Skip to main content

funder_partner: HarvestPlus

HarvestPlus aims to reduce hidden hunger and provide micronutrients to billions of people directly through the staple foods that they eat. We use a novel process called biofortification to breed higher levels of micronutrients directly into key staple foods. For more information, visit http://www.harvestplus.org/.

This little seed went to market

It’s not always easy to produce and sell new maize varieties in Malawi.

Seed companies often serve as the link between breeders and farmers, but numerous challenges — from lack of infrastructure to inconvenient finance systems — mean that the journey from the laboratory to the field is not always a smooth one.

In spite of this, the sector continues to grow, with established and up-and-coming seed companies all vying to carve their own niche in the country’s competitive maize seed market. To help bolster the industry, CIMMYT is working with around 15 seed companies in Malawi, providing them with early generation seed for CIMMYT-derived maize varieties, technical production training and marketing advice.

In a series of interviews, representatives from three of these companies share how they chose their flagship varieties and got them onto the market, and the CIMMYT support that helped them along the way.

Staff bag maize cobs at a Demeter Seeds warehouse in Lilongwe, Malawi. (Photo: Emma Orchardson/CIMMYT)
Staff bag maize cobs at a Demeter Seeds warehouse in Lilongwe, Malawi. (Photo: Emma Orchardson/CIMMYT)

Francis Maideni, Technical Breeder and Management Advisor at Demeter Seeds

The company started primarily because we wanted to help farmers — the issue of profits came later. The founders of Demeter Seeds saw a gap in the market for open-pollinated varieties (OPVs) and thought they could fill it. We’ve now migrated halfway into hybrids, but we still feel that we should serve both communities.

At the beginning we used to multiply and sell OPVs from CIMMYT, and we started doing our own multiplication here a few years ago. What I like about CIMMYT is they have been continuing to give us technical support. The breeding teams are our regular visitors. When they give us materials they come here, work with us, we go to the fields together. We’re so proud of this collaboration. Our whole company is based on CIMMYT germplasm since we don’t have our own breeding program to develop our own varieties.

How do you decide which varieties to work with?

When we were starting out, the decision of which varieties to work with was based on what CIMMYT recommended based on the data from on-farm trials. Most Malawian farmers use local maize varieties so it’s a good step for them to start using improved varieties – not necessarily hybrids.

Apart from the yields, what else do Malawian farmers look for? It has to be white and it has to be poundable or flint varieties with a hard endosperm. Of course, there are other attributes you have to worry about as well such as yield and drought tolerance. The seasons are changing, the rainfall period is becoming shorter so we’re looking for short-maturing materials in particular. If you have a variety that takes 90-100 days to mature, you’re OK, but if you choose one that takes 140-150, the farmer can be at risk of losing out because it doesn’t fit well into the growing season.

Having looked at those particular parameters we can decide on the variety we’re going to go for because this feeds into what our regular farmers want.

Is it easy to get farmers to buy those varieties, given that you know exactly what they’re looking for?

We’re not the only ones dealing with maize hybrids, so if you’re not aggressive enough in marketing you’ll not be able to survive.

You can’t just see that the demand is there and then put the product out. We have a marketing team within the company whose role is to market and advise the farmers. We try to listen to what’s happening on the ground, see how our varieties are performing and share results with the breeders. If you sell your seed you have to get feedback – whether it’s doing well or not.

But it can be difficult with the lack of infrastructure in Malawi. There are some places which are not accessible, so there are farmers who want your seed but you can’t reach them. Those farmers end up planting some local seed, which they might not have planted if they had access to improved varieties.

Chingati Phiri stands in front of a CPM plot reading for sowing in Bunda, Malawi. (Photo: Emma Orchardson/CIMMYT)
Chingati Phiri stands in front of a CPM plot reading for sowing in Bunda, Malawi. (Photo: Emma Orchardson/CIMMYT)

Chingati Phiri, Managing Director at CPM Agri-Enterprises

CIMMYT equals maize, so there’s very little we’d be doing without them. There has been collaboration and partnership since we started the seed business.

We got all the parent materials, expertise and production training from CIMMYT. We now even have our own CIMMYT-trained internal inspectors, who ensure that the seed that we produce meet quality standards that are required. When they were giving us the lines, they also helped us with production of the basic seed to start our maize production. Without CIMMYT, we wouldn’t be here.

You’re one of the few seed companies in Malawi producing vitamin A biofortified maize, which CIMMYT develops in partnership with HarvestPlus. How did you decide to work on that variety?

We selected the orange vitamin A maize firstly because of corporate social responsibility reasons. There is a developmental aspect to what we do, and we’re not just here for money. I think whatever we’re doing should also help the people that are buying from us. We knew that micronutrient deficiency is an issue in Malawi, so we hoped that the vitamin A biofortified maize could address some of the country’s malnutrition problems.

When the Government said it was looking at alternative ways of combating malnutrition, this was one of the proposed solutions and we thought we should be the first to do it. As of now, I think that of the 20-something lead seed businesses in Malawi, we’re one of only three producing this maize.

How challenging has it been to promote that variety?

Very, because the orange maize was not popular to begin with. In the first year, we had about 25 metric tons of seed and we didn’t even sell 10.

Yellow maize was brought in to feed people during a famine in the early 90s, so I think when people see orange maize now they are reminded of that hunger. There are still those negative associations. So we had to do some convincing, visiting farmers with HarvestPlus and telling them about the benefits.

But this is our third year and we don’t have any seed left — it’s all gone. Combined, the three companies involved in orange maize production had about 65 metric tons. But this year the demand has been around 1,050 metric tons. What we produced is not even one tenth of what is required.

Now that the orange maize has been popularized, we see demand increasing in the next five years as well. Apart from farmers, we’ve also had inquiries from people that want to use it for industrial purposes and are looking for very large quantities. Now we know, if people are looking for orange maize, we’ll be among the first to provide it.

Shane Phiri, Operations Manager at Global Seeds, shows a bag of MH34 seed. (Photo: Emma Orchardson/CIMMYT)
Shane Phiri, Operations Manager at Global Seeds, shows a bag of MH34 seed. (Photo: Emma Orchardson/CIMMYT)

Shane Phiri, Operations Manager at Global Seeds

I studied agribusiness management for my first degree and went into farming immediately after. Later I completed a Masters in Agronomy, but the moment I started talking to CIMMYT I knew that I was lacking knowledge on the technical side. Over the years I’ve attended a number of courses — maize technician courses and programs to help people in the seed industry learn about hybrids — thanks to CIMMYT. A large part of my knowledge has come from those trainings, visiting the research station in Harare and attending field days.

Global Seeds is known for its flagship product, MH34. Why did you decide to focus on that specific variety?

One of the main driving factors for us to go for MH34 was that it was not being produced by anyone else. This was a new variety that no other company had branded as their own yet, so it was a good opportunity for us to own it.

At the same time, I liked this variety because it had two lines from CIMMYT and one line that’s bred locally. It’s kind of a mix. I really liked that because it meant that it would be a bit of a challenge for anyone outside the country to produce it because they would not get that extra 25% from the Malawian line.

Did that also make it difficult for Global Seeds to produce?

It was not easy for us to get it on the market. It’s one of the stories I’m most proud of — to say we’re one of the few companies producing this variety — especially when I look back at the last three years and the work it took to get it to where we are.

We got the lines we needed from CIMMYT, but when we went to the local program to get that one last ingredient, we got less than 1.4 kilograms. Normally we would need at least 5 kilograms.

We knew we had to produce quickly to commercialize the variety, so we took 900 grams and started trying to increase the line under irrigation. Then the water supply ran out and we had to hire a water bowser. It was quite a journey but in the end we produced a handful of seed, and now the story is that this variety is flying off the shelves.

Biofortified Maize for Improved Human Nutrition

The Biofortified Maize for Improved Human Nutrition project conducts field research both at CIMMYT and with partners on breeding for increased pro-vitamin A and Zinc content in both Africa and Latin America. The project grant is renewed annually and has been in operation since 2004.

Key activities include supporting early and mid-late product development, evaluation and release in Mexico and target countries in southern Africa, food science and retention studies. Molecular breeding and biochemical analysis are key components for successful breeding, and the project also involves technical backstopping for partners in both regions.

Objectives

  • Conduct field research on breeding for increased pro-vitamin A for target countries in Africa
  • Conduct field research on breeding for increased Zinc for product evaluation and release
  • Conduct essential research to deploy analytical tools and marker assisted selection or genomic selection methods in micronutrient breeding work
  • Facilitate the dissemination, promotion and consumption of biofortified crops

Thokozile Ndhlela

Thokozile Ndhlela is a maize line development breeder with CIMMYT’s Global Maize Program, based in Zimbabwe. Her work mainly involves breeding for stress tolerant and nutritious maize varieties to boost food and nutrition security, especially in developing countries.

New crop varieties set to address drought, malnutrition

Test plot in Malawi includes drought-tolerant maize varieties developed by the International Maize and Wheat Improvement Center (CIMMYT); other maize varieties that are both drought-tolerant and high in vitamin A, developed by the HarvestPlus program and CIMMYT; and a high-iron bean variety developed by HarvestPlus and the International Center for Tropical Agriculture (CIAT).

Through thirty of these test plots established in the current growing season, the Clinton Development Initative, HarvestPlus and CIMMYT partners are reaching 30 000 farmers in 10 districts of Malawi.

Read more here: https://www.mwnation.com/new-crop-varieties-set-to-address-drought-malnutrition/

Biofortified Crop Project Reaches Refugees in Zambia

The Mutwales farm a small plot of land in the camp, growing primarily cassava and maize for food. They are also one of the 105 refugee farming families participating in an initiative during the 2019/2020 growing season to help them cultivate nutritious, vitamin A-biofortified orange maize, which was developed by the International Maize and Wheat Improvement Center (CIMMYT) in partnership with HarvestPlus.

Read more here: https://www.ipsnews.net/2020/02/biofortified-crop-project-reaches-refugees-zambia/

Advancing Nutritious Food Crops: The Role of the Public Sector

The public sector plays a vital catalytic role, through enabling policies and programs, in ensuring that biofortified crops like iron pearl millet, zinc wheat, and zinc rice reach the most vulnerable populations to address the problem of ‘hidden hunger’.

Read more here: https://www.outlookindia.com/website/story/poshan-news-advancing-nutritious-food-crops-the-role-of-the-public-sector/347822

Zimbabwe: Farmer Combats ‘Hidden Hunger’. . . Grows Biofortified Crops

Since 2015, Harvest Plus, through the Livelihoods and Food Security Programme (LFSP), has collaborated with the International Maize and Wheat Improvement Centre (CIMMYT), Department of Research and Specialist Services (DR&SS), and more than 30 national and international partners, in breeding biofortified crop varieties of vitamin A orange maize.

Read more here.

Breaking Ground: Velu Govindan is mainstreaming zinc to combat hidden hunger

Velu Govindan will always remember his father telling him not to waste his food. “He used to say that rice and wheat are very expensive commodities, which most people could only afford to eat once a week during his youth,” recalls the wheat breeder, who works at the International Maize and Wheat Improvement Center (CIMMYT).

As in many parts of the world, the Green Revolution had a radical impact on agricultural production and diets in southern India, where Govindan’s father grew up, and by the late 1960s all farmers in the area had heard of “the scientist” from the USA. “Borlaug’s influence in India is so great because those new high-yielding varieties fed millions of people — including me.”

But feeding millions was only half the battle.

Today, at least two billion people around the world currently suffer from micronutrient deficiency, characterized by iron-deficiency anemia, lack of vitamin A and zinc deficiency.

Govindan works in collaboration with HarvestPlus to improve nutritional quality in cereals in addition to core traits like yield potential, disease resistance and climate tolerance. His area of focus is South Asia, where wheat is an important staple and many smallholder farmers don’t have access to a diversified diet including fruit, vegetables or animal products which are high in micronutrients like iron and zinc.

“It’s important that people not only have access to food, but also have a healthy diet,” says Govindan. “The idea is to improve major staples like rice, maize and wheat so that people who consume these biofortified varieties get extra benefits, satisfying their daily dietary needs as well as combatting hidden hunger.”

The challenge, he explains, is that breeding for nutritional quality is often done at the expense of yield. But varieties need high yield potential to be successful on the market because farmers in developing countries will not get a premium price simply for having a high micronutrient content in their grain.

Fast evolving wheat diseases are another issue to contend with. “If you release a disease-resistant variety today, in as little as three or four years’ time it will already be susceptible because rust strains keep mutating. It’s a continuous battle, but that’s plant breeding.”

Velu Govindan speaks at International Wheat Conference in 2015. (Photo: Julie Mollins/CIMMYT)
Velu Govindan speaks at International Wheat Conference in 2015. (Photo: Julie Mollins/CIMMYT)

Mainstreaming zinc

When it comes to improvement, breeding is only the first part of the process, Govindan explains. “We can do a good job here in the lab, but if our varieties are not being taken up by farmers it’s no use.”

Govindan and his team work in collaboration with a number of public and private sector organizations to promote new varieties, partnering with national agricultural research systems and advanced research institutes to reach farmers in India, Nepal and Pakistan. As a result, additional high-zinc varieties have been successfully marketed and distributed across South Asia, as well as new biofortified lines which are currently being tested in sub-Saharan Africa for potential release and cultivation by farmers.

Their efforts paid off with the development and release of more than half dozen competitive high-zinc varieties including Zinc-Shakthi, whose grain holds 40% more zinc than conventional varieties and yields well, has good resistance to rust diseases, and matures a week earlier than other popular varieties, allowing farmers to increase their cropping intensity. To date, these biofortified high-zinc wheat varieties have reached nearly a million households in target regions of South Asia and are expected to spread more widely in coming years.

The next step will be to support the mainstreaming of zinc, so that it becomes an integral part of breeding programs as opposed to an optional addition. “Hopefully in ten years’ time, most of the wheat we eat will have those extra benefits.”

There may be a long way to go, but Govindan remains optimistic about the task ahead.

Velu Govindan examines wheat in the field.
Velu Govindan examines wheat in the field.

Born into a farming family, he has fond memories of a childhood spent helping his father in the fields, with afternoons and school holidays dedicated to growing rice, cotton and a number of other crops on the family plot.

The region has undergone significant changes since then, and farmers now contend with both rising temperatures and unpredictable rainfall. It was a motivation to help poor farmers adapt to climate change and improve food production that led Govindan into plant breeding.

He has spent nearly ten years working on CIMMYT’s Spring Wheat Program and still feels honored to be part of a program with such a significant legacy. “Norman Borlaug, Sanjay Rajaram and my supervisor Ravi Singh — these people are legendary,” he explains. “So luckily we’re not starting from scratch. These people made life easy, and we just need to keep moving towards achieving continuous genetic gains for improved food and nutrition security.”

The case for rushing farmer access to BARI Gom 33

In 2016, the emergence of wheat blast, a devastating seed- and wind-borne pathogen, threatened an already precarious food security situation in Bangladesh and South Asia.

In a bid to limit the disease’s impact in the region, the Bangladesh Agricultural Research Institute (BARI) collaborated with the International Maize and Wheat Improvement Center (CIMMYT) and researchers from nearly a dozen institutions worldwide to quickly develop a long-term, sustainable solution.

The result is BARI Gom 33, a new blast-resistant, high-yielding, zinc-fortified wheat variety, which Bangladesh’s national seed board approved for dissemination in 2017. In the 2017-18 season, the Bangladesh Wheat Research Council provided seed for multiplication and the country’s Department of Agricultural Extension established on-farm demonstrations in blast prone districts.

However, the process of providing improved seed for all farmers can be a long one. In a normal release scenario, it can take up to five years for a new wheat variety to reach those who need it, as nucleus and breeder seeds are produced, multiplied and certified before being disseminated by extension agencies. Given the severity of the threat to farmer productivity and the economic and nutritional benefits of the seed, scientists at CIMMYT argue that additional funding should be secured to expedite this process.

According a new study on the economic benefits of BARI Gom 33, 58 percent of Bangladesh’s wheat growing areas are vulnerable to wheat blast. The rapid dissemination of seed can help resource-poor farmers better cope with emerging threats and changing agro-climatic conditions, and would play a significant role in combatting malnutrition through its increased zinc content. It could also have a positive effect on neighboring countries such as India, which is alarmingly vulnerable to wheat blast.

“Our simulation exercise shows that the benefits of disseminating BARI Gom 33 far exceed the seed multiplication and dissemination costs, which are estimated at around $800 per hectare,” explains Khondoker Mottaleb, CIMMYT socioeconomist and lead author of the study. Even in areas unaffected by wheat blast, scaling out BARI Gom 33 could generate a net gain of $8 million for farmers due to its 5 percent higher average yield than other available varieties. These benefits would nearly double in the case of an outbreak in blast-affected or blast-vulnerable districts.

More than 50 percent of Bangladesh’s wheat growing areas are vulnerable to wheat blast. (Source: Mottaleb et al.)

Based on these findings, the authors urge international development organizations and donor agencies to continue their support for BARI Gom 33, particularly for government efforts to promote the blast-resistant variety. The minimum seed requirement to begin the adoption and diffusion process in the 2019-20 wheat season will be 160 metric tons, which will require an initial investment of nearly $1 million for seed multiplication.

Read more study results and recommendations:
“Economic Benefits of Blast-Resistant Biofortified Wheat in Bangladesh: The Case of BARI Gom 33” in Crop Protection, Volume 123, September 2019, Pages 45-58.

This study was supported by the CGIAR Research Program on wheat agri-food systems (CRP WHEAT), the Australian Centre for International Agricultural Research (ACIAR), the CGIAR Research Program on Agriculture for Nutrition and Health (CRP-A4NH), and the HarvestPlus challenge program (partly funded by the Bill and Melinda Gates Foundation).

Research, innovation, partnerships, impact

On May 15, 2019, as part of the CGIAR System Council meeting held at the ILRI campus in Addis Ababa, Ethiopia, around 200 Ethiopian and international research and development stakeholders convened for the CGIAR Agriculture Research for Development Knowledge Share Fair. This exhibition offered a rare opportunity to bring the country’s major development investors together to learn and exchange about how CGIAR investments in Ethiopia help farmers and food systems be more productive, sustainable, climate resilient, nutritious, and inclusive.

Under the title One CGIAR — greater than the sum of its parts — the event offered the opportunity to highlight close partnerships between CGIAR centers, the Ethiopian government and key partners including private companies, civil society organizations and funding partners. The fair was organized around the five global challenges from CGIAR’s business plan: planetary boundaries, sustaining food availability, promoting equality of opportunity, securing public health, and creating jobs and growth. CGIAR and its partners exhibited collaborative work documenting the successes and lessons in working through an integrated approach.

There were 36 displays in total, 5 of which were presented by CIMMYT team members. Below are the five posters presented.

How can the data revolution help deliver better agronomy to African smallholder farmers?

This sustainability display showed scalable approaches and tools to generate site-specific agronomic advice, developed through the Taking Maize Agronomy to Scale in Africa (TAMASA) project in Nigeria, Tanzania and Ethiopia.

Maize and wheat: Strategic crops to fill Ethiopia’s food basket

This poster describes how CGIAR works with Ethiopia’s research & development sector to support national food security priorities.

Addressing gender norms in Ethiopia’s wheat sector

Research shows that restrictive gender norms prevent women’s ability to innovate and become productive. This significantly impacts Ethiopia’s economy (over 1% GDP) and family welfare and food security.

Quality Protein Maize (QPM) for better nutrition in Ethiopia

With the financial support of the government of Canada, CIMMYT together with national partners tested and validated Quality Protein Maize as an alternative to protein intake among poor consumers.

Appropriate small-scale mechanization

The introduction of small-scale mechanization into the Ethiopian agriculture sector has the potential to create thousands of jobs in machinery service provision along the farming value chain.

About the CGIAR System Council

The CGIAR System Council is the strategic decision-making body of the CGIAR System that keeps under review the strategy, mission, impact and continued relevancy of the System as a whole. The Council meets face-to-face not less than twice per year and conducts business electronically between sessions. Additional meetings can be held if necessary.

Related outputs from the Share Fair 2019

Biofortified maize and wheat can improve diets and health, new study shows

TEXCOCO, Mexico (CIMMYT) — More nutritious crop varieties developed and spread through a unique global science partnership are offering enhanced nutrition for hundreds of millions of people whose diets depend heavily on staple crops such as maize and wheat, according to a new study in the science journal Cereal Foods World.

From work begun in the late 1990s and supported by numerous national research organizations and scaling partners, more than 60 maize and wheat varieties whose grain features enhanced levels of zinc or provitamin A have been released to farmers and consumers in 19 countries of Africa, Asia, and Latin America over the last 7 years. All were developed using conventional cross-breeding.

Farmer and consumer interest has grown for some 60 maize and wheat varieties whose grain features enhanced levels of the essential micronutrients zinc and provitamin A, developed and promoted through collaborations of CIMMYT, HarvestPlus, and partners in 19 countries (Map: Sam Storr/CIMMYT).
Farmer and consumer interest has grown for some 60 maize and wheat varieties whose grain features enhanced levels of the essential micronutrients zinc and provitamin A, developed and promoted through collaborations of CIMMYT, HarvestPlus, and partners in 19 countries (Map: Sam Storr/CIMMYT).

“The varieties are spreading among smallholder farmers and households in areas where diets often lack these essential micronutrients, because people cannot afford diverse foods and depend heavily on dishes made from staple crops,” said Natalia Palacios, maize nutrition quality specialist at the International Maize and Wheat Improvement Center (CIMMYT) and co-author of the study.

More than 2 billion people worldwide suffer from “hidden hunger,” wherein they fail to obtain enough of such micronutrients from the foods they eat and suffer serious ailments including poor vision, vomiting, and diarrhea, especially in children, according to Wolfgang Pfeiffer, co-author of the study and head of research, development, delivery, and commercialization of biofortified crops at the CGIAR program known as “HarvestPlus.”

“Biofortification — the development of micronutrient-dense staple crops using traditional breeding and modern biotechnology — is a promising approach to improve nutrition, as part of an integrated, food systems strategy,” said Pfeiffer, noting that HarvestPlus, CIMMYT, and the International Institute of Tropical Agriculture (IITA) are catalyzing the creation and global spread of biofortified maize and wheat.

“Eating provitamin A maize has been shown to be as effective as taking Vitamin A supplements,” he explained, “and a 2018 study in India found that using zinc-biofortified wheat to prepare traditional foods can significantly improve children’s health.”

Six biofortified wheat varieties released in India and Pakistan feature grain with 6–12 parts per million more zinc than is found traditional wheat, as well as drought tolerance and resistance to locally important wheat diseases, said Velu Govindan, a breeder who leads CIMMYT’s work on biofortified wheat and co-authored the study.

“Through dozens of public–private partnerships and farmer participatory trials, we’re testing and promoting high-zinc wheat varieties in Afghanistan, Ethiopia, Nepal, Rwanda, and Zimbabwe,” Govindan said. “CIMMYT is also seeking funding to make high-zinc grain a core trait in all its breeding lines.”

Pfeiffer said that partners in this effort are promoting the full integration of biofortified maize and wheat varieties into research, policy, and food value chains. “Communications and raising awareness about biofortified crops are key to our work.”

For more information or interviews, contact:

Mike Listman
Communications Consultant
International Maize and Wheat Improvement Center (CIMMYT)
m.listman@cgiar.org, +52 (1595) 957 3490

New publications: Biofortification of maize with provitamin A can reduce aflatoxin load

Maize infected with the fungus Aspergillus flavus, causing ear rot and producing aflatoxins. (Photo: George Mahuku/CIMMYT)
Maize infected with the fungus Aspergillus flavus, causing ear rot and producing aflatoxins. (Photo: George Mahuku/CIMMYT)

New research evidence could have significant implications for breeding approaches to combat harmful aflatoxin contamination in maize while simultaneously contributing to alleviate vitamin A deficiency. The study “Provitamin A Carotenoids in Grain Reduce Aflatoxin Contamination of Maize While Combating Vitamin A Deficiency” is the first published report to document how biofortification with provitamin A can contribute to reduce aflatoxin contamination in maize.

Aflatoxins are harmful compounds that are produced by the fungus Aspergillus flavus, which can be found in the soil, plants and grain of a variety of legumes and cereals including maize. Toxic to humans and animals, aflatoxins are associated with liver and other types of cancer, as well as with weakened immune systems that result in increased burden of disease, micronutrient deficiencies, and stunting or underweight development in children.

Efforts to breed maize varieties with resistance to aflatoxin contamination have proven difficult and elusive. Contamination of maize grain and products with aflatoxin is especially prevalent in low- and middle-income countries where monitoring and safety standards are inconsistently implemented.

Biofortification also serves to address “hidden hunger,” or micronutrient deficiency. Over two billion people are affected globally — they consume a sufficient amount of calories but lack essential micronutrients such as vitamins and minerals. Vitamin A deficiency specifically compromises the health of millions of maize consumers around the world, including large parts of sub-Saharan Africa.

Provitamin A-enriched maize is developed by increasing the concentration of carotenoids — the precursors of vitamin A — and powerful antioxidants that play important roles in reducing the production of aflatoxin by the fungus Aspergillus flavus. The relative ease of breeding for increased concentrations of carotenoids as compared to breeding for aflatoxin resistance in maize make this finding especially significant as part of a solution to aflatoxin contamination problems.

Breeding of provitamin A-enriched maize varieties is ongoing at the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA), with the support of HarvestPlus. Several varieties trialed in sub-Saharan Africa have demonstrated their potential to benefit vitamin-deficient maize consumers.

The researchers highlight the potential in breeding maize with enhanced levels of carotenoids to yield the dual health benefits of reduced aflatoxin concentration in maize and reduced rates of vitamin A deficiency. This result is especially significant for countries where the health burdens of exposure to aflatoxin and prevalence of vitamin A deficiency converge with high rates of maize consumption.

Read the full study here: https://www.frontiersin.org/articles/10.3389/fpls.2019.00030/full

Financial support for this study was partially provided by HarvestPlus, a global alliance of agriculture and nutrition research institutions working to increase the micronutrient density of staple food crops through biofortification. The views expressed do not necessarily reflect those of HarvestPlus. The CGIAR Research Program on Maize (MAIZE) also supported this research.

This research builds on the Ph.D. dissertation of Dr. Pattama Hannok at University of Wisconsin, Madison, WI, United States (Hannok, 2015).