Skip to main content

funder_partner: HarvestPlus

HarvestPlus aims to reduce hidden hunger and provide micronutrients to billions of people directly through the staple foods that they eat. We use a novel process called biofortification to breed higher levels of micronutrients directly into key staple foods. For more information, visit http://www.harvestplus.org/.

A Grain a Day

“A Grain a Day” is an opportunity to shed light on the important role maize and wheat play in global nutrition and to celebrate the dietary value of these food staples. Globally, an estimated 800 million people do not get enough food to eat and more than 2 billion suffer from micronutrient deficiency, or “hidden hunger,” according to U.N. food agencies. Measures to ensure an adequate supply of vital micronutrients include: diet diversification, nutritional education, supplementation and biofortification. Scientists at the International Maize and Wheat Improvement Center (CIMMYT) are using biofortification to boost pro-vitamin A and zinc levels in maize and iron and zinc concentrations in wheat.

Recipes

You can join in the campaign by sending us your favorite wheat or maize-based recipe. All original recipes will be featured below and in our “A Grain a Day” cookbook to be published this summer.
[widgetkit id=48]

vitamin-a-orange-maize.jpg#grainaday

Vitamin A Orange Maize: A partnership between Agriculture and Nutrition Bears Fruit

By Yassir Islam, Guest blogger from HarvestPlus
One of the fruits of the partnership between agricultural scientists and nutritionists were the world’s first “orange” maize varieties rich in vitamin A. This ‘orange’ vitamin A maize has been conventionally bred to provide higher levels of provitamin A carotenoids, a naturally occurring plant pigment also found in many orange foods such as mangoes, carrots and pumpkins, that the body then converts into vitamin A.

 

Biohappiness: A happy farmer grows ZincShakti wheat on his farm in Uttar Pradesh, India. Photos: Nirmal Seeds, India#grainaday

Farmers in India embrace high-zinc
wheat for its nutritional benefit

By Velu GovindanUndernourishment affects some 795 million people worldwide – more than one out of every nine people do not get enough food to lead a healthy, active lifestyle, according to the U.N. Food and Agriculture Organization (FAO).

 

nutrition article#grainaday

Combatting hidden hunger is key to boosting good nutrition

By Martin Kropff, CIMMYT Director GeneralThere are certain things that all human beings need to survive and food is one of them. Aside from food as a biological necessity, it is also a complex cultural product shaped by agriculture, climate, geography and the pursuit of pleasure.

Un Grano al DĂ­a

“A Grain a Day” is an opportunity to shed light on the important role maize and wheat play in global nutrition and to celebrate the dietary value of these food staples. Globally, an estimated 800 million people do not get enough food to eat and more than 2 billion suffer from micronutrient deficiency, or “hidden hunger,” according to U.N. food agencies. Measures to ensure an adequate supply of vital micronutrients include: diet diversification, nutritional education, supplementation and biofortification. Scientists at the International Maize and Wheat Improvement Center (CIMMYT) are using biofortification to boost pro-vitamin A and zinc levels in maize and iron and zinc concentrations in wheat.
You can join in the campaign by sending us your favorite wheat or maize-based recipe. We’ll feature original recipes on this page and in our “A Grain a Day” cookbook to be published this summer.

 

Recetas

 

[widgetkit id=47]

Leer mĂĄs:

 

Innovation key to wheat yield potential advances, says in-coming CIMMYT DG

Photos: Alfredo SĂĄenz/CIMMYT
Outgoing CIMMYT Director General Thomas Lumpkin, incoming CIMMYT Director General Martin Kropff, Nynke Nammensma and Jeannie Laube Borlaug (L to R) chat during Visitors’ Week in Obregon, Mexico. CIMMYT/Alfredo SĂĄenz

CIUDAD OBREGON, Mexico (CIMMYT) — Martin Kropff, who will take the helm as director general of the International Maize and Wheat Improvement Center (CIMMYT) in June, joined scientists, and other members of the global wheat community at the CIMMYT experimental research station near the town of Ciudad Obregon in Mexico’s northern state of Sonora for annual Visitors’ Week.

Following a tour of a wide range of research projects underway in the wheat fields of the Yaqui Valley made famous around the world by the work of the late Nobel Peace Prize winner Norman Borlaug, who died in 2009 at age 95, Kropff shared his views.

Borlaug led efforts to develop high-yielding, disease-resistant, semi-dwarf wheat varieties in the mid-20th century that are estimated to have helped save more than 1 billion lives in Pakistan, India and other areas of the developing world.

“I’m very impressed by what I’ve seen in Obregon,” said Kropff, who is currently chancellor and vice chairman of the executive board of Wageningen University and Research Center in the Netherlands.

“From the gene bank in El Batan, the breeding and pre-breeding and the work with farmers on a huge scale, it’s extremely high quality and innovative,” added Kropff, who with his wife Nynke Nammensma also visited CIMMYT’s El Batan headquarters near Mexico City earlier in the week.

“The MasAgro program is very impressive because it takes the step of integrating scientific knowledge with farmers’ knowledge – it’s a novel way to aid farmers by getting new technology working on farms at a large scale. It is a co-innovation approach,” Kropff said.

The Sustainable Modernization of Traditional Agriculture, led by country’s Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA) and known locally as MasAgro, helps farmers understand how minimal soil disturbance, permanent soil cover and crop rotation can simultaneously boost yields and sustainably increase profits.

“The program is an example of how farmers, scientists and other stakeholders can think about and create innovations through appropriate fertilizer applications, seed technologies and also through such instruments as the post-harvesting machines,” Kropff said.

“This is fantastic. That’s what the CGIAR is all about.”

Left to right: Tom Lumpkin, John Snape and Martin Kropff.
Thomas Lumpkin, John Snape and Martin Kropff (L to R). CIMMYT/Alfredo SĂĄenz

“The HarvestPlus program, which adds more zinc and iron into the crop through breeding, also plays a key role in CIMMYT’s research portfolio,” Kropff said.

Zinc deficiency is attributed to 800,000 deaths each year and affects about one-third of the world’s population, according to the World Health Organization. Enhancing the micronutrient content in wheat through biofortification is seen as an important tool to help improve the diets of the most vulnerable sectors of society.

The climate change adaptation work he observed, which is focused on drought and heat stress resilience is of paramount importance, Kropff said.

Findings in a report released last year by the Intergovernmental Panel on Climate Change state it is very likely that heat waves will occur more often and last longer throughout the 21st Century and that rainfall will be more unpredictable.

Mean surface temperatures could potentially rise by between 2 to 5 degrees Celsius or more, the   report said.

“To safeguard food security for the 9 billion people we’re expecting will populate the planet by 2050, we need innovations based on breeding, and solid agronomy based on precision farming,” Kropff said.

“There’s no other organization in the world that is so well designed as the CGIAR to do this type of work. CIMMYT is the crown jewel of the CGIAR together with the gene banks. No other organization can do this.”

“We’ve done a lot of work in getting higher yields, but not much through increased yield potential, and that’s what we have to work on now,” he added.

“If you raise the yield through agronomy, you still need to enhance yield potential and there’s very good fundamental work going on here.”

“The partnerships here are excellent – scientists that are here from universities are as proud as CIMMYT itself about all the work that is being done. I’m really honored that from 1 June, I have the opportunity to be the director general of this institution. I cannot wait to get started working with the team at CIMMYT and I’m extremely grateful for the warm welcome I’ve received – a smooth transition is already underway.”

Follow Martin Kropff on Twitter @KropffMartin

Studies confirm the value of biofortification

A study published early this month in the Journal of Nutrition shows that biofortified maize can meet zinc requirements and provide an effective dietary alternative to regular maize for children in vulnerable areas of rural Zambia.

Photo: CIMMYT
Photo: CIMMYT

“This adds to the growing body of evidence supporting the efforts of HarvestPlus, a CGIAR global effort to end hidden hunger and to which CIMMYT contributes through the development of maize and wheat with enhanced levels of vitamin A, zinc, and iron,” said Natalia Palacios, CIMMYT Maize Nutrition Quality Specialist and co-author in the study. “Maize is an important staple food for 900 million people living on less than $2 each day, but a diet rich in maize cannot always provide the nutrients needed by the body.”

Zinc plays important roles in human health, and zinc deficiencies are associated with stunting and a weak immunological system, making the malnourished more susceptible to common infections. More than 17 percent of the global population is at risk of zinc deficiency.

The study found that when the biofortified maize provided by CIMMYT was fed as a staple to Zambian children, their zinc intake was more than sufficient for their dietary needs.

The higher zinc level (34 ”g zinc per gram, versus 21 ”g) meant that the biofortified maize greatly outperformed the control diet, while biofortified grain was shown to be more efficient than Zn-enriched flour at getting the nutrient absorbed into the body.

This research joins another study in Zambia that revealed orange maize to be an effective way of reducing vitamin A deficiency in young children, which globally causes 500,000 to go blind each year. HarvestPlus has supplied 10,000 farming households in Zambia with orange maize, supported by government recognition of the value of biofortification in its National Food and Nutrition Strategic plan.

Enhancing the nutritional quality of maize

Malnutrition and micronutrient deficiency, which can cause blindness and stunting, increased infant and maternal mortality and lower IQs, are at epidemic levels in some parts of Asia. People across Asia depend on maize, rice and wheat but they do not fulfil daily dietary requirements and are deficient in vitamin A and essential micronutrients such as iron and zinc.

Biofortified maize varieties have been bred to include considerably high concentrations of essential micronutrients. Maize in Asia is largely used for feed, but direct human consumption is increasing. Scientists at the 12th Asian Maize Conference highlighted several collaborative interventions to utilize the genetic variability in maize for the development of biofortified maize. Promoting biofortified maize in rural areas and developing new food products has been part of this research. The nutritional benefits of biofortified maize can come directly from eating the crop itself or indirectly by consuming eggs from hens that are fed with provitamin A ProVA-enriched maize. Biofortified maize use for feed may also represent economic benefits for farmers.

Breeding efforts in Asia are currently focused on quality protein maize (QPM) and ProVA-enriched varieties. QPM was first developed by former CIMMYT scientists and World Food Prize Laureates Dr. Evangelina Villegas and Dr. Surinder Vasal. CIMMYT QPM inbred lines have been used in several breeding programs in China, India, Vietnam and elsewhere.

Joint efforts between CIMMYT and numerous partner scientists under HarvestPlus have shown that breeding for increased concentrations of ProVA is especially promising because of the genetic variation available in maize germplasm. New hybrids released in 2012 in Zambia showed ProVA levels 400 percent higher than common yellow maize, with the potential to bring widespread health benefits.

CIAT and CIMMYT complete genetic analysis and plant breeding course in Colombia

By Luis Narro and Janeth Bolaños/ CIMMYT

Dr. Jiankang Wang planted a bread tree at the end of the course, which is a CIAT tradition to mark the close of an international training course.

CIMMYT’s office in Colombia,  in collaboration with the  International Center for  Tropical Agriculture (CIAT),  organized the Genetic Analysis  and Plant Breeding course from  23-27 June. This course has been  offered in Australia, China and  Mexico and reviews plant breeding  methods as well as quantitative  genetics, development of linkage  maps, quantitative trait loci (QTL)  mapping, identification of genes  with quantitative effect and epistasis,  analysis of the interaction QTL x  environment and integration of the  knowledge of the action of genes in  conventional breeding.

CIMMYT scientist Dr. Jiankang Wang, based in Beijing, facilitated the course with funding from the HarvestPlus Challenge Program.  While the course has been offered 10 times, this is the first to include genetic analysis of vegetative propagation species, which are important for CGIAR centers working with cassava, potatoes and sweet potatoes.

Attending the course were 42 scientists (16 women and 28 men), representing public and private institutions from Colombia, Ecuador, Peru and the United States.

William Viera, head of the Fruit Program at Ecuador’s National Autonomous Institute of Agriculture and Livestock (INIAP), described the course as “very interesting. It includes molecular techniques that will allow us high level scientific studies. In our case, we will start a research project on tree tomatoes, tamarind and little oranges (lulo). With the tools and knowledge we gained, we will be able to develop the project in a positive way, and will identify genes that increase disease resistance and improve fruit quality.”

Rocío Silvestre, coordinator of improved materials for the gene bank at the International Potato Center (CIP), said, “The opportunity to interact with our colleagues from all around the world is a great contribution to our research programs. What we learned in the course will help us to design genetic maps, QTL mapping and morphological data analysis.”

Karen Viviana Osorio, research assistant from the Colombian agribusiness Semillas Valle S.A., thanked CIMMYT for sharing the new technology and biotechnology tools currently used in the agriculture sector. Osorio noted that CIMMYT has “helped people who work in agricultural research to access updated and high-quality information. We have made the most of this course in our daily activities.” Bodo Raatz, a molecular geneticist from CIAT’s Bean Improvement Program, described the course as “what we need to know about improvement and genetic studies. It includes all we need to map QTL.”

The Genetic Analysis and Plant Breeding course drew 42 scientists representing public and private institutions from Colombia, Ecuador, Peru and the U.S.

CIAT’s Rice, Tropical Forages and Bean programs will benefit from information on the latest advances in the development of elements that facilitate their work with quantitative traits. “With this course we have been able to identity some needs from the national programs, and they have been provided with free access tools for genetic improvement,” said Luis Augusto Becerra, a molecular geneticist from CIAT’s Cassava Improvement Program.

There are tentative plans to organize another course in collaboration with CIP.

The Borlaug Summit on Wheat for Food Security: 27 March

By Brenna Goth/CIMMYT

Check out the Storify recap here.

Wheat’s importance in the world was the focus of day three of the Borlaug Summit on Wheat for Food Security. Wheat’s history, production needs and methods of improvement were among the topics of discussion.

CIMMYT receives the World Food Prize’s Norman E. Borlaug medallion. (photo: Brenna Goth)

Wheat has socially evolved from the grain of “civilized people” to a crop for everyone, said food historian Rachel Laudan. Mechanized milling eliminated the need to devote significant time and back-breaking labor  grinding wheat and led to consumption of the grain worldwide.

 

“Wheat has touched every corner of the world,” Laudan said. Today, tortillas, noodles, breads and other regional products are available in nearly every country.

 

This global dependence on wheat highlights the importance of its nutritional value, according to Wolfgang Pfeiffer, deputy director of operations for HarvestPlus. The organization is working on biofortification, which can pack crops with minerals at no additional cost, he said.

Current efforts focus on zinc-dense wheat, though biofortication in general requires branding, marketing and advocacy. Biofortified crops have been released in 27 countries, and HarvestPlus is working to demonstrate the viability of biofortification as a global solution.

 

Apart from improving nutrition, increasing wheat yield to meet worldwide demand is a challenge, said Tony Fischer, honorary research fellow for the Commonwealth Scientific and Industrial Research Organization in Australia.

 

However, new agronomy and tools, untapped wheat genetic diversity, non-conventional breeding and intensification on all fronts could lift yields. Conventional breeding is also helping, Fischer said.

 

“Even in the toughest environments, science can make progress,” he added.

 

Factors such as water use and climate change challenge wheat production and present uncertainty, said independent scholar Uma Lele and Graham Farquhar, professor at the Australian National University.

 

Declining water availability is causing discussions, debates and conflicts worldwide, yet research and development on water management and rainfed agriculture is often ignored. This complacency could lead to sudden food shortages or dramatic rises in prices, Lele said.

 

“We’ll wake up and say that we should have paid more attention to water,” she added.

 

Farquhar said farmers have faced challenges presented by climate change before but that water use efficiency for drought tolerance is becoming increasingly important. Some grain-producing areas, including Australia, Central America, Chile, Mexico and southern Africa, are projected to become drier.

 

Summit sessions emphasized that agricultural research offers tools to help.

 

The use of wheat’s distant relatives – such as rye and triticum – can help improve salt tolerance, biomass, disease and insect resistance, said Ian King, researcher at the University of Nottingham in the United Kingdom. The university works with a UK consortium to increase the gene pool of wheat and the screening of germplasm produced at Nottingham will take place at CIMMYT.

 

Additionally, genomic selection and precision phenotyping improve breeding efficiency, said Jesse Poland, assistant professor at Kansas State University.

 

Bruno Gerard, director of CIMMYT’s Conservation Agriculture Program, explained sustainable intensification and precision agriculture principles.  Technological breakthroughs allow for more research that’s better, easier, faster and cheaper.
Not every solution will work in every country. Speakers addressed regional differences with specific presentations on wheat in Mexico, China, India, Central and West Asia and North Africa. After, a panel discussion focused on how private-public partnerships can be used to foster collaboration in addressing these challenges.

 

A special highlight of the day  occurred during the Summit dinner. CIMMYT was honored with the World Food Prize Foundation Norman E. Borlaug Medallion. CIMMYT is the Foundation’s fifth recipient of the medal, which recognizes organizations and heads of state who are not eligible for the World Food Prize but have made outstanding contributions to improving food security and nutrition.

 

Summit speakers Sir Gordon Conway, Ronnie Coffman, Per Pinstrup-Andersen (2001 World Food Prize Laureate) and Robb Fraley (2013 World Food Prize Laureate) presented the award, along with Julie Borlaug, Dr. Borlaug’s granddaughter. Marianne BĂ€nziger, CIMMYT’s deputy director general for research and partnerships, accepted the medal on CIMMYT’s behalf.

 

The Summit ends tomorrow with sessions focusing on the future of wheat and food security.

 

Promoting biofortified wheat to women in India

By Arun Joshi/CIMMYT

Chhavi Tiwari of Banaras Hindu University talks with Mirzapur farmersabout biofortified wheat.
Chhavi Tiwari of Banaras Hindu University talks with Mirzapur farmers about biofortified wheat.

Women farmers in India are learning about the benefits of biofortified wheat from CIMMYT and other CGIAR researchers. Scientists met with 106 women on 8 August in the village of Pidkhir, in Mirzapur District of Uttar Pradesh, India, to advocate for the use of biofortified wheat and listen to feedback on nutrition and the impacts of nutritional deficiency on women and children.

The event was part of a program conducted in more than 50 villages in India’s Eastern Gangetic Plains. Collaborators included Banaras Hindu University (BHU) in Varanasi, Mahamana Krishak Samiti (a farmers’ cooperative in Mirzapur) and CIMMYT’s South Asia office in Kathmandu, Nepal. BHU’s Chhavi Tiwari led the meeting in Pidkhir, which was attended by women of different ages and occupations including farmers, housewives, daily wage workers, government organization workers and school teachers. Other participating scientists included B. Arun, Ramesh Chand and V.K. Mishra from the BHU HarvestPlus wheat team as well as Arun Joshi from CIMMYT.

The HarvestPlus project was started at BHU in 2005 as part of a collaborative effort with the Biofortification Challenge Program (HarvestPlus) at the International Center for Tropical Agriculture, the International Food Policy Research Institute and CIMMYT to identify biofortified wheat varieties adapted in South Asia. Five of the participants at the meeting participated in the HarvestPlus trials in Pidkhir that began in 2005 and said they were happy with the wheat variety. “I cannot believe that wheat with high zinc and iron could be grown in our fields in the near future,” said Sursati, a woman working with HarvestPlus wheat throughout the course of the project. Most participants were new to the subject and learned about the importance of biofortified wheat – particularly its importance to the health of women and children. Women also answered a questionnaire on their backgrounds and interests in biofortified wheat. Most were educated through primary school and some were given help by literate peers. Four male farmers from Pidkhir, including Harbans Singh, head of the Mahamana Krishak Cooperative, also facilitated the process.

All of the women were in favor of receiving biofortified wheat developed through the HarvestPlus project. They also expressed their desire to visit and see the BHU research farm, where wheat scientists from the university are conducting research with CIMMYT’s Global Wheat Program team. The farmers agreed to advocate for new biofortified wheat varieties and help the BHU team when needed.

Nepalese wheat researchers trained on spot blotch disease in India

Spot blotch is one of the major diseases in the wheat growing regions of Nepal and the knowledge allowing researchers to identify and understand the disease is thus crucial. A group of 12 wheat technical research staff from Nepal visited Banaras Hindu University (BHU) in Varanasi, India, during 18-21 March 2013 with that purpose exactly: to learn more about the spot blotch disease and participatory varietal selection. The training was coordinated by CIMMYT wheat breeder Arun Joshi under the CRP WHEAT Strategic Initiative 5: durable resistance and management of diseases and insect pests. The main resource persons for the training were Ramesh Chand, Vinod Kumar Mishra, and B. Arun; Naji Eisa (Yemen), Conformt Sankem (Nigeria), Chhavi Tiwari, and Punam Yadav (India), all PhD students from BHU, facilitated the program.

The training covered identification of spot blotch pathogen Bipolaris sorokiniana in the field and the lab; preparation of Bipolaris inoculum using colonized sorghum grain; understanding the spot blotch disease infection process; creating artificial epiphytotic in the polyhouse and the field; screening wheat genotypes under high humidity and temperature in the polyhouse; recording disease severity in field and polyhouse conditions; and increasing data reliability in research on spot blotch of wheat and barley.

Participants first visited the pathology laboratory in the Mycology and Plant Pathology department, where they learned to identify B. sorokiniana under the microscope and to prepare Bipolaris inoculums from colonized sorghum grain. The infection process was explained using different samples available in the lab, as was a new technique for evaluation of spot blotch resistance in barley and wheat using monoconidial culture of the most aggressive isolate of B. sorokiniana developed at BHU. Participants observed the collection of the blotched portions of infected leaves for the production of conidia by associated fungal hyphae. They were also trained in conidia collection for further multiplication and categorization into different classes based on the aggressiveness of isolates.

In-FieldOn the second day, participants visited the polyhouse and research station to learn about screening wheat genotypes
under high humidity and temperature. They recorded the disease severity a number of times and saw that if inoculation is done properly the susceptible genotypes burn. The variation among genotypes for resistance to spot blotch disease was explained with the help of repeated disease notes and developing area under disease progress curve. Participants also observed the CRP project on spot blotch carried out at BHU in collaboration with the Nepal Wheat Research Program. The visiting team fruitfully interacted with the BHU wheat researchers, especially with Chand and Mishra, as well as with master’s and doctoral students working on spot blotch. A planned one-hour question-and-answer session expanded to three hours due to the visitors’ enthusiasm and wide-ranging questions.

On their final day, the team visited three participatory varietal selection sites where Harikirtan Singh, the lead farmer, demonstrated the performance of the most popular and newly developed lines under different seeding conditions (surface seeding, zero tillage, and conventional tillage) and multiplication of a number of agronomically superior zinc-rich wheat lines selected from the HarvestPlus project.

The training also allowed participants to visit other research experiments and trials associated with the Cereal System Initiative South Asia (CSISA) and HarvestPlus projects, and to learn to identify agronomically superior biotic and abiotic resistant varieties.

The Nepalese team regarded the visit highly successful as it provided an excellent opportunity to work with the most recent tools and techniques in spot blotch and other wheat researches and to enrich their experience on proper data recording and conduct of participatory varietal selection trials.

Provitamin A biofortified orange maize reaches farmers in Zambia

provitaminaA_HarvestPlusWith over 50% of Zambian children under five vitamin A deficient, Zambia faces a major public health problem. This has resulted in several government intervention programs including vitamin A supplementation and sugar fortification, efforts which will soon be complemented by the release of three orange maize hybrids with higher levels of provitamin A carotenoids (compounds converted to vitamin A when consumed) developed by CIMMYT in collaboration with the Zambia Agriculture Research Institute (ZARI) and funded by HarvestPlus.

The release, dissemination, and promotion plans of these new hybrids were discussed during 18-21 March 2013 when the HarvestPlus maize project held its 10th planning and review meeting in Lusaka, Zambia. The meeting was co-organized by CIMMYT and HarvestPlus and attended by experts from various disciplines including nutritionists, biochemists, biologists, social scientists, public health specialists, and crop development experts from Zambia and other countries in sub-Saharan Africa. CIMMYT was represented by scientists Kevin Pixley and Thanda Dhliwayo.

The first days of the meeting focused on knowledge sharing, identification of gaps in the development and dissemination of provitamin A maize, and lessons learned from the Zambian experience as the project plans to expand to other countries in the region. On 20 March participants visited a ZamSeed seed production site where one of the hybrids is being multiplied, an orange maize demonstration plot, and a provitamin A maize testing site at SeedCo Zambia. Later, they visited the Sibuyunji Agricultural Camp in the Sibuyunji District where farmers shared their thoughts on provitamin A orange maize. “We are very happy to have orange maize as an option to avert vitamin A deficiency in our children,” said a farmer growing one of the orange maize varieties. Taking advantage of the farmer-expert interactions, the day ended with a question-and-answer session between the farmers and the multidisciplinary expert team. The questions ranged from agronomy and orange maize production to its nutritional benefits.

The last day of the meeting was devoted to country presentations and the project’s expansion plans. It was also announced that after 10 years of dedicated culminating in the release of the 3 varieties in Zambia, Kevin Pixley would be unable to continue as HarvestPlus maize crop leader due to his appointment as CIMMYT Genetic Resources Director. Thanda Dhliwayo (CIMMYT) and Abebe Menkir (IITA) will co-lead the maize crop activities for HarvestPlus effective immediately.

New doubled haploid facility will strengthen maize breeding in Africa

CIMMYT’s Global Maize Program will establish and operate a maize doubled haploid (DH) facility in Kiboko, Kenya. With financial support from the Bill & Melinda Gates Foundation, this centralized DH facility will be able to produce at least 100,000 DH lines per year by 2016, thus strengthening maize breeding programs in Africa and improving breeding efficiency. The DH technology will reduce the cost and time for breeding work as it enables rapid development of homozygous maize lines and fast-tracking development and release of elite maize varieties. The facility will be built at the Kiboko Experimental Station on 20 hectares of land provided by the Kenya Agricultural Research Institute (KARI). The Maize DHAfrica Project will both establish the facility and refine the DH technology in collaboration with the University of Hohenheim, Germany.

Doubled-Haploid“One of the important ways to increase genetic gains and accelerate the development and deployment of improved varieties is to reduce the time needed for inbred development,” said B.M. Prasanna, CIMMYT’s Global Maize Program director. “The technology would also allow breeders to couple molecular marker-based selection for important traits such as disease resistance and quality at an early generation.” A project planning and review meeting held in Nairobi during 18-19 February 2013 was attended by representatives from national agriculture research systems, Kenya Seed Company, Seed Trade Association of Kenya, University of Hohenheim, the International Institute of Tropical Agriculture (IITA), and CIMMYT. “This technology will help us significantly improve maize food security in sub-Saharan Africa,” said Joseph Ochieng, KARI deputy director (food crops and crop protection), who spoke on behalf of the institute’s director Ephraim Mukisira. The KARI official emphasized the importance of educating stakeholders on this novel technology to ensure they understand its benefits and use the DH lines efficiently in breeding programs.

The DH facility will also serve as a training hub for scientists and technical personnel from national programs and small and medium-sized seed companies that may not have advanced breeding facilities. It will enhance CIMMYT’s capacity to generate DH lines for effective use in Africa-based breeding programs such as the Drought Tolerant Maize in Africa (DTMA), Water Efficient Maize for Africa (WEMA), Improved Maize for African Soils (IMAS), and the Maize HarvestPlus in Africa.

“We are fully enthused and geared towards establishing a state-of-the-art DH Facility in Kiboko,” said Sotero Bumagat, CIMMYT maize DH operations manager and project leader. During a visit to the field site in Kiboko, Bumagat explained the proposed layout of the facility and received very positive feedback. Seed sector stakeholders who participated in the meeting expressed excitement and anticipation to see the DH facility established and operational in 2013. “This is a technology that the seed sector in Africa has been waiting for,” said Willy Bett, managing director of the Kenya Seed Company and member of the Project Steering Committee. “Faster breeding of improved maize varieties is quite important for effectively managing problems such as the maize lethal necrosis disease,” said Evans Sikinyi, executive officer of the Seed Trade Association of Kenya.

Doubled-Haploid2

Zinc-rich wheat reaches communities in eastern India

India6In the continuous effort to increase awareness of wheat biofortification and its use to improve health and quality of life in eastern India, Banaras Hindu University (BHU), Mahamana Krishak Samiti farmers’ cooperative, CIMMYT, and HarvestPlus, with support from M/s Shyam Seed Company, organized a series of farmer-scientist interactions and field visits on 5, 15, 20, 24, and 28 February 2013 in about 20 villages in the Mirzapur and Chandouli districts, Uttar Pradesh. The series focused on training and advocacy among women groups, monitoring and data recording in participatory variety selection trials, monitoring of seed multiplication undertaken by M/s Shyam Seed Company, problem resolution by farmers, seed multiplication strategies, pre-release of mini-kit trials, and varietal release. Over 70 farmers interested in HarvestPlus experiments participated at each location. “They were optimistic about zinc-enriched wheat varieties and keen to know when these varieties would be available for cultivation,” said CIMMYT wheat breeder Arun Joshi.

Prior to each event, the BHU/HarvestPlus team (Balasubramaniam Arun, Ramesh Chand, and Vinod Kumar Mishra) introduced the project’s objectives and the importance of biofortified wheat varieties. Chandra Prakash Srivastava and Girish Chandra Mishra covered the role of zinc and iron for human health, while soil scientist Satish Kumar Singh focused on crop production and zinc level distribution in different soil types. Saket Kushwaha from BHU explained the importance of a well-planned economic strategy to maximize the gains from nutrient-rich wheat varieties.

Participants attended a hands-on training on HarvestPlus trials sowing to learn about experimental design with focus on plot area, number of lines, and amount of seed to be sown, and to observe soil samples collection demonstrations. They later discussed conventional and zero-till drill for experimental planting, their experience with biofortified varieties and quality seed production, balanced use of nitrogen, phosphorus, potassium, zinc, sulfur, and boron based on soil analysis, and the importance of maintaining the purity and quality of tested and multiplied seeds.

BHU scientists along with Chhavi Tiwari, HarvestPlus research associate, organized women scientist interaction sessions to educate women on the importance and role of micronutrient-enriched wheat in daily lives and its subsequent positive impact on the society. The participating women ranged from school-going girls to working women, women farmers, housewives, and elderly women, representing various educational, economic, and social levels of the region. During the meetings, participants received a Hindi write-up on the importance of biofortified wheat in India, and discussed issues such as nutritious food, consequences of iron and zinc deficiency, and the women’s desire to work with BHU biofortification projects. Rekha, a farmer from the Pidkhir village said, “I did not know one type of wheat can be different from the other because it contains zinc. I did not know this nutrient is so important, or that I would be able to grow this wheat in near future.” The participants were also taught to identify good genotypes and most of them agreed that the new wheat varieties would have a great social impact through improving people’s health.

Wolfgang Pfeiffer from HarvestPlus lauded the farmers and national research systems for promoting the nutrient rich varieties and thus for contributing to eradication of the malnutrition problem in South Asia and elsewhere. “I’d like to encourage more women to participate in the HarvestPlus program. We are approaching the seed delivery phase and their views will be particularly important,” he added.

Following the farmers program, Ravi Prakash Singh, distinguished scientist and head of CIMMYT’s Wheat Improvement Program, visited BHU on 7 March 2013. He reviewed the collaborative research and praised BHU for its work within HarvestPlus. “I hope that BHU will take the lead and will be the first center to release the first ever biofortified wheat in South Asia,” Singh encouraged BHU’s scientists.

HarvestPlus wheat varieties fight zinc and iron deficiency in India

DSC04934A series of farmer-scientist interaction meetings to create awareness of HarvestPlus and new biofortified wheat varieties with high zinc and iron content, involve farmers in participatory varietal selection (PVS) of biofortified varieties in the next crop cycle, train farmers on soil sampling for iron and zinc analysis, and discuss seed and wheat production technology, took place in eastern Uttar Pradesh, India, in November 2012. The meetings were held in Bhurkura, Mirzapur district, on 4 November, Sota, Chandouli district, on 10 November, and Pidkhir, Mirzapur district, on 18 November, and were attended by 25, 38, and 30 farmers, respectively. They were jointly organized by the Banaras Hindu University, Mahamana Krishak Samiti farmers’ cooperative, Mirzapur district, and CIMMYT, and supported by a private seed company M/s. Shyam Seed.

Balasubramaniam Arun, Ramesh Chand, and Vinod Kumar Mishra, wheat scientists from the Banaras Hindu University, introduced the HarvestPlus project’s objectives and the importance of biofortified wheat varieties. Chandra Prakash Srivastava explained the role of zinc and iron for human health, while soil scientist Satish Kumar Singh focused on their role and importance in crop production, as well as zinc level distribution in different soil types in the ricewheat growing areas of the region. Each meeting included a hands-on training on HarvestPlus trials sowing, during which farmers learned about experimental design with focus on plot area, number of lines, and amount of seed to be sown, and which included soil samples collection demonstrations. This was followed by a discussion on the use of conventional and zero-till drill for experiment planting, and the farmers’ experience with biofortified varieties, seed purity maintenance, and the use of the progeny row method. Balanced use of nitrogen, phosphorus, potassium, zinc, sulfur, and boron based on soil analysis was also covered.

CIMMYT wheat breeder Arun Joshi described the steps involved in quality seed production and the importance of seed producers’ organizations for small-scale farmers. He also highlighted advantages of the PVS approach, including the increased adoption rate of new varieties within a shorter period of time. Joshi appreciated the keen interest and active participation of farmers in PVS programs and encouraged them to continue their work and facilitate varietal selection to identify and promote agronomically superior biofortified varieties. The participating farmers showed their interest in HarvestPlus experiments and their continuing support for the wheat biofortification program. They expressed their full satisfaction with the interaction meetings, as these help them to build confidence and enhance their knowledge and capacity for understanding new wheat research processes and results. According to the participants, smallholder farmers have achieved significant gains through the participatory research program, an easier access to new varieties being one of them. Sri Hari Kirtan Singh of M/s. Shyam Seed agreed to multiply all lead varieties seeds identified for high zinc and iron content to allow easy access to an even larger number of farmers.

Discussing the importance of seed systems

As we endeavour to reach more farmers with improved varieties, seed systems are becoming increasingly important for CIMMYT in Africa, and a number of projects are generating germplasm to meet the varied abiotic and biotic challenges in smallholder agriculture. To improve effectiveness and collaboration amongst projects in seed systems activities, a coordination meeting was held on 3–4 July 2012 in Nairobi, Kenya. The meeting was attended by scientists from Global Maize Program (GMP) projects: Drought Tolerant Maize for Africa (DTMA), New Seed Initiative for Maize in Southern Africa (NSIMA), Sustainable Intensification of Maize-Legume Cropping Systems in Eastern and Southern Africa (SIMLESA), Sustainable Intensification of Maize-Legume Systems for the Eastern Province of Zambia (SIMLEZA), Water Efficient Maize for Africa (WEMA), Improved Maize for African Soils (IMAS), HarvestPlus, and Insect Resistant Maize for Africa (IRMA).

The agenda included seed initiatives in different countries, coordination between projects, seed production research priorities, demonstrations, and variety seed production. Seed road maps and seed delivery strategies for projects and/or countries working in partnership with seed companies and the National Agriculture Research Systems (NARS) were also discussed. Participants also considered more effective ways to convey key messages to stakeholders involved in seed delivery, the Socioeconomics Program’s involvement in maize seed systems, and global policy changes affecting seed systems. Special focus was placed on gender equity and the inclusion of female farmers in demonstrations and field days. Where male farmers form the majority, they should be encouraged to bring their wives and other female household members to field days and demonstrations to ensure family participation in decision making. However, following the results of a survey indicating that significant proportions of farms are managed by female-headed households, the group also recognised the need for developing promotional strategies specifically targeting women.

seed-systems-meeting-group-photo

CIMMYT recognizes the growing importance of seed systems and is increasing its staff capacity accordingly to provide appropriate support and expertise. The latest additions to the team are seed systems specialists James Gethi and Mosisa Regasa.

Boosting adoption and utilization of orange maize in Zambia

In Zambia, 54 percent of children are Vitamin A-deficient; a condition resulting in poor eyesight, low immunity, and high rates of mortality. The HarvestPlus Challenge Program is hoping to rectify this situation through the development and widespread adoption of orange maize varieties containing provitamin A carotenoids that the body converts to Vitamin A. The orange maize not only provides vital nutrients, it is also tasty and especially appealing to children because of its distinctive color.

However, consumers need reassurance that orange maize contains the quantities of carotenoids claimed by producers. “Zambia does not currently have the capacity to undertake carotenoid testing in its laboratories. Samples of orange maize were always sent to Mexico for provitamin A carotenoid analysis,” stated Eliab Simpugwe, HarvestPlus Zambia country manager. “Though this is now set to change with the support from CIMMYT Mexico laboratories,” he added.

Two Zambians have been trained in Mexico and follow-up training in Zambia was conducted with ten other participants from the Tropical Disease Research Centre (TDRC), Ndola, and the Zambia Agriculture Research Institute (ZARI), Lusaka. Octavio Custodio (who was in Zambia from 11-16 June 2012), a research assistant in the CIMMYT maize quality lab enjoyed sharing technical details of the process with his Zambian colleagues, and said he “remains optimistic on their capacity to fine-tune these methods in their labs.”

The capacity building will continue in 2013 with an inter-laboratory proficiency test in which both TDRC and ZARI will participate to have their laboratories certified. “There is great interest from other crop-projects in Zambia to have carotenoid analysis performed in laboratories in-country instead of shipping samples to other countries for analysis,” said Fabiana DeMoura, HarvestPlus nutrition coordinator.

The provitamin A maize breeding program in Zambia will also benefit as their pipeline material will be analyzed in house. “The challenge remains to prove and sustain this service in order to be part of a solution to nutrition and agricultural productivity of the region,” said Tembo Howard, lab manager at ZARI and one of the trainees.

The Color Orange: Key to More Nutritious Maize?

CIMMYT E-News, vol 2 no. 10, October 2005

colorOrangeThe HarvestPlus Maize group examines progress toward breeding maize with enhanced pro-vitamins A, iron, and zinc.

CIMMYT maize scientists and colleagues from national programs in the key countries targeted by HarvestPlus reported significant progress in identifying maize with elevated concentrations of iron, zinc, and pro-vitamins A (chemicals the human body can convert to vitamin A) in their elite maize varieties and germplasm collections. The results of two years of work were presented at the second HarvestPlus Maize meeting hosted by EMBRAPA, the national agricultural research program of Brazil at their maize and sorghum research station in Sete Lagoas.

Maize is a key target crop for nutritional enhancement because it is so widely consumed in areas where high malnutrition—especially vitamin-A deficiency—exists. Scientists working in the HarvestPlus program hope eventually to breed high-quality, high-yielding maize with enhanced pro-vitamins A, iron, and zinc content. These micronutrients in maize will have to be in a form that survives processing and can be utilized by the human body.

The first planning meeting for the maize scientists was held in 2003 in Ethiopia. “We’ve come a long way since we first met two years ago,” says Kevin Pixley, the HarvestPlus Maize coordinator and Director of CIMMYT’s Tropical Ecosystems Program. “But we have also realized that this is a very complex subject with many assumptions that have to be validated.”

colorOrange2
CIMMYT maize breeder Dave Beck showed the group results of screening of CIMMYT elite highland and transition zone maize germplasm for enhanced levels of pro-vitamins A, zinc, and iron. HarvestPlus nutritionists have set minimum targets for the concentrations of these micronutrients in maize. The good news is that for zinc, CIMMYT has identified material that was already above the threshold. For iron the picture is less promising as existing lines identified have only 60 percent of the required minimum level for iron. For pro-vitamins A CIMMYT has examined hundreds of lines. The best CIMMYT lines have about 75 percent of the minimum requirement, but sources identified by project partners in the USA have the minimum required level of pro-vitamins A. The CIMMYT team is now breeding to enhance pro-vitamins A concentration for highland, transition zone, mid-altitude, and lowland-adapted materials.

A topic of keen interest at the meeting was how to convince people to adopt any nutritionally enhanced maize varieties that might be developed. In much of eastern and southern Africa, white maize is preferred over yellow maize. Scientists in Zambia and Zimbabwe had conducted studies about the acceptability of yellow maize. Both studies found that yellow maize is associated with food aid and that was one reason people did not want to eat it. Scientists know there is a strong correlation between the color of the maize and the total level of carotenoids. Some of these carotenoids are precursors for vitamin A “pro-vitamins A.” Torbert Rocheford, a professor of plant genetics at the University of Illinois, suggested that the debate should not actually be about yellow maize in many parts of Africa. He said what we should be talking about is orange maize—something new that will not carry the stigma of yellow maize but will have high pro-vitamins A content.

For further information, contact Kevin Pixley (k.pixley@cgiar.org).