Skip to main content

funder_partner: Indian Institute of Wheat and Barley Research (IIWBR)

Ethiopian researchers travel to India to strengthen knowledge regarding increasing wheat productivity

The irrigated lowlands of Afar and Oromia in Ethiopia are vital areas for the cultivation of wheat and increasing their productivity is crucial to attaining food security in the light of extended drought and other climate shocks.

Adaptation, Demonstration, and Piloting of Wheat Technologies for Irrigated Lowlands of Ethiopia (ADAPT-Wheat) is a three-year project funded by Germany’s Federal Ministry for Economic Cooperation and Development with the objective of identifying, verifying, and adopting wheat technologies that increase wheat production and productivity in Afar and Oromia.

As part of ADAPT-Wheat’s capacity building mission, four Ethiopian wheat researchers from different disciplines visited the Indian Central Soil Salinity Research Institute (CSSRI), the Indian Institute of Wheat and Barely Research (IIWBR), Land force (Dasmesh Mechanical Works), the Borlaug Institute for South Asia (BISA), and National Agro Industries from 13 -22 March 2024.

At CSSRI, the researchers learned how to reclaim salt-affected soils through the use of salt tolerant crops, improve management of water usage, and employ cover crops in salt-affected soils to reduce soil temperature and evapotranspiration. They also visited a sodic and saline microplot facility used to screen genotypes under the desired salinity and sodicity stresses. The researchers witnessed ongoing activities such as agrochemical/ biological/hydraulic technologies to reclaim salt-affected soils, the use of poor-quality irrigation water for crop production and the adoption of ameliorative technologies for salinity management.

The Ethiopian researchers also attended an international conference organized by the Indian Society of Soil Salinity and Water Quality, “Rejuvenating salt affected soil ecologies for land degradation neutrality under changing climate.”

At IIWBR, researchers visit a gene bank. (Photo: CIMMYT)

They learned about breeding methods, and advances in yield enhancement, disease resistance, sustainable agricultural practices, innovative farming methods, genetic stocks developed for grain protein, iron, and zinc enhanced wheat varieties, phytic acid levels, gluten strength, and grain texture.

At Dasmesh Mechanical Works, they learned the operation and maintenance of equipment ADAPT-Wheat has purchased from Dasmesh, including machines for plowing, land leveling, planting, and threshing.

The visit to BISA included an introduction to Conservation Agriculture methods, such as fertilizer use efficiency and crop residue management, which will ultimately help improve productivity back in Ethiopia. They also viewed an ongoing experiment on Precision–Conservation Agriculture Based Maize-Wheat Systems.

Finally, the researchers visited the CIMMYT-India office and met with Mahesh Kumar Gathala, systems agronomist and lead scientist.

“We are proud to host our Ethiopian colleagues. Collaborating with them allowed us to learn as much from them as they hopefully learned from us during their visit,” said Gathala.

A visit to CSSRI. (Photo: CIMMYT)

For Daniel Muleta (irrigated wheat project coordinator), Shimelis Alemayehu (agronomist), Hailu Mengistu (wheat breeder) and Lema Mamo (soil scientist) all from Ethiopian Institute of Agricultural Research (EIAR), the visit to India was beyond their imagination and gave them the opportunity to participate in salinity workshop, visited different institutions and gained experience. Shimelis said “even though the workshop was for experience sharing the travel made was beyond that”.

The team acknowledged CIMMYT-Ethiopia and CIMMYT India offices and EIAR management.

Bringing wild wheat’s untapped diversity into elite lines

A collaboration involving 15 international institutes across eight countries has optimized efforts to introduce beneficial traits from wild wheat accessions in genebanks into existing wheat varieties.

The findings, published in Nature Food, extend many potential benefits to national breeding programs, including improved wheat varieties better equipped to thrive in changing environmental conditions. This research was led by Sukhwinder Singh of the International Maize and Wheat Improvement Center (CIMMYT) as part of the Seeds of Discovery project.

Since the advent of modern crop improvement practices, there has been a bottleneck of genetic diversity, because many national wheat breeding programs use the same varieties in their crossing program as their “elite” source. This practice decreases genetic diversity, putting more areas of wheat at risk to pathogens and environmental stressors, now being exacerbated by a changing climate. As the global population grows, shocks to the world’s wheat supply result in more widespread dire consequences.

The research team hypothesized that many wheat accessions in genebanks — groups of related plant material from a single species collected at one time from a specific location — feature useful traits for national breeding programs to employ in their efforts to diversify their breeding programs.

“Genebanks hold many diverse accessions of wheat landraces and wild species with beneficial traits, but until recently the entire scope of diversity has never been explored and thousands of accessions have been sitting on the shelves. Our research targets beneficial traits in these varieties through genome mapping and then we can deliver them to breeding programs around the world,” Singh said.

Currently adopted approaches to introduce external beneficial genes into breeding programs’ elite cultivars take a substantial amount of time and money. “Breeding wheat from a national perspective is a race against pathogens and other abiotic threats,” said Deepmala Sehgal, co-author and wheat geneticist in the Global Wheat program at CIMMYT. “Any decrease in the time to test and release a variety has a huge positive impact on breeding programs.”

Deepmala Sehgal shows LTP lines currently being used in CIMMYT trait pipelines at the experimental station in Toluca, Mexico, for introgression of novel exotic-specific alleles into newly developed lines. (Photo: CIMMYT)
Deepmala Sehgal shows LTP lines currently being used in CIMMYT trait pipelines at the experimental station in Toluca, Mexico, for introgression of novel exotic-specific alleles into newly developed lines. (Photo: CIMMYT)

Taking into genetic biodiversity

The findings build from research undertaken through the Seeds of Discovery project, which genetically characterized nearly 80,000 samples of wheat from the seed banks of CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA).

First, the team undertook a large meta-survey of genetic resources from wild wheat varieties held in genebanks to create a catalog of improved traits.

“Our genetic mapping,” Singh said, “identifies beneficial traits so breeding programs don’t have to go looking through the proverbial needle in the haystack. Because of the collaborative effort of the research team, we could examine a far greater number of genomes than a single breeding program could.”

Next, the team developed a strategic three-way crossing method among 366 genebank accessions and the best historical elite varieties to reduce the time between the original introduction and deployment of an improved variety.

Sukhwinder Singh (second from left) selects best performing pre-breeding lines in India. (Photo: CIMMYT)
Sukhwinder Singh (second from left) selects best performing pre-breeding lines in India. (Photo: CIMMYT)

Worldwide impact

National breeding programs can use the diverse array of germplasm for making new crosses or can evaluate the germplasm in yield trials in their own environments.

The diverse new germplasm is being tested in major wheat producing areas, including India, Kenya, Mexico and Pakistan. In Mexico, many of the lines showed increased resistance to abiotic stresses; many lines tested in Pakistan exhibited increased disease resistance; and in India, many tested lines are now part of the national cultivar release system. Overall, national breeding programs have adopted 95 lines for their targeted breeding programs and seven lines are currently undergoing varietal trials.

“This is the first effort of its kind where large-scale pre-breeding efforts have not only enhanced the understanding of exotic genome footprints in bread wheat but also provided practical solutions to breeders,” Sehgal said. “This work has also delivered pre-breeding lines to trait pipelines within national breeding programs.”

Currently, many of these lines are being used in trait pipelines at CIMMYT to introduce these novel genomic regions into advanced elite lines. Researchers are collaborating with physiologists in CIMMYT’s global wheat program to dissect any underlying physiological mechanisms associated with the research team’s findings.

“Our investigation is a major leap forward in bringing genebank variation to the national breeding programs,” Singh explained. “Most significantly, this study sheds light on the importance of international collaborations to bring out successful products and new methods and knowledge to identify useful contributions of exotic in elite lines.”

Read the full article:
Direct introgression of untapped diversity into elite wheat lines

Cover photo: A researcher holds a plant of Aegilops neglecta, a wild wheat relative. Approximately every 20 years, CIMMYT regenerates wheat wild relatives in greenhouses, to have enough healthy and viable seed for distribution when necessary. (Photo: RocĂ­o Quiroz/CIMMYT)

Celebrating 10 years of the Borlaug Institute for South Asia

BISA and CIMMYT gather for a virtual 10 year celebration
BISA and CIMMYT gather for a virtual 10 year celebration.

A decade ago, a foundation was laid with a vision to secure food, nutrition, livelihoods, and the environment in South Asia. The Borlaug Institute of South Asia (BISA) was formed and the principles were set following the path of Norman Borlaug to translate the agrarian challenges into opportunities by collaborating with the International Maize and Wheat Improvement Center (CIMMYT) and the Indian Council of Agricultural Research (ICAR). BISA was established as an independent, non-profit research organization.

BISA anniversary Borlaug statue

To commemorate the 10th anniversary of BISA, Bram Govaerts, Director General, CIMMYT-BISA, gathered BISA staff for a virtual celebration on 5 October 2021. He congratulated BISA colleagues and said “[
] BISA has continued to expand Norman Borlaug’s vision and legacy. It has […] been committed and achieved excellence in science, seeds and partnerships by touching lives of millions of farmers and consumers.”

“Perhaps one of the most impactful outcomes of BISA’s work has been its contribution to build a strong and wide network for evaluating and disseminating new high yielding and climate-resilient wheat varieties for southern Asia in close partnership with ICAR and national agricultural research systems. CIMMYT-BISA has not only contributed towards this but will also make sure that India’s farmers are the happiest. Efforts will and have been made towards their income generation, livelihood for families, a clean environment and building of future agricultural resilience,” he added.

BISA milestones and achievements

Pramod Aggarwal, Regional Program Leader, BISA and CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), gave suggestions for the way forward and BISA’s future collaborations. He said, “It’s time to strengthen BISA and further expand it to other South Asian countries.”

Arun Joshi, Managing Director, BISA, spoke about the achievements of BISA throughout the last decade and about the establishment of the ‘Farms of the Future’. “BISA farms are equipped with state-of-the-art technology. BISA’s no residue burning, efficient resource management, precision phenotyping, climate resilient germplasm, quality seed and capacity development activities are just a few examples of BISA’s successful programs,” he said.

“BISA has been scaling climate smart agriculture technologies not only in Indian villages but to other countries of South Asia, as well, and has supported African colleagues in capacity development.” Joshi recalled the support provided by numerous funding partners, by ICAR (Government of India), state governments (Punjab, Bihar, Madhya Pradesh, Maharashtra), other governmental institutions, CIMMYT’s Board of Trustees and Management Committee team members and different research programs to strengthen BISA.

BISA Ludhiana team gathers for a celebration
BISA’s Ludhiana team gathers for a celebration

Celebrations galore  

In addition to the virtual celebration with the leadership of BISA and CIMMYT, numerous teams scattered across India celebrated the success and fruitful journey of BISA. The teams at BISA farms in Jabalpur (Madhya Pradesh), Pusa (Bihar), and Ludhiana (Punjab) marked the occasion by gathering at a COVID-19-appropriate distance and paid regards to Norman Borlaug and spoke about the objectives and vision of BISA.

BISA Jabalpur team gathers for a celebration
BISA’s Jabalpur team gathers for a celebration

The New Delhi team celebrated by garlanding the statue of Borlaug, that stands in front of the office of BISA based at the National Agriculture Science Complex (NASC).

Capturing the decade-long journey

The ten-year journey of BISA is captured in “A Decade of Research in Borlaug Institute for South Asia (BISA) 2011-2021,” a research highlights report that was unveiled during the virtual celebration and that will soon be available online. Arun Joshi explained that the document encapsulates the spirit of BISA and its achievements throughout the last ten years. Its sixteen themes define the work of BISA and its reach across South Asia.

Special celebratory BISA report to mark its 10 years of success

The report also informs of BISA’s outreach activities throughout the last decade and its impact on climate resilient agriculture. Themes such as ‘Managing Rice Residue Burning’, ‘Climate Smart Village Approach’, ‘Precision Phenotyping in Wheat Breeding’, ‘Developing Improved Crop Insurance Products’, ‘Mainstreaming Gender in Climate-Resilient Agriculture’ reveal how BISA scaled up these approaches with its advanced technology mechanisms. In addition, every theme captures information related to funding and research partners.

Overall, the ten-year report is a robust document which showcases how millions of farmers in South Asia have benefitted from the strong scientific partnership of BISA and national programs.

CIMMYT scientists join 60th All India Wheat and Barley Research Workers’ Meet

Gyanendra Pratap Singh (center), Director of ICAR-IIWBR, presents at the 60th All India Wheat and Barley Research Workers’ Meet. (Photo: Courtesy of ICAR-IIWBR)
Gyanendra Pratap Singh (center), Director of ICAR-IIWBR, presents at the 60th All India Wheat and Barley Research Workers’ Meet. (Photo: Courtesy of ICAR-IIWBR)

The International Maize and Wheat Improvement Center’s (CIMMYT) legacy of work with the Indian Centre for Agricultural Research (ICAR) has once again produced more successful collaborations this year. This solid partnership resulted in the release of new varieties poised to bring new, superior yielding, disease-resistant, high-quality wheat varieties suitable for different production environments to Indian farms.

The National Variety Release Committee announced the release of nine new varieties at the 60th All India Wheat and Barley Research Workers’ Virtual Meet on August 23–24, 2021, hosted by the Indian Institute of Wheat and Barley Research (IIWBR) of ICAR. Of the nine new varieties identified, five were selected by national partners from CIMMYT international trials and nurseries.

At the event, ICAR-IIWBR director Gyanendra Pratap (GP) Singh highlighted the impressive growth trajectory of India’s wheat production, estimated at 109.52 million tons of wheat harvested in 2021, a figure which was 86.53 million tons in 2015 and less than 60 million tons in 1991. Singh highlighted that this success is dependent upon the deployment of superior wheat varieties, bridging yield and information gaps, strengthened seed value chain, supportive government policies and, of course, farmer support to adopt new varieties and technologies.

The CIMMYT-derived varieties announced at the meeting include DBW296, DBW327, DBW332, HUW296 and JKW261. A few days earlier, variety PBW869 was released by the Punjab Agricultural University for growing in Punjab State under conservation agriculture practices.

“An innovative and powerful feature of ICAR-CIMMYT collaboration has been the introduction of long-term (10-month) rotational involvement of Indian young scientists in CIMMYTs breeding program at Mexico as well as in wheat blast screening in Bolivia,” said Arun Joshi, CIMMYT Regional Representative for Asia and Managing Director, Borlaug Institute for South Asia (BISA). “In this way, the breeding program of CIMMYT is an excellent example of joint breeding program with national institutions.”

At the 60th All India Wheat and Barley Research Workers’ Meet, participants highlighted new varieties, production growth and strengthened collaboration. (Photo: CIMMYT)
At the 60th All India Wheat and Barley Research Workers’ Meet, participants highlighted new varieties, production growth and strengthened collaboration. (Photo: CIMMYT)

Beyond expectations

In addition to these important new wheat varieties, some CIMMYT-derived wheat varieties that were released in recent years have now been deemed suitable for regions beyond their initial region of cultivation, showing wide adaptation and yield stability.

Wheat variety DBW222, released in 2020 for the northwestern plain zone, has now been deemed suitable for cultivation in the northeastern plain zone. Similarly, DBW187, which was initially released for the northeastern plain zone, and then for northwestern plain zone as well for early sowing, is now also extended for sowing in the central zone, together representing 25 million hectares of the 31 million hectares of wheat grown in India.

“Farmers prefer these types of varieties that give them flexibility during sowing time, and have high, stable yields, and disease resistance,” GP Singh said at the meeting.

A major achievement discussed at this year’s event was that three of the new varieties — DBW187, DBW303 and DBW222 — achieved record-high demand in Breeders Seed Indent, with first, second and seventh ranks, respectively. This is a reflection and indirect measure of popularity and demand for a variety. IIWBR’s innovative strategy to implement pre-release seed multiplication and create demand for seeds from new varieties has led to a faster turnover of improved varieties.

According to Ravi Singh, Distinguished Scientist and Head of Global Wheat Improvement at CIMMYT, the collaborators are “further expanding our partnership through the support from the Accelerating Genetic Gains in Maize and Wheat (AGG) and zinc-mainstreaming projects, to expand testing of larger sets of elite lines in targeted populations of environments of the four South Asian countries where various IIBWR-affiliated institutions shall expand testing in the 2021–22 crop season.” CIMMYT looks forward to continuing ongoing and new collaborations with the ICAR-IIWBR programs to deliver even faster genetic gain for yield and grain zinc levels in new varieties, he explained.

Speaking during the meeting Alison Bentley, Director of CIMMYT’s Global Wheat Program, highlighted the collaborative efforts underway as part of the AGG project to accelerate breeding progress. “Innovations and discoveries in breeding approaches are being rapidly made — with further investment needed — to quickly and equitably accumulate and deploy them to farmers,” she said.

CIMMYT scientist Ravi Singh receives prestigious award from the Government of India

The President of India, Ram Nath Kovind (left) and the Minister of External Affairs, Subrahmanyam Jaishankar (right) announce the award to Ravi Singh. (Photo: Ministry of External Affairs, India)
The President of India, Ram Nath Kovind (left) and the Minister of External Affairs, Subrahmanyam Jaishankar (right) announce the award to Ravi Singh. (Photo: Ministry of External Affairs, India)

Ravi Singh, Distinguished Scientist and Head of Global Wheat Improvement at the International Maize and Wheat Improvement Center (CIMMYT), has received the highest honor conferred by the Government of India to non-resident Indians.

The Pravasi Bharatiya Samman Award recognizes outstanding achievements by non-resident Indians, persons of Indian origin, or organizations or institutions run by them either in India or abroad. Awardees are selected for their support to India’s causes and concerns by a committee led by the Vice President and the Minister of External Affairs of India. The awardees, according to the awards website, “represent the vibrant excellence achieved by our diaspora in various fields.” The online award announcement ceremony took place on January 9, 2021, with India’s President Ram Nath Kovind as a chief guest.

Ravi Singh, whose career at CIMMYT spans 37 years, was recognized for his invaluable contributions to wheat research and the development and training of scientists that have increased food production and nutritional security in Mexico, India and numerous other countries in Africa, Asia and Latin America.

“The award recognizes and values many years of wheat breeding at CIMMYT, where I had the opportunity, privilege and satisfaction to have contributed and made impacts through our invaluable partners in India and many other countries,” Singh said. “By continuously providing superior varieties, we increased wheat production and incomes of millions of smallholder farming families.”

Singh’s nomination cited his contribution to the development, release and cultivation by national partners worldwide of over 550 wheat varieties over the past three decades. These national partners include the Indian Council of Agricultural Research (ICAR) and its affiliated institutions in India. These varieties, sown annually on over 40 million hectares by as many farmers, add over $1 billion annually to farmers’ incomes through increased productivity and built-in disease resistance, thus reducing chemical dependence to a negligible level.

Ravi Singh (left, in striped shirt) shows students how to score the seed of freshly-harvested wheat lines at CIMMYT's experimental station near Ciudad ObregĂłn, Mexico, during the international Wheat Improvement Course in 2007. (Photo: CIMMYT)
Ravi Singh (left, in striped shirt) shows students how to score the seed of freshly-harvested wheat lines at CIMMYT’s experimental station near Ciudad ObregĂłn, Mexico, during the international Wheat Improvement Course in 2007. (Photo: CIMMYT)

“Great teamwork leads to breakthroughs — and is the only way to achieve a common goal. Dr. Ravi Singh’s work alleviating hunger is a great service to mankind,” said Gyanendra Pratap Singh, director of the ICAR Indian Institute of Wheat and Barley Research (ICAR-IIWBR). “We are proud to have him on our team.”

“This award recognizes Dr. Ravi Singh’s important contribution to CIMMYT wheat breeding, delivering major impacts to wheat production and smallholder livelihoods in India, and around the world,” said Alison Bentley, director of CIMMYT’s Global Wheat Program.

Over his career, Singh has nourished and further expanded an already strong partnership between CIMMYT, ICAR and various agricultural universities in India by developing and sharing each year new, diverse wheat varieties possessing increased grain and straw yields, resistance to diseases such as rusts, spot blotch and blast, climate resilience, and processing and nutritional quality.

Over the past decade, Singh’s team developed about half of the wheat varieties released in India through the ICAR network. These include the country’s first high-yielding biofortified varieties, WB-2 and PBW1-Zn, released in 2017 to benefit India’s zinc-deficient population.

Millions of farmers in India continue to grow CIMMYT wheat varieties or their derivatives developed by Indian institutions, to ensure safe and abundant harvests and better nutrition.

Ravi Singh’s numerous recognitions include membership as a Fellow of the American Association for the Advancement of Science (AAAS), the American Phytopathological Society (APS), the Crop Science Society of America (CSSA), the American Society of Agronomy (ASA) and India’s National Academy of Agricultural Science (NAAS). His awards include the Outstanding CGIAR Scientist Award, the CSSA Crop Science Research Award, the University of Minnesota E.C. Stakman Award, and the China State Council’s Friendship Award, among others. He has been included among the top 1% of highly cited researchers according to Clarivate Analytics-Web of Science every year since 2017. Singh also serves as Adjunct Professor at Cornell University and Kansas State University.

Borlaug Institute for South Asia (BISA)

The Borlaug Institute for South Asia (BISA) is a non-profit international research institute dedicated to food, nutrition and livelihood security as well as environmental rehabilitation in South Asia, which is home to more than 300 million undernourished people. BISA is a collaborative effort involving the CIMMYT and the Indian Council for Agricultural Research. The objective of BISA is to harness the latest technology in agriculture to improve farm productivity and sustainably meet the demands of the future. BISA is more than an institute. It is a commitment to the people of South Asia, particularly to the farmers, and a concerted effort to catalyze a second Green Revolution.

BISA was established on October 5, 2011, through an agreement between the Government of India (GoI) and CIMMYT and was bolstered by the globally credible name of Nobel Laureate Norman Ernest Borlaug. The institution draws on the decades of experience and success by CIMMYT, the Consultative Group on International Agricultural Research (CGIAR), and a global network of partners in using research to generate tangible benefits for farmers internationally. BISA is supported by a growing number of national stakeholders in South Asia. It is committed to stronger collaborations for accelerated impact, most prominently with the Indian Council of Agricultural Research (ICAR) and the three state governments (Punjab, Bihar, and Madhya Pradesh) where BISA farms are located.

Objectives

  • Ensure access to the latest in research and technologies that are currently not available in the region
  • Strategize research aimed at doubling food production in South Asia while using less water, land and energy
  • Strengthen cutting-edge research that validates and tests new technologies to significantly increase yield potential
  • Develop technologies for higher productivity in rice, maize and wheat based farming systems
  • Design research outputs targeted to small and marginal farmers across the region
  • Build on CIMMYT’s vast germplasm resources, and make research products and know-how developed by BISA freely available to stakeholders
  • Create a new generation of scientists to work with new technologies through training programs that will retain them in South Asia
  • Enable researchers to pursue multiple strategies and research possibilities while simultaneously allowing for more meaningful collaboration with national institutions
  • Build a forum with partners from all sectors – research centers, governments, science community, businesses and farmers – to transform farmers’ lives and improve food security in the region
  • Develop a policy environment that embraces new technologies and encourages investments in agricultural research
  • Develop and utilize BISA as a regional platform that focuses on agricultural research in the whole of South Asia

Download the BISA Annual Report 2022.

For more information:

Meenakshi Chandiramani
Office Manager
CIMMYT-BISA
m.chandiramani@cgiar.org

Richa Sharma Puri
Communication Specialist
CIMMYT-BISA
r.puri@cgiar.org

The perilous life of aphids fascinates South Asian crop scientists

The wheat plant protection group attend interactive group meeting at IIWBR, Karnal, India. Photo: CIMMYT
The wheat plant protection group attend interactive group meeting at IIWBR, Karnal, India. Photo: CIMMYT

Among the world’s most destructive and hated crop pests, the sap-sucking insects known as aphids are engaged in dramatic evolutionary battles with predators that include wasps whose larvae hatch and pupate in aphid bodies, devouring them from inside.

Rather than a new science fiction/horror film, this scenario is actually the basis for innovative pest control, as described by topic experts at two presentations of their interactive program “Aphids and their biological control on wheat, barley and maize” for wheat scientists in India and Nepal on 24 and 26 November 2014.

“The 34 participants, including 26 in Nepal and 8 in India, heard short lectures on maize and wheat aphids and other insect pests, followed by videos on aphid biology and their biological control,” said Arun Joshi, CIMMYT wheat breeder based in Nepal who helped organize the programs, in conjunction with the Indian Institute of Wheat and Barely Research (IIWBR) of the Indian Council of Agricultural Research (ICAR) at Karnal and the Nepal Agricultural Research Council (NARC). “They learned about the special traits of the biological control agents that can be used in South Asia, as well as how to rear and spread them in crop fields, with the idea of training farmers in these skills.”

The participants in Nepal. Photo: CIMMY
The participants in Nepal. Photo: CIMMY

The main presenter, Prof. Urs Wyss, Institute of Phytopathology, University of Kiel, Germany, has produced over 70 films on insect pest biology and bio-control. Prof. Chandra Prakash Srivastava, Head, Department of Entomology, Banaras Hindu University, India, spoke to both groups about maize and wheat insect pests and their management.

“This is the first program on wheat insect pest management and biological control at IIWBR (former DWR, Karnal) in two decades,” said Dr. Indu Sharma, IIWBR project director. Joshi said that NARC colleagues made similar comments in praise of the program.

The training program was organized in response to mounting evidence of crop damage from aphids in Peninsular and northwestern India and the Terai and Midhills of Nepal. It was conducted at IIWBR, Karnal, through Dr. Indu Sharma and Dr. M.S. Saharan and in Nepal through Dr. Yagya Prasad Giri, Head, Entomology, NARC.

Other institutions represented in India included:

  • Chandra Shekhar Azad University of Agriculture and
    Technology, Kanpu.
  • Agriculture Research Station, Niphad, Maharashtra.
  • Agriculture Research Station, Durgapura, Rajasthan.
  • Centre of Excellence for Research on Wheat, S.D.
  • Agriculture University, Vijapur, Gujrat.
  • Punjab Agriculture University, Ludhiana.
  • G.B. Pant Univ. of Agriculture and Technology,
    Pantnagar.
  • Assam Agricultural University, Shillongani, Nagoan.
    Uttar Banga Agriculture University, West Bengal.

In Nepal participants came from:

  • The Department of Entomology, National Agriculture
    Research Institute, Khumaltar.
  • National Wheat Research Program (NWRP),
    Bhairahwa.
  • National Maize Research Program (NMRP), Rampur.