Skip to main content

funder_partner: iDE

MARPLE reaches South Asia

Workshop participants stand for a group photo. (Photo: Danny Ward/John Innes Centre)
Workshop participants stand for a group photo. (Photo: Danny Ward/John Innes Centre)

On April 26–29, 2022, researchers from Nepal participated in a workshop on the use of MARPLE Diagnostics, the most advanced genetic testing methodology for strain-level diagnostics of the deadly wheat yellow rust fungus. Scientists from the International Maize and Wheat Improvement Center (CIMMYT) and the John Innes Centre trained 21 researchers from the Nepal Agricultural Research Council (NARC) and one from iDE. The workshop took place at NARC’s National Plant Pathology Research Centre in Khumaltar, outside the capital Kathmandu.

“The need for new diagnostic technologies like MARPLE and the critical timing of the workshop was highlighted by the severe yellow rust outbreak observed this season in the western areas of Nepal,” commented Dave Hodson, Senior Scientist at CIMMYT and project co-lead. “Having national capacity to detect the increasing threats from yellow rust using MARPLE will be an important tool to help combat wheat rusts in Nepal”.

The yellow rust fungus can cause grain yield losses of 30–80 % to wheat, Nepal’s third most important food crop.

Current diagnostic methods for wheat rust used in Nepal are slow, typically taking months between collecting the sample and final strain identification. They are also costly and reliant on sending samples overseas to highly specialized labs for analysis.

MARPLE (Mobile and Real-time PLant disEase) Diagnostics is the first method to place strain-level genetic diagnostics capability directly into the hands of Nepali researchers, generating data in-country in near-real time, for immediate integration into early warning systems and disease management decisions.

“This is a fantastic opportunity to bring the latest innovations in plant disease diagnostics for the wheat rust pathogens to where they are needed most, in the hands of researchers in the field working tirelessly to combat these devastating diseases,” commented Diane Saunders, Group Leader at the John Innes Centre and project co-lead.

Diane Saunders (left), Group Leader at the John Innes Centre and project co-lead, observes workshop participants during the use of MARPLE. (Photo: Danny Ward/John Innes Centre)
Diane Saunders (left), Group Leader at the John Innes Centre and project co-lead, observes workshop participants during the use of MARPLE. (Photo: Danny Ward/John Innes Centre)

Suraj Baidya senior scientist and chief of the National Plant Pathology Research Centre at NARC noted the worrying recent geographical expansion of yellow rust in Nepal. “Due to global warming, yellow rust has now moved into the plain and river basin area likely due to evolution of heat tolerant pathotypes. MARPLE Diagnostics now gives us the rapid diagnostics needed to help identify and manage these changes in the rust pathogen population diversity,” he said.

The highly innovative MARPLE Diagnostics approach uses the hand-held MinION nanopore sequencer, built by Oxford Nanopore, to generate genetic data to type strains of the yellow rust fungus directly from field samples.

Beyond MARPLE Diagnostics, Saunders noted that “the workshop has also opened up exciting new possibilities for researchers in Nepal, by providing local genome-sequencing capacity that is currently absent.”

MARPLE (Mobile and Real-time PLant disEase) Diagnostics is a revolutionary mobile lab kit. It uses nanopore sequence technology to rapidly diagnose and monitor wheat rust in farmers’ fields. (Photo: Danny Ward/John Innes Centre)
MARPLE (Mobile and Real-time PLant disEase) Diagnostics is a revolutionary mobile lab kit. It uses nanopore sequence technology to rapidly diagnose and monitor wheat rust in farmers’ fields. (Photo: Danny Ward/John Innes Centre)

What’s next for MARPLE Diagnostics in Nepal?

Following the successful workshop, Nepali researchers will be supported by CIMMYT and the John Innes Centre to undertake MARPLE Diagnostics on field samples collected by NARC. “The current plan includes monitoring of yellow rust on the summer wheat crop planted at high hill areas and then early sampling in the 2022/23 wheat season,” Hodson noted.

“We were struck by the enthusiasm and dedication of our colleagues to embrace the potential offered by MARPLE Diagnostics. Looking forward, we are excited to continue working with our Nepali colleagues towards our united goal of embedding this methodology in their national surveillance program for wheat rusts,” Saunders remarked.

MARPLE Diagnostics is supported by the Feed the Future Innovation Lab for Current and Emerging Threats to Crops, funded by the United States Agency for International Development (USAID), the UK Biotechnology and Biological Sciences Research Council (BBSRC) Innovator of the Year Award, the CGIAR Big Data Platform Inspire Challenge, the Bill & Melinda Gates Foundation and the United Kingdom’s Foreign, Commonwealth and Development Office.

This article was originally published on the JIC website.

Bending gender norms: women’s engagement in agriculture

Pragya Timsina interviewing a farmer in Rangpur, Bangladesh. (Photo: Manisha Shrestha/CIMMYT)
Pragya Timsina interviewing a farmer in Rangpur, Bangladesh. (Photo: Manisha Shrestha/CIMMYT)

Researchers at the International Maize and Wheat Improvement Center (CIMMYT) have studied and witnessed that women, particularly in South Asia, have strongly ingrained and culturally determined gender roles.

While women play a critical part in agriculture, their contributions are oftentimes neglected and underappreciated. Is there any way to stop this?

On International Day of Women and Girls in Science, we spoke to Pragya Timsina about how women’s participation in agriculture is evolving across the Eastern Gangetic Plains and her findings which will be included in a paper coming out later this year: ‘Necessity as a driver of bending agricultural gender norms in South Asia’. Pragya is a Social Researcher at CIMMYT, based in New Delhi, India. She has worked extensively across different regions in India and is currently involved in various projects in India, Nepal and Bangladesh.

What is the current scenario in the Eastern Gangetic Plains of South Asia on gender disparities and women’s involvement in agriculture? Is it the same in all locations that your research covered?

Currently, traditional roles, limited mobility, societal criticism for violating gender norms, laborious unmechanized agricultural labor, and unacknowledged gender roles are among the social and cultural constraints that women face in the Eastern Gangetic Plains. Our research shows that while these norms exist throughout the Eastern Gangetic Plains, there are outliers, and an emerging narrative that is likely to lead to further bending (but not breaking, yet) of such norms.

Are there any factors that limit women from participating in agriculture? 

Cultural and religious norms have influence gender roles differently in different households but there are definitely some common societal trends. Traditionally, women are encouraged to take on roles such as household chores, childcare, and livestock rearing, but our research in the Eastern Gangetic Plains found that in specific regions such as Cooch Behar (West Bengal), women were more actively involved in agriculture and even participated in women-led village level farmers’ groups.

How or what can help increase women’s exposure to agricultural activities?

At the community level, causes of change in gender norms include the lack of available labor due to outmigration, the necessity to participate in agriculture due to a labor shortage, and a greater understanding and exposure to others who are not constrained by gendered norms. There are instances where women farmers are provided access and exposure to contemporary and enhanced technology advances, information, and entrepreneurial skills that may help them become knowledgeable and acknowledged agricultural decision makers. In this way, research projects can play an important role in bending these strongly ingrained gendered norms and foster change.

In a context where several programs are being introduced to empower women in agriculture, why do you think they haven’t helped reduce gender inequality?

Our study reveals that gender norms that already exist require more than project assistance to transform.

While some women in the Eastern Gangetic Plains have expanded their engagement in public places as they move away from unpaid or unrecognized labor, this has not always mirrored shifts in their private spaces in terms of decision-making authority, which is still primarily controlled by men.

Although, various trends are likely to exacerbate this process of change, such as a continued shortage of available labor and changing household circumstances due to male outmigration, supportive family environments, and peer support.

What lessons can policymakers and other stakeholders take away to help initiate gender equality in agriculture?

Although gender norms are changing, I believe they have yet to infiltrate at a communal and social level. This demonstrates that the bending of culturally established and interwoven systemic gender norms across the Eastern Gangetic Plains are still in the early stages of development. To foster more equitable agricultural growth, policymakers should focus on providing inclusive exposure opportunities for all community members, regardless of their standing in the household or society.

What future do the women in agriculture perceive?

Increasing development projects are currently being targeted towards women. In certain circumstances, project interventions have initiated a shift in community attitudes toward women’s participation. There has been an upsurge in women’s expectations, including a desire to be viewed as equal to men and to participate actively in agriculture. These patterns of women defying gender norms appear to be on the rise.

What is your take on women’s participation in agriculture, to enhance the desire to be involved in agriculture?

Higher outmigration, agricultural labor shortages, and increased shared responsibilities, in my opinion, are likely to expand rural South Asian women’s participation in agricultural operations but these are yet to be explored in the Eastern Gangetic Plains. However, appropriate policies and initiatives must be implemented to ensure continued and active participation of women in agriculture. When executing any development projects, especially in the Eastern Gangetic Plains, policies and interventions must be inclusive, participatory, and take into account systemic societal norms that tend to heavily impact women’s position in the society.

Women in agriculture mechanization in Bangladesh

Agriculture mechanization in Bangladesh connects local manufacturers of machinery parts (which is mainly done by the country’s light engineering industry) and the operation of those machines, generally run by machinery solution providers. These two workforces are equally male-dominated. The reasons behind this are social norms, and family and community preconceptions, coupled with the perception that women cannot handle heavy machinery. But a deeper look into this sector shows us a different reality, where many women are working enthusiastically as part of agriculture mechanization.

The International Maize and Wheat Improvement Center (CIMMYT) is supporting women to work in light engineering workshops, and to become entrepreneurs by providing machinery solutions to farmers.

Painting her own dream

Rokeya Begum, 39, has been working in Uttara Metal Industries for three and half years, clearing up and assisting her male colleagues in paint preparation. All this time, she wanted to be the one doing the painting.

Begum was one of the 30 young women from Bogura, Northern Bangladesh, recently trained by CIMMYT through the Cereal Systems Initiative for South Asia-Mechanization Extension Activity (CSISA-MEA). They learnt various aspects of the painting trade and related operational techniques, such as mixing colors, the difference between primer and topcoats, and health and safety in the workplace.

Now the focus is on job creation for women in the sector. CIMMYT has initiated discussions with established enterprises to recruit women as painters in their workshops, with all the benefits of their male counterparts.

Having completed painting training, Begum practices spray painting for an hour every day. Her employer is happy with her finished work and plans to promote her to the position of painter. Begum says, “I’m so happy to have learned a new technique — plus I really enjoy the work.” Her current pay of $12 per week will increase by 50% when she starts her new job.

Alongside training, this mechanization activity is working to create a decent and safe working environment for women, including adequate, private and safe spaces, such as bathrooms and places to take breaks.

Seedling of an entrepreneur

For the first time ever, in the last monsoon aman rice cultivation season, Kulsum Akter, 30, earned $130, by selling rice seedlings she had grown to be planted out by mechanical rice transplanters. Two years ago, Akter’s husband Md. Abdul Motaleb bought a rice transplanter with the assistance of a government subsidy from the Government of Bangladesh’s Department of Agricultural Extension. While he invested $5,000 in the machine, his skills in operating it were sub-par.

Supported by the USAID-funded Feed the Future Bangladesh Mechanization and Extension Activity, Motaleb was trained in mechanized rice transplanter operation by a private company, The Metal Pvt. Ltd.

Akter was in turn trained in special techniques for growing seedlings so they can be planted out using a rice transplanting machine. CIMMYT then provided technical and business guidance to this husband-and-wife duo, enabling them to embark confidently on a strong business venture. Key training topics included growing mat-type seedlings for machines, business management, cost-benefit analysis, product promotion and business expansion concepts. Motaleb went on to provide mechanical transplanting services to other farmers in the locality.

Meanwhile, Akter was inspired to take the lead in preparing seedlings as a business venture to sell to farmers who use mechanical rice transplanters. Akter invested $100 in the last aman season, by the end of which she had earned $230 by selling the seedlings in just one month. This success has encouraged her to prepare seedlings for many more farmers during the winter rice production season. “The training in rice transplanter operation and seedling preparation was a gift for us. I’m trying to get more women into this business — and I’m pretty optimistic about it,” Akter says. Through the Mechanization and Extension Activity, CIMMYT aims to create more than 100 women entrepreneurs like Akter who will contribute to the mechanization of agriculture through their work as service providers.

CSISA-MEA’s work increases women’s capacity to work in the agricultural mechanization sector and manage machinery-based businesses through technical and business training. Through opportunities like these, more women like Begum and Akter will be enabled to achieve self-sufficiency and contribute to the development of this sector.

Cereal Systems Initiative for South Asia Mechanization Extension Activity (CSISA-MEA) is funded by the United States Agency for International Development (USAID) Feed the Future initiative.

Cover photo: The CSISA-MEA project increases women’s capacity to work in the agricultural mechanization sector, therefore achieving self-sufficiency. (Abdul Momin/CIMMYT)

Govt mulling mechanization to boost jute production

The Bangladeshi government is thinking of expanding the work of the Cereal Systems Initiative for South Asia-Mechanization Extension Activity (CSISA-MEA) project in Bogra, Jessore, Faridpur and Cox’s Bazar to the rest of the country.

The joint initiative, launched in October 2019 and funded by the United States Agency for International Development (USAID) Feed the Future initiative, seeks to promote the mechanization of jute production across Bangladesh, among other issues.

Read more: https://www.dhakatribune.com/bangladesh/2021/09/29/will-mechanization-boost-the-jute-sector

New solutions for chopping fodder

It is a laborious and time-consuming process: chopping plant matter by hand to feed to livestock. In Cox’s Bazar district, in eastern Bangladesh, it is common practice. A mechanized fodder chopper can do the job more quickly and efficiently — yet this simple but effective machine has not seen much use in the region.

To address this, a collaboration between the International Maize and Wheat Improvement Center (CIMMYT) and aid organizations in the region is creating networks between farmers, agriculture service providers and the businesses that make and distribute the machines.

The Cox’s Bazar region is host to around 900,000 Rohingya refugees who were displaced from Myanmar. The influx of refugees has put a strain on resources in the region. This collaborative effort took place near the camps, in an effort to support capacity and economic development in the host communities nearby.

Though this collaboration has only been around for a few months, it has already seen early success, and received an award from the United States Agency for International Development (USAID). The award recognized the organizations’ “outstanding collaboration that contributed to increased and efficient livestock production through mechanization in the host communities impacted by the influx of Rohingya refugees.”

Mechanization and livestock collaboration

The project — funded by USAID — is a partnership between two existing efforts.

The first is Cereal Systems Initiative for South Asia – Mechanization Extension Activity (CSISA-MEA), which aims to boost the country’s private agricultural machinery industry while supporting local farmers. This initiative supports the mechanization of agriculture in Bangladesh, through increased capacity of the private sector to develop, manufacture and market innovative new technologies. CSISA-MEA is implemented by the International Maize and Wheat Improvement center (CIMMYT) in partnership with iDE and Georgia Institute of Technology.

The second is the Livestock Production for Improved Nutrition (LPIN) Activity, which works to improve nutrition and income generation among rural households in the region.

“We made a great collaboration with LPIN,” said Jotirmoy Mazumdar, an agriculturalist working with CSISA-MEA. “We’re very happy that our initiative helped us achieve this award. In this short time period, a new market opportunity was created.”

Nonstop chop

There are numerous benefits to using fodder choppers, according to Muhammad Nurul Amin Siddiquee, chief of party of LPIN. For one, having access to the choppers can save farmers around $7 (600 Bangladeshi taka) in labor costs per day, and reduce the amount of feed wasted by 10–15%. On average, a farmer can hand-chop 500 kg of forage or fodder each day, while the machines can process around 1,000 kg of the material per hour.

According to Siddiquee, giving chopped feed to livestock improves their productivity. One farmer’s herd of 17 crossbreed cows produced 115 liters of milk per day — he expects this to increase to 130 liters per day after feeding them fodder produced with a mechanized chopper.

“He can now save labor costs and four hours of his time per day by using the fodder chopping solutions,” he said, adding that the collaborative effort is “fostering increased livestock productivity and [farmer] incomes.”

However, Cox’s Bazar is far away from the center of Bangladesh, where most of these machines are produced. For example, there are more than 30 small engineering workshops in the more centrally located Khulna Division and they have cumulatively made 7,470 choppers.

“In Cox’s Bazar, it was almost impossible for those livestock farmers to get to know the chopper machines, and actually get access to them,” said Khaled Khan, team lead with iDE, who also aided in private-sector engagement.

So, the collaboration between CSISA-MEA and LPIN began connecting farmers and agriculture service providers with these fodder chopper producers and distributors. Moreover, it worked to increase knowledge of how to operate the machines among the farmers.

“Fodder choppers are an entirely new technology in Cox’s Bazar,” said Zakaria Hasan, CSISA team lead in the district.

Though it is still early days, the partnership has been met with a warm reception. Farmers and agriculture service providers cumulatively purchased 12 of the choppers within two weeks — each machine can support its owner and five other farmers — and three dealers are now selling the machines to meet farmer demand. In the region, 60 dairy farms are now purchasing chopped fodder for their livestock.

According to Khan, engaging the private sector in this project was essential. He explained that increasing the connectivity between the buyers and the sellers will help make the market larger and more stable.

“We found the perfect opportunity of supply and demand because their partners are demanding our partners’ service. The role of the private sector was the most important for the sustainability of this marriage of demand and supply,” Khan said.

“We want to establish a linkage between these two private entities. Our project’s job is to facilitate that, so that even after the project is over this networking continues in the future.”

Cover photo: Farmer Hosne Ara uses a mechanized fodder chopper to prepare feed for livestock in Bangladesh. (Photo: Ashraful Alam/CIMMYT)

Power steering

Protected from the harsh midday sun with a hat, Pramila Mondal pushes behind the roaring engine of a two-wheel tractor. She cultivates a small plot of land with her husband in the small village of Bara Kanaibila, in the Rajbari district of Bangladesh, near the capital Dhaka.

Using this machine, she also provides planting services to farmers who need to sow wheat, maize, mungbean, mustard and jute, earning her between $600 and $960 in each planting season.

Mondal and her husband first heard about this technology five years ago, when they attended an event to promote agricultural mechanization, organized by the International Maize and Wheat Improvement Center (CIMMYT). After seeing a demonstration, they were convinced that the power-tiller-operated seeder could form the basis for a business.

Ultimately, Mondal bought the machine. She got training on how to operate and maintain it, as part of the Cereal Systems Initiative for South Asia – Mechanization Irrigation and Mechanization Extension Activity (CSISA-MI and CSISA-MEA) project, supported by USAID through Feed the Future.

Let’s get it started

Pramila Mondal activates the self-starting mechanism on her power-tiller-operated seeder. (Photo: Shahabuddin Shihab/CIMMYT)
Pramila Mondal activates the self-starting mechanism on her power-tiller-operated seeder. (Photo: Shahabuddin Shihab/CIMMYT)

Mondal became the only woman in her area who could operate a seeder of this type, making her locally famous. After seeing the results of her business, others followed suit.

Eight more women in her area expressed interest in operating power-tiller-operated seeders and also went on to become service providers.

They all faced a similar problem: power tillers are hard to start. Pulling the starting rope or turning the hand crank requires a lot of strength.

The CSISA-MEA project team worked with a local engineering company to introduce a self-starting mechanism for power tiller engines. Since then, starting diesel engines is no longer a problem for women like Mondal.

Glee for the tillerwoman

Almost all of the 11 million hectares of rice planted every year in Bangladesh are transplanted by hand. It is becoming increasingly difficult to find people willing to do this type of backbreaking work. New machines are being introduced that transplant rice mechanically, but they require rice seedling to be raised in seedling mats.

As this new service is required, Mondal jumped at the opportunity. With support from CIMMYT through the CSISA-MEA project, she is now raising seedlings for this new type of rice transplanters.

CIMMYT facilitated training for machinery service providers on mat type seedling production, in partnership with private companies. Mondal and other women who were also trained produced enough seedlings to plant 3.2 hectares of land with a rice transplanter they hired from a local owner.

Mondal and her husband now have big dreams. They intend to buy a rice transplanter and a combine harvester.

“With our effort we can make these changes, but a little support can make big difference, which the CSISA-MEA project did,” she said.

Research, innovation, partnerships, impact

On May 15, 2019, as part of the CGIAR System Council meeting held at the ILRI campus in Addis Ababa, Ethiopia, around 200 Ethiopian and international research and development stakeholders convened for the CGIAR Agriculture Research for Development Knowledge Share Fair. This exhibition offered a rare opportunity to bring the country’s major development investors together to learn and exchange about how CGIAR investments in Ethiopia help farmers and food systems be more productive, sustainable, climate resilient, nutritious, and inclusive.

Under the title One CGIAR — greater than the sum of its parts — the event offered the opportunity to highlight close partnerships between CGIAR centers, the Ethiopian government and key partners including private companies, civil society organizations and funding partners. The fair was organized around the five global challenges from CGIAR’s business plan: planetary boundaries, sustaining food availability, promoting equality of opportunity, securing public health, and creating jobs and growth. CGIAR and its partners exhibited collaborative work documenting the successes and lessons in working through an integrated approach.

There were 36 displays in total, 5 of which were presented by CIMMYT team members. Below are the five posters presented.

How can the data revolution help deliver better agronomy to African smallholder farmers?

This sustainability display showed scalable approaches and tools to generate site-specific agronomic advice, developed through the Taking Maize Agronomy to Scale in Africa (TAMASA) project in Nigeria, Tanzania and Ethiopia.

Maize and wheat: Strategic crops to fill Ethiopia’s food basket

This poster describes how CGIAR works with Ethiopia’s research & development sector to support national food security priorities.

Addressing gender norms in Ethiopia’s wheat sector

Research shows that restrictive gender norms prevent women’s ability to innovate and become productive. This significantly impacts Ethiopia’s economy (over 1% GDP) and family welfare and food security.

Quality Protein Maize (QPM) for better nutrition in Ethiopia

With the financial support of the government of Canada, CIMMYT together with national partners tested and validated Quality Protein Maize as an alternative to protein intake among poor consumers.

Appropriate small-scale mechanization

The introduction of small-scale mechanization into the Ethiopian agriculture sector has the potential to create thousands of jobs in machinery service provision along the farming value chain.

About the CGIAR System Council

The CGIAR System Council is the strategic decision-making body of the CGIAR System that keeps under review the strategy, mission, impact and continued relevancy of the System as a whole. The Council meets face-to-face not less than twice per year and conducts business electronically between sessions. Additional meetings can be held if necessary.

Related outputs from the Share Fair 2019

Looking forward, looking back

Participants in the five-year workshop for the SRFSI project in Kathmandu in May 2019 stand for a group shot. (Photo: CIMMYT)
Participants in the five-year workshop for the SRFSI project in Kathmandu in May 2019 stand for a group shot. (Photo: CIMMYT)

Over 50 stakeholders from the Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI) project engaged in three days of reflection and planning in Kathmandu, Nepal, in early May 2019. Partners from four countries focused on identifying key learnings across a range of topics including value chains, business models, agricultural extension, capacity building, innovation platforms and policy convergence. After almost five years of project activities, there was naturally plenty of vibrant discussion.

The cross-cutting themes of gender and climate change were considered within each topic, to capture project outputs beyond participation and farm level impact. Discussions around gender confirmed the benefits of targeted women’s participation and ensuring that women’s availability was accommodated. Working within the SRFSI project, researchers have identified new business opportunities for women, with benefits for individuals and community groups. In terms of business models, it was highlighted that promoting gender-inclusive strategies for all partners, including the private sector, is necessary. Ensuring a wide range of partnership institutions, such as NGOs with women-centric programs, is also beneficial for reaching more women.

In the five-year SRFSI workshop, participants discussed research outputs and planned the year ahead. (Photo: CIMMYT)
In the five-year SRFSI workshop, participants discussed research outputs and planned the year ahead. (Photo: CIMMYT)

Conservation agriculture-based sustainable intensification techniques have been confirmed as contributing to climate-resilient farming systems, both in terms of mitigation and adaptation. Importantly, the project has demonstrated that these systems can be profitable, climate smart business models in the Eastern Gangetic Plains. They were also seen as fitting well with government plans and policies to address climate change, which was demonstrated by convergence with country and NGO programs that are focused on climate change adaptation.

In keeping with the recently approved no-cost extension of the SRFSI project until June 2020, the final sessions identified remaining research questions in each location and scaling component, and project partners nominated small research activities to fill these gaps. The final year of SRFSI is an excellent opportunity to capture valuable lessons and synthesise project outputs for maximum impact.

The Sustainable and Resilient Farming Systems Intensification Project is a collaboration between the International Maize and Wheat Improvement Center (CIMMYT) and the project funder, the Australian Centre for International Agricultural Research (ACIAR).

Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI)

The Eastern Gangetic Plains region of Bangladesh, India, and Nepal is home to the greatest concentration of rural poor in the world. This region is projected to be one of the areas most affected by climate change. Local farmers are already experiencing the impact of climate change: erratic monsoon rains, floods and other extreme weather events have affected agricultural production for the past decade. The region’s smallholder farming systems have low productivity, and yields are too variable to provide a solid foundation for food security. Inadequate access to irrigation, credit, inputs and extension systems limit capacity to adapt to climate change or invest in innovation. Furthermore, large-scale migration away from agricultural areas has led to labor shortages and increasing numbers of women in agriculture.

The Sustainable and Resilient Farming Systems Intensification (SRFSI) project aims to reduce poverty in the Eastern Gangetic Plains by making smallholder agriculture more productive, profitable and sustainable while safeguarding the environment and involving women. CIMMYT, project partners and farmers are exploring Conservation Agriculture-based Sustainable Intensification (CASI) and efficient water management as foundations for increasing crop productivity and resilience. Technological changes are being complemented by research into institutional innovations that strengthen adaptive capacity and link farmers to markets and support services, enabling both women and men farmers to adapt and thrive in the face of climate and economic change.

In its current phase, the project team is identifying and closing capacity gaps so that stakeholders can scale CASI practices beyond the project lifespan. Priorities include crop diversification and rotation, reduced tillage using machinery, efficient water management practices, and integrated weed management practices. Women farmers are specifically targeted in the scaling project: it is intended that a third of participants will be women and that at least 25% of the households involved will be led by women.

The 9.7 million Australian dollar (US$7.2 million) SRFSI project is a collaboration between CIMMYT and the project funder, the Australian Centre for International Agricultural Research. More than 20 partner organizations include the Departments of Agriculture in the focus countries, the Bangladesh Agricultural Research Institute, the Indian Council for Agricultural Research, the Nepal Agricultural Research CouncilUttar Banga Krishi VishwavidyalayaBihar Agricultural UniversityEcoDev SolutionsiDEAgrevolutionRangpur-Dinajpur Rural ServicesJEEViKASakhi BiharDreamWork SolutionsCSIRO and the Universities of Queensland and Western Australia.

OBJECTIVES

  • Understand farmer circumstances with respect to cropping systems, natural and economic resources base, livelihood strategies, and capacity to bear risk and undertake technological innovation
  • Develop with farmers more productive and sustainable technologies that are resilient to climate risks and profitable for smallholders
  • Catalyze, support and evaluate institutional and policy changes that establish an enabling environment for the adoption of high-impact technologies
  • Facilitate widespread adoption of sustainable, resilient and more profitable farming systems

 

Zero-tillage service provision is key to facilitating adoption.
Zero-tillage service provision is key to facilitating adoption.
Service provider Azgad Ali and farmer Samaru Das have a fruitful relationship based on technology promoted through CIMMYT's SRSFI project.
Service provider Azgad Ali and farmer Samaru Das have a fruitful relationship based on technology promoted through CIMMYT’s SRSFI project.
A zero-tillage multi-crop planter at work in West Bengal.
Bablu Modak demonstrates his unpuddled mechanically transplanted rice.
Bablu Modak demonstrates his unpuddled mechanically transplanted rice.
CIMMYT's SRFSI team and the community walk through the fields during a field visit in Cooch Behar.
CIMMYT’s SRFSI team and the community walk through the fields during a field visit in Cooch Behar.

The saving grace of a hefty investment

Bangladesh farmer Raju Sarder sits on his recently acquired reaper. (Photo: CIMMYT/Md. Ikram Hossain)
Bangladesh farmer Raju Sarder sits on his recently acquired reaper. (Photo: iDE/Md. Ikram Hossain)

A man in his early 20s walked the winding roads of Sajiara village, Dumuria upazila, Khulna District in Bangladesh. His head hanging low, he noticed darkness slowly descending and then looked up to see an old farmer wrapping up his own daily activities. With traditional tools in hand, the farmer looked exhausted. The young man, Raju Sarder, considered that there had to be a better way to farm to alleviate his drudgery and that of others in the community.

Determined to act, Raju set out to meet Department of Agricultural Extension (DAE) officials the very next day. They informed him about the Mechanization and Irrigation project of the Cereal Systems Initiative for South Asia (CSISA MI). They also introduced him to the project’s most popular technologies, namely the power tiller operated seeder, reaper and axial flow pumps, all of which reduce labor costs and increase farming efficiency.

Raju found the reaper to be the most interesting and relevant for his work, and contacted a CSISA representative to acquire one.

The first challenge he encountered was the cost — the equivalent of $1,970 — which as a small-scale farmer he could not afford. CSISA MI field staff assured him that his ambitions were not nipped in the bud and guided him in obtaining a government subsidy and a loan of $1,070 from TMSS, one of CSISA MI’s micro financing partners. Following operator and maintenance training from CSISA MI, Raju began providing reaping services to local smallholder rice and wheat farmers.

He noticed immediately that he did not have to exert himself as much as before but actually gained time for leisure and his production costs dwindled. Most remarkably, for reaping 24 hectares Raju generated a profit of $1,806; a staggering 15 times greater than what he could obtain using traditional, manual methods and enough to pay back his loan in the first season.

“There was a time when I was unsure whether I would be able to afford my next meal,” said Raju, “but it’s all different now because profits are pouring in thanks to the reaper.”

As a result of the project and farmers’ interest, field labor in Raju’s community is also being transformed. Gone are the days when farmers toiled from dawn to dusk bending and squatting to cut the rice and wheat with rustic sickles. Laborious traditional methods are being replaced by modern and effective mechanization. Through projects such as CSISA MI, CIMMYT is helping farmers like Raju to become young entrepreneurs with a bright future. Once poor laborers disaffected and treated badly in their own society, these youths now walk with dignity and pride as significant contributors to local economic development.

CSISA MI is a partnership involving the International Maize and Wheat Improvement Center (CIMMYT) and iDE, a non-governmental organization that fosters farmers’ entrepreneurial development, with funding from USAID under the Feed the Future initiative.

Scaling up mechanization in Bangladesh through partnerships

Over the last two decades, a significant number of rural Bangladeshis – especially youth – have migrated to urban centers, looking for higher paying jobs and an escape from agricultural labor. Reaper-DemoConor Riggs is the Global Director of Markets and Entrepreneurship at iDE. He says smallholder farmers in Southern Bangladesh are increasingly struggling to find and afford farm labor to help harvest crops and perform a variety of other on-farm activities.

Riggs says small-scale mechanization, such as two-wheeled tractors fitted with intensification machinery and surface irrigation pumps, can help farmers make up for this labor gap and increase productivity, while boosting the local economy by supporting micro- and small enterprises.

But as Riggs discussed at the recent Scale Up Conference at Purdue University, designing the perfect machine or technology is not enough to create sustainable, far-reaching impact. On the International Day for the Eradication of Poverty, we’re following up with him to learn more about the role of markets and partnerships in bringing small-scale mechanization to rural Bangladesh.

Q: Five years ago, CIMMYT and iDE co-designed and began implementing the USAID Cereal Systems Initiative for South Asia – Mechanization and Irrigation (CSISA-MI) project. What were the goals when you began?

Our goal was to establish a new industry for attachments in two-wheel tractors in agricultural mechanization, technologies like seeders, reapers and high-volume irrigation pumps for surface water. We wanted to help farmers access services through a fee-for-service model – small entrepreneurs buy machines and rent out those machines to farmers or directly provide that service themselves. There wasn’t really a market naturally growing for these machines in ways that included smallholders while being commercially viable, so we aimed to build it as best we could.

The results of this effort to date have been strong: 191,000 farmers can now access machinery services from a growing network of nearly 3,000 local microenterprise service providers, representing improved cultivation across 92,000 hectares in Southern Bangladesh. And we see abundant evidence that this market is scaling organically now that it’s established a model that works for both firms and farms.

Q: How did you create a market?

We incentivized several large conglomerates in the agri-business space to co-invest with us on several container-loads of these machines, which we imported from Thailand and China. We helped them find some early adopter dealers and local service providers who would actually buy them. Then we developed short-term smart subsidies to drive down the costs of supply chain development, accelerated customer adoption of the machines, and overall market growth.

An important aspect of our strategy is that we did not present these accelerating investments as typical subsidies; rather, we worked with our private partners to offer commercial discounts so that service providers and farmers Md Lalchan Shardar is a farmer and local service provider. The axial flow pump cuts the amount of irrigation time in halfwould recognize the true value of the product and the short-term opportunity to adopt the technology in its initial commercialization phase.

We first implemented this strategy with two leading firms in the market who concurrently launched a very proactive marketing campaign. Then we started pulling back those discounts overtime, year by year, as the initial partner firms found the market opportunity, and redirected this acceleration process with an additional group of interested companies that also wanted to enter the market in an inclusive manner.

Q: So the companies were benefiting from the discount?

Yes, but we created a lot of conditions. Essentially, the more project investment that was committed by the project to discount the cost of the machinery, the more we expected to see both cash and in-kind investment from those companies. In the end, about a dozen companies come into the game with about five that have really driven a lot of heavy investment.

Partnerships have been key throughout this project. What were the different strengths iDE and CIMMYT brought to the table?

iDE is a market development organization. We focus on market-based solutions, technology commercialization, last mile distribution, and market access. Fundamentally, we see our job as de-risking the market for companies to invest in lower income areas and empower the farmer and their family as both consumers and suppliers in the formal economy. To do this, we employ a lot of supply chain development, product re-design and most importantly, we develop networks of micro-entrepreneurs to serve the ‘missing middle’ between the formal and informal economies.

CIMMYT brings leading capabilities in linking science and practice, with an un-paralleled strength in understanding the agronomic rationale and the agronomic and economic combinations of the technologies as they’re applied on the ground.

CIMMYT knew what technologies were needed on the ground in Southern Bangladesh to genuinely improve productivity and efficiency in the face of changing economic circumstances, and understood how to apply them to real world conditions in alignment with market-based diffusion mechanisms. CIMMYT was also instrumental in working closely with the Bangladesh Agriculture Research Institute (BARI) and extension services, key government partners that helped us ensure market development was in alignment with public and social policy.

It can be difficult finding a synergy between two different organizations. Did you run into any challenges?  

CIMMYT and iDE have different specializations, and at the beginning, we had natural, friendly debates about how to best integrate them and achieve highly ambitious project objectives. But relatively quickly, we figured out how to learn from each other and synthesize our approaches for the best results. Both CIMMYT and iDE approached the partnership with a mission driven focus and a sense of constant, mutual respect for the value each partner brought to the table.

What do you see for the future? 

As for iDE, we’re excited to expand this successful partnership with CIMMYT to figure out how we can further replicate this success in other countries where we both work. While some of the market conditions in Bangladesh have provided us with unique opportunities for technology scaling in mechanization, we’re highly optimistic that the underlying partnership principles and management systems of CSISA-MI can be replicated in other programs and country contexts – even in ostensibly more challenging market environments.

The CSISA-MI project is funded by USAID.