidies and developing carbon markets for private sectors. CIMMYT, along with the Indian Council of Agricultural Research and private partners such as Grow Indigo, are already helping to put in place a framework to acquire carbon credits through regenerative agriculture in India.

For more information about the application of regenerative agriculture on India’s farmlands, see “Regenerative Agriculture for Soil Health, Food and Environmental Security: Proceedings and Recommendations” from the Trust for Advancement of Agricultural Sciences.

Cover photo: Brown and green fields. (Photo: Elizabeth Lies/Unsplash)

New publications: Caste-gender intersectionalities in wheat-growing communities in Madhya Pradesh, India

A new study has revealed how the ways in which caste and gender interact in wheat systems in India are changing over time, how women struggle to be involved in decisions on wheat farming, how agricultural mechanization is pushing women of all castes out of paid employment, and how women’s earnings are an important source of finance in wheat.

There is growing awareness that not all rural women are alike and that social norms and technological interventions affect women from different castes in distinct ways. The caste system in South Asia, which dates back over 3,000 years, divides society into thousands of hierarchical, mostly endogamous groups. Non-marginalized castes are classified as “general caste” while those living in the social margins are categorized as “scheduled caste” and “scheduled tribe”. Scheduled caste and scheduled tribe farmers face both social and economic marginalization and limited access to information and markets, despite government efforts to level up social inequalities.

In India, women of all castes are involved in farming activities, although their caste identity regulates the degree of participation. General caste women are less likely to be engaged in farming than women of lower castes. Despite their level of participation across caste groups, women are rarely recognized as “farmers” (Kisan) in Indian rurality, which restricts their access to inputs, information and markets.

Gender experts from the International Maize and Wheat Improvement Center (CIMMYT) and partners investigated caste-gender relations among wheat farmers in Madhya Pradesh, India’s second-largest state by area. The team conducted focus group discussions and interviews in a village community, and carried out a review of GENNOVATE research in the same area. The team also carried out a survey involving about 800 wheat farmers from 18 village communities across the state.

Women work in the fields in India’s Madhya Pradesh state. Our study found that women are involved in all aspects of agricultural work on family farms. (Photo: CIMMYT)

The study, published last month in Gender, Technology, and Development, revealed five key findings:

First, caste distinctions are sharp. There is little interaction between women and men farmers from the scheduled caste category — even between subcastes in this category — and other castes. They live in separate enclaves, and land belonging to scheduled caste farmers is less fertile than others.

Second, all women are fully involved in all aspects of agricultural work on the family farm throughout the year.

Third, despite their strong participation in farming activities, women across caste groups are normatively excluded from agricultural decision-making in the household. Having said that, the findings were very clear that some individual women experience greater participation than others. Although women are excluded from formal agricultural information networks, they share knowledge with each other, particularly within caste groups.

Fourth, about 20 years ago, women across caste groups were being employed as hired agricultural laborers. Over the past four years, increasing mechanization is pushing many women off the field. While scheduled caste women compensate for the employment loss to a certain degree by participating in non-farm activities, general caste women are not able to move beyond the village and secure work elsewhere due to cultural norms. Women therefore face a collapse in their autonomy.

Fifth, gender poses a greater constraint than caste in determining an individual’s ability to make decisions about farm and non-farm related activities. However, a significant difference exists across the caste groups, presenting a strong case for intersectionality.

Challenging social norms in agriculture

The results of the study show that caste matters in the gendered evaluations of agricultural technologies and demonstrates the importance of studying women’s contributions and roles in wheat farming in South Asia.

In recent years, studies have revealed that women in wheat have more influence on farming decisions than previously thought, from subtle ways of giving suggestions and advice to management and control over farming decisions.

Agriculture in India is also considered to be broadly feminizing, with men increasingly taking up off-farm activities, leaving women to as primary cultivators on family fields and as hired laborers. However, rural advisory services, policy makers, and other research and development organizations are lagging behind in recognizing and reacting appropriately to these gendered changes. Many still carry outdated social norms which view men as the main decision-makers and workers on farms.

Read the full study:
Caste-gender intersectionalities in wheat-growing communities in Madhya Pradesh, India

Funding for this study was provided by the Collaborative Platform for Gender Research under the CGIAR Program on Policies, Institutions, and Markets as well as the International Development Research Center of the Government of Canada, the CGIAR Research Programme on Wheat (CRP WHEAT https://wheat.org/), CIMMYT and the Indian Council of Agricultural Research (ICAR). The paper additionally drew on GENNOVATE data collected in India in 2015–16 with financial support from CRP WHEAT. Development of the GENNOVATE research methodology was supported by the CGIAR Gender and Agricultural Research Network, the World Bank, and the CRP WHEAT and CRP MAIZE, and data analysis was supported by the Bill and Melinda Gates Foundation.

Cover photo: A woman harvests wheat in Madhya Pradesh, India. (Photo: CIMMYT)

Sanjaya Rajaram honored with India’s civilian service award

Jai Prakash Rajaram (left) receives the Padma Bhushan Award on behalf of his late father, Sanjaya Rajaram, from the President of India, Ram Nath Kovind. (Photo: Government of India)
Jai Prakash Rajaram (left) receives the Padma Bhushan Award on behalf of his late father, Sanjaya Rajaram, from the President of India, Ram Nath Kovind. (Photo: Government of India)

The President of India, Ram Nath Kovind, presented the prestigious Padma Bhushan Award for Science & Engineering (Posthumous) to the relatives of Sanjaya Rajaram. The award was received by Rajaram’s son and daughter, Jaiprakash Rajaram and Sheila Rajaram, at a ceremony in New Delhi, India, on March 28, 2022.

The Padma Awards, instituted in 1954, are one of India’s highest civilian honors. Announced annually on the eve of Republic Day, January 26, they are given in three categories: Padma Vipbhushan, for outstanding and distinguished service; Padma Bhushan, for distinguished service of the highest order; and Padma Shri, for distinguished service.

The award seeks to recognize achievement in all fields of activities and disciplines involving a public service item.

Padma Bhushan Award diploma and medal. (Photo: Courtesy of Jai Prakash Rajaram)
Padma Bhushan Award diploma and medal. (Photo: Courtesy of Jai Prakash Rajaram)

Sanjaya Rajaram, who passed away in 2021, was a 2014 World Food Prize laureate and former wheat breeder and Director of the Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT).

Among his many accomplishments, he personally oversaw the development of nearly 500 high-yielding and disease-resistant wheat varieties. These varieties, which have been grown on at least 58 million hectares in over 50 countries, increased global wheat production by more than 200 million tons, benefiting hundreds of millions of resource-poor people who rely on wheat for their diets and livelihoods.

Being the change you wanted to see as a young girl

In the traditional Indian society Madhulika Singh grew up in, girls choosing to study science, technology, engineering or mathematics (STEM) was as radical as choosing a life partner on their own.

“They say women hold up half the sky. I believe they should hold up as much and contribute equally in STEM too,” says Singh, now an agriculture specialist at the International Maize and Wheat Improvement Center (CIMMYT).

In her early teens she saw her mother, a school headmaster, comfortably navigate her career along with her domestic responsibilities without a sweat. She later saw a similar example in her sister-in-law. “I grew up thinking ‘there is so much that a woman is capable of,’ whether at home or her workplace,” Singh recalls.

This strong idea of women’s potential led her to pursue studies in science. “Many women before me, like my mother’s generation, were encouraged to take up [careers in] humanities — become a teacher, or pursue home management courses — to ensure a smooth transition once married,” Singh explains. She hoped this would change during her time and that following a career in STEM would be a matter of choice — not gender.

Singh’s goals and ambitions were very clear from the very beginning. In school, she was interested in biology, particularly plant studies and botany. Her inquisitive nature was reflected in her projects and presentations, scoring her high grades. She demonstrated a thorough understanding of plant physiology and her passion for the subject. The budding scientist always wanted to know more and to do more, which Singh feels resonates with her current research and publications.

A popular quote attributed to Mahatma Gandhi says “Be the change you want to see in the world.” When Singh chose to take up plant science in graduate school and then agriculture science for her doctorate, she became the change she had hoped to see in her home and society as a young girl. With the support from her family but a skeptical society, she went ahead and pursued a career in STEM, beginning her research on maize genotypes and conservation agriculture. In 2013 she joined CIMMYT as a physiologist.

CIMMYT researcher Madhulika Singh takes notes while talking to farmers about their rice-wheat cropping practice in Nalanda, Bihar state, India. (Photo: CIMMYT)
CIMMYT researcher Madhulika Singh takes notes while talking to farmers about their rice-wheat cropping practice in Nalanda, Bihar state, India. (Photo: CIMMYT)

Helping farmers transition to conservation agriculture

Singh currently works in her home state of Bihar for the Cereal Systems Initiative for South Asia (CSISA), led by CIMMYT. She is engaged with over ten thousand farmers from the states of Bihar and Uttar Pradesh, supporting the adoption of  conservation agriculture practices.

Farming is vital for the region, as nearly 70% of the population is engaged in agriculture and extension services. However, food and livelihoods are threatened by the small size of farms, low incomes, and comparatively low levels of agricultural mechanization, irrigation and productivity.

Singh and her colleagues have led the transition from traditional farming to sustainable intensification practices — like early wheat sowing, zero tillage and direct-seeded rice — which have helped smallholder farmers increase their yield potential substantially.

“We believe a project like CSISA, along with the government and partners, can help advance and support in realizing the full agriculture potential of these regions,” Singh explains.

Roots in the soil

Her grandparents were farmers. “To be able to care for the land that provided you nourishment and a living was always admired upon,” she says. As a crop scientist, Singh’s family acknowledges her work as an extension of the services her grandparents practiced.

Sustained by this motivation and encouragement, Singh feels reassured of her role: joining other scientists, partners and farmers to make agriculture sustainable and our communities food-secure.

“The fact that the data we generate from our experiments serve as building blocks in the generation of knowledge and help farmers optimize the cost of inputs and increase their productivity is fulfilling and enriching to me,” Singh expresses.

Apart from working to build the capacity of farmers and extension workers, Singh supports the implementation of field trials and community-based technology demonstrations. She also helps refine key agricultural innovations, through participatory testing, and optimizes cropping systems in the region.

Leading the way for for the next generation

A true representative of the STEM community, Singh is always learning and using her experience to give back to society. She has co-authored numerous books and contributed to journals, sharing her knowledge with others.

Other women leaders in STEM have inspired Singh in her professional life, including CIMMYT’s former deputy director general for research Marianne Banziger. Singh believes Banziger was trailblazing and that young girls today have many female role models in STEM that can serve as inspiration.

The change is already here and many more young women work in STEM, pursuing excellence in agriculture sciences, engineering and research studies contributing to as well as claiming “half the sky.”

Cover photo: CIMMYT researcher Madhulika Singh (center-right) stands with farmers from self-help groups in the village of Nawtanwa, West Champaran, in India’s Bihar state. CIMMYT works on gender inclusion and participation through partnerships with other organizations and self-help groups. (Photo: CIMMYT)

Explore our coverage of International Women’s Day 2022.

CIMMYT scientist receives award for weed research

Ram Kanwar Malik (center) with his team in Bihar, India, during a field visit.
Ram Kanwar Malik (center) with his team in Bihar, India, during a field visit.

Today the Weed Science Society of America (WSSA) announced the Honorary Member award for Ram Kanwar Malik, senior scientist at the International Maize and Wheat Improvement Center (CIMMYT). This award is given every year to a person who has made outstanding contributions to weed science “through their research, teaching, publishing and outreach.”

Malik’s early engagement in agricultural sustainability led to initiatives exploring herbicide resistance evolution and management, zero tillage, and other resource-conservation technologies. At the Cereal Systems Initiative for South Asia (CSISA) — a regional project led by CIMMYT — Malik and his colleagues helped promote the practice of early wheat sowing to beat terminal heat stress, resulting in increased wheat yield in India’s eastern Indo-Gangetic Plains.

“WSSA’s Honorary Member award is one of the highest recognitions bestowed by the Weed Science Society of America,” said Krishna Reddy, Chair of the WSSA 2022 Award Committee. “[The] Honorary Member is selected for meritorious service to weed science, among non-members from North America or any weed scientist from other countries. Only one person per year is awarded this membership. Dr. Malik’s significant research in weed science and his collaborative effort to deliver solutions for farmers in developing countries like India is inspirational.”

The award was presented virtually at the 2022 annual meeting of WSSA, held in Vancouver, Canada.

Transforming rice–wheat systems

<em>Phalaris minor</em> is a pernicious weed that affects crops like wheat and substantially reduces its yield potential.
Phalaris minor is a pernicious weed that affects crops like wheat and substantially reduces its yield potential.

Malik has worked extensively in the Indo-Gangetic Plains, leading many initiatives and innovations over the years, in collaboration with national and international partners. The WSSA award highlights Malik’s inspiring work in tackling herbicide resistance problems, first reported in India by his team in 1993. Malik was instrumental in developing a management solution for herbicide-resistant Phalaris minor, a pernicious weed in wheat crops. The integrated weed management system he helped develop raised wheat yield capacity significantly for farmers in the Indo-Gangetic Plains.

“The WSSA Honorary Member award reiterates the importance of agronomic management for sustained weed control strategies across cropping systems,” Malik said. “CIMMYT and partners, including the Australian Centre for International Agricultural Research (ACIAR), were the first to introduce zero tillage in wheat as part of a strategy to manage weed resistance problems in India. It is an honor that WSSA has recognized this collective work of ours,” he acknowledged.

Malik has devoted more than thirty years to transforming agricultural systems in the Indo-Gangetic Plains, working closely with farmers and partners, and building the capacity of national agricultural and research extension systems. he is a firm believer in farmers’ participation: “Large-scale adoption of sustainable agricultural practices is possible when we work together to leverage technologies which are mutually agreed by partners and meet farmers’ needs.”

Malik is a fellow of the Indian Society of Agronomy and the Indian Society of Weed Science (ISWS), which granted him the Lifetime Achievement Award. He has also received the Outstanding Achievement Award from the International Weed Science Society (IWSS) and the 2015 Derek Tribe Award from the Crawford Fund.

He remains passionate about and invested in changing the lives of farmers through better-bet agronomy and by leading innovative research at CIMMYT.

About the Weed Science Society of America (WSSA)

Founded in 1956, WSSA is a nonprofit scientific society that encourages and promotes the development of knowledge concerning weeds and their impact on the environment.

Bending gender norms: women’s engagement in agriculture

Pragya Timsina interviewing a farmer in Rangpur, Bangladesh. (Photo: Manisha Shrestha/CIMMYT)
Pragya Timsina interviewing a farmer in Rangpur, Bangladesh. (Photo: Manisha Shrestha/CIMMYT)

Researchers at the International Maize and Wheat Improvement Center (CIMMYT) have studied and witnessed that women, particularly in South Asia, have strongly ingrained and culturally determined gender roles.

While women play a critical part in agriculture, their contributions are oftentimes neglected and underappreciated. Is there any way to stop this?

On International Day of Women and Girls in Science, we spoke to Pragya Timsina about how women’s participation in agriculture is evolving across the Eastern Gangetic Plains and her findings which will be included in a paper coming out later this year: ‘Necessity as a driver of bending agricultural gender norms in South Asia’. Pragya is a Social Researcher at CIMMYT, based in New Delhi, India. She has worked extensively across different regions in India and is currently involved in various projects in India, Nepal and Bangladesh.

What is the current scenario in the Eastern Gangetic Plains of South Asia on gender disparities and women’s involvement in agriculture? Is it the same in all locations that your research covered?

Currently, traditional roles, limited mobility, societal criticism for violating gender norms, laborious unmechanized agricultural labor, and unacknowledged gender roles are among the social and cultural constraints that women face in the Eastern Gangetic Plains. Our research shows that while these norms exist throughout the Eastern Gangetic Plains, there are outliers, and an emerging narrative that is likely to lead to further bending (but not breaking, yet) of such norms.

Are there any factors that limit women from participating in agriculture? 

Cultural and religious norms have influence gender roles differently in different households but there are definitely some common societal trends. Traditionally, women are encouraged to take on roles such as household chores, childcare, and livestock rearing, but our research in the Eastern Gangetic Plains found that in specific regions such as Cooch Behar (West Bengal), women were more actively involved in agriculture and even participated in women-led village level farmers’ groups.

How or what can help increase women’s exposure to agricultural activities?

At the community level, causes of change in gender norms include the lack of available labor due to outmigration, the necessity to participate in agriculture due to a labor shortage, and a greater understanding and exposure to others who are not constrained by gendered norms. There are instances where women farmers are provided access and exposure to contemporary and enhanced technology advances, information, and entrepreneurial skills that may help them become knowledgeable and acknowledged agricultural decision makers. In this way, research projects can play an important role in bending these strongly ingrained gendered norms and foster change.

In a context where several programs are being introduced to empower women in agriculture, why do you think they haven’t helped reduce gender inequality?

Our study reveals that gender norms that already exist require more than project assistance to transform.

While some women in the Eastern Gangetic Plains have expanded their engagement in public places as they move away from unpaid or unrecognized labor, this has not always mirrored shifts in their private spaces in terms of decision-making authority, which is still primarily controlled by men.

Although, various trends are likely to exacerbate this process of change, such as a continued shortage of available labor and changing household circumstances due to male outmigration, supportive family environments, and peer support.

What lessons can policymakers and other stakeholders take away to help initiate gender equality in agriculture?

Although gender norms are changing, I believe they have yet to infiltrate at a communal and social level. This demonstrates that the bending of culturally established and interwoven systemic gender norms across the Eastern Gangetic Plains are still in the early stages of development. To foster more equitable agricultural growth, policymakers should focus on providing inclusive exposure opportunities for all community members, regardless of their standing in the household or society.

What future do the women in agriculture perceive?

Increasing development projects are currently being targeted towards women. In certain circumstances, project interventions have initiated a shift in community attitudes toward women’s participation. There has been an upsurge in women’s expectations, including a desire to be viewed as equal to men and to participate actively in agriculture. These patterns of women defying gender norms appear to be on the rise.

What is your take on women’s participation in agriculture, to enhance the desire to be involved in agriculture?

Higher outmigration, agricultural labor shortages, and increased shared responsibilities, in my opinion, are likely to expand rural South Asian women’s participation in agricultural operations but these are yet to be explored in the Eastern Gangetic Plains. However, appropriate policies and initiatives must be implemented to ensure continued and active participation of women in agriculture. When executing any development projects, especially in the Eastern Gangetic Plains, policies and interventions must be inclusive, participatory, and take into account systemic societal norms that tend to heavily impact women’s position in the society.

Wheat titan honored posthumously by India

India has conferred posthumously upon Sanjaya Rajaram, 2014 World Food Prize laureate and former wheat breeder and Director of the Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), its prestigious 2022 Padma Bhushan Award in “Science and Engineering” in recognition of “distinguished service of high order.”

Among the most successful crop breeders in history, Rajaram, who passed away in 2021, personally oversaw the development of nearly 500 high-yielding and disease-resistant wheat varieties that were grown on at least 58 million hectares in over 50 countries, increasing global wheat production by more than 200 million tons and especially benefiting hundreds of millions of the resource-poor whose diets and livelihoods depend on this critical crop. In India and the neighboring South Asian nations of Bangladesh, Nepal, and Pakistan, inhabitants consume more than 120 million tons of wheat and wheat-based foods each year.

“Dr. Rajaram was a true titan of wheat breeding and an inspiration for young researchers, training and mentoring more than 700 scientists from developing countries worldwide,” said Bram Govaerts, CIMMYT director general. “He was also a complete gentleman, comporting himself with modesty and grace despite his many honors and accomplishments; his first priority was helping and crediting others. Rajaram is an example today for all of us to keep working with the final stakeholder — the farmer — in mind.”

The rise from rural beginnings

Born on a small farm in District Varanasi, Uttar Pradesh, India, in 1943, Rajaram studied genetics and plant breeding at the Indian Agricultural Research Institute in New Delhi. After receiving his Ph.D. from the University of Sydney, he joined CIMMYT in 1969, working as a wheat breeder alongside Nobel Prize Laureate and CIMMYT scientist Norman Borlaug in Mexico. Recognizing his talent and initiative, Borlaug appointed Rajaram as head of CIMMYT’s wheat breeding program at just 29 years of age.

The Padma Bhushan Award was announced by President Ram Nath Kovind of India on the country’s Republic Day, January 26. In 2015, Rajaram received the Pravasi Bharatiya Samman award, the highest honor conferred on Indians overseas. In 2001 he accepted the Padma Shri award from the government of India and, in 1998, the Friendship Award from the government of China.

Sanjaya Rajaram (Photo: Xochil Fonseca/CIMMYT)
Sanjaya Rajaram (Photo: Xochil Fonseca/CIMMYT)

Though a plant breeder and scientist by profession, Rajaram used the platform of his 2014 World Food Prize to promote an expansive, integrated vision for agricultural development. “If we want to make a change, research won’t do it alone; we need to work directly with farmers and to train young agronomists, ensuring they have a broad vision to address the problems in farmers’ fields,” Rajaram said at a news conference in Mexico City in 2014.

Rajaram also served as Director of the Integrated Gene Management Program at the International Center for Agricultural Research in the Dry Areas (ICARDA) before formally retiring in 2008. In his retirement, he continued as a special scientific advisor to CIMMYT and ICARDA.

Longstanding partners pushing forward for farmers

“India’s agricultural research community is proud of the distinguished achievements of Dr. Rajaram,” said Trilochan Mohapatra, Director General of the Indian Council of Agricultural Research (ICAR) and Secretary of the Department of Agricultural Research and Education (DARE), of India’s Ministry of Agriculture and Farmers’ Welfare. “ICAR greatly appreciates its valuable collaborations with CIMMYT to help farmers grow better crops and conserve resources under increasingly challenging conditions.”

The partnership of India with CIMMYT harks back to the 1960s-70s, when Indian farmers tripled national wheat yields in a few years by growing Borlaug’s high-yield wheat varieties and adopting improved farming practices.

In 2011, India and CIMMYT jointly launched the Borlaug Institute for South Asia (BISA) to improve cropping systems and food security, helping farmers to confront climate change and natural resource scarcities, among other challenges.

S. Ayyappan, former ICAR Director General who signed the joint declaration of intent for BISA’s establishment in India, has been honored with the 2022 Padma Shri Award.

CIMMYT is a non-profit international agricultural research and training organization focusing on two of the world’s most important cereal grains, maize and wheat, and related cropping systems and livelihoods. Wheat varieties derived from CIMMYT and ICARDA research cover more than 100 million hectares — nearly two-thirds of the area sown to improved wheat worldwide — and bring benefits in added grain worth as much as $3.8 billion each year.