Skip to main content

funder_partner: GOAL

Crop variety guide for farmers

As part of a rural resilience project in Zimbabwe, the International Maize and Wheat Improvement Center (CIMMYT) has published a new guide to stress-tolerant crop varieties for smallholder farmers in Zimbabwe.

The guide is a critical output of a project led by CIMMYT and the international humanitarian response agency GOAL, in collaboration with the United Nations World Food Programme (WFP), the Government of Zimbabwe and other partners. With financial support from the Swiss Agency for Development and Cooperation (SDC) and the U.S. Agency for International Development (USAID), the project aims to reach 5000 smallholder farmers in target areas in the country.

Among the project components is the promotion of stress-tolerant seed and climate-smart agriculture practices to rural smallholders. With increasing threats of climate change and a decline in soil fertility, using these improved varieties and climate-smart practices is critical to help farmers adapt to external stresses.

To support variety adoption, a team of CIMMYT experts have identified suitable drought-tolerant and nutritious maize, sorghum and millet varieties. These will be promoted through “mother and baby” trials, designed to facilitate conversations among farmers, extension, and researchers, in these areas.

The new crop variety guide aims to help smallholder farmers in target areas make informed choices by providing critical information about the prioritized products and their maturity length, drought-tolerance, nutritional value, and pest and disease resistance. Direct linkages with private sector seed companies will ensure that farmers have access to this seed at affordable prices.

Implementing crop rotation between these best-suited, stress-tolerant varieties and climate-resilient cowpeas and groundnuts in a conservation agriculture system can improve food and nutrition security even under a variable climate.

Starting with good seed, and enhanced with improved agronomic practices, smallholder farmers have a greater chance of reliable yields and improved income.

Download the manual: Variety description: maize, sorghum, millet, cowpeas and groundnuts

CIMMYT and GOAL team up to help farmers in Zimbabwe fight fall armyworm

DUN LAOGHAIRE, Ireland and TEXCOCO, Mexico — Irish humanitarian aid agency GOAL has joined CIMMYT (the International Maize and Wheat Improvement Center) in the fight against fall armyworm, a devastating insect pest that experts say threatens the food security of millions of people in Africa.

The fall armyworm has caused significant damage to maize crops in sub-Saharan Africa since its arrival to the region in 2016.

A study on the impact of the fall armyworm in eastern Zimbabwe reveals that nearly 12 percent of crops are lost annually due to the infestation. And the study states that if the problem spreads throughout the entire country tonnes of grain to the value of $32 million could be lost.

GOAL Zimbabwe has now teamed up with CIMMYT to identify conditions that promote fall armyworm infestation in order to educate farmers on best practices to fight the problem.

Regular weeding, conservation agriculture, use of manure and compost, and ending pumpkin intercropping have been found to help prevent infestation.

Mainassara Zaman-Allah, co-author of the study and abiotic stress phenotyping specialist at CIMMYT said, “Given the limited coverage of the study in terms of area and season, it would be interesting to replicate it all over the country through the involvement of governmental agricultural departments, so that we get the full picture around the fall armyworm problem at a larger scale.”

Gift Mashango from GOAL Zimbabwe, said, “The fall armyworm has further worsened the food security situation of smallholder farmers who are already coping with an ailing economy and climate change. Besides the adverse effects posed to the environment by chemical methods of combating the pest, the smallholder farmer cannot afford to meet the associated costs, hence the need to come up with innovative cost-effective farming systems like climate smart agriculture.”


About CIMMYT

CIMMYT – the International Maize and Wheat Improvement Center – is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty.

CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat, and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies.

For more information about CIMMYT, please visit https://staging.cimmyt.org/.

About GOAL

GOAL is an international humanitarian aid agency working in 13 countries to ensure that the poorest and most vulnerable in our world, and those affected by humanitarian crises, have access to the fundamental rights to life. With its head office in Ireland, GOAL envisions a world where poverty and hunger no longer exist; where communities are prepared for seasonal shocks; where structural and cultural barriers to growth are removed and where every man, woman and child has equal rights and access to resources and opportunities.

To learn more about GOAL, please visit https://www.goalglobal.org/.

Media contacts

CIMMYT: Genevieve Renard, Head of Communications. G.Renard@cgiar.org

GOAL: Miriam Donohoe, Senior Communications Manager. mdonohoe@goal.ie

New study identifies best agronomic practices to reduce fall armyworm damage

Foliar damage to maize leaves due to adult fall armyworm in Zimbabwe. (Photo: C. Thierfelder/CIMMYT)
Foliar damage to maize leaves due to adult fall armyworm in Zimbabwe. (Photo: C. Thierfelder/CIMMYT)

The fall armyworm, an invasive insect-pest native to the Americas, has caused significant damage to maize crops in sub-Saharan Africa since its arrival to the region in 2016. An integrated approach, including improved agronomic practices, is necessary in order to fight against the invasive caterpillar. However, little is known about the most effective agronomic practices that could control fall armyworm under typical African smallholder conditions. In addition, more information is needed on the impact of fall armyworm on maize yield in Africa, as previous studies have focused on data trials or farmer questionnaires rather than using data from farmer fields. In a new study published by researchers with the International Maize and Wheat Improvement Center (CIMMYT), investigators set out to understand the factors influencing fall armyworm damage and to quantify yield losses due to fall armyworm damage.

The study examined damage in smallholder maize fields in two districts of eastern Zimbabwe. “We estimated the yield losses due to fall armyworm damage at 11.57 percent in the study area. Extrapolated to the whole of Zimbabwe, this would amount to a loss of 200,000 tons of grain, or a value of more than $32 million using the average global price of maize of $163 per ton in 2018,” said Frederic Baudron, cropping systems agronomist at CIMMYT and main author of the study.

Practices such as infrequent weeding or planting on land that had previously been fallow were found to increase fall armyworm damage to maize — most likely because they increased the amount of fall armyworm host plants other than maize. Conversely, practices hypothesized to increase the abundance of natural enemies of fall armyworm — such as minimum and zero tillage or the application of manure and compost — were found to decrease fall armyworm damage. Intercropping with pumpkins was found to increase damage, possibly by offering a shelter to moths or facilitating plant-to-plant migration of the caterpillar. Fall armyworm damage was also higher for some maize varieties over others, pointing to the possibility of selecting for host plant resistance.

“Given the limited coverage of the study in terms of area and season, it would be interesting to replicate it all over the country through the involvement of governmental agricultural departments, so that we get the full picture around the fall armyworm problem at a larger scale,” said Mainassara Zaman-Allah, co-author of the study and abiotic stress phenotyping specialist at CIMMYT.

This study is unique in that it is the first to collect information on agronomic practices that can affect fall armyworm damage using data taken directly from smallholder farmer fields. “Many papers have been written on pest incidence-damage-yield relationships, but with researchers often having control over some of the potential sources of variation,” said Peter Chinwada, TAAT Fall Armyworm Compact Leader at the International Institute of Tropical Agriculture (IITA), another co-author of the study.

“Our study was driven by the desire to determine fall armyworm incidence-damage-yield relationships under typical African smallholder farmer conditions which are characterized by a diversity of cropping systems, planting dates and “pest management practices” that may have been adopted for purposes which have nothing to do with managing pests. Unravelling such relationships therefore requires not only institutional collaboration, but the meeting of minds of scientists from diverse disciplines.”

The results of the study suggest that several practices could be promoted to control fall armyworm in its new home of Africa. “Farmers have already been informed of the results by their extension agents; the NGO GOAL, present in Zimbabwe, shared the findings,” Baudron said. “The next step is to test some of the recommendations suggested in the paper to control fall armyworm such as good weed management, conservation agriculture, use of manure and compost, and stopping pumpkin intercropping. These approaches will need to be refined.”

This work was implemented by the International Maize and Wheat Improvement Center (CIMMYT), GOAL, and the University of Zimbabwe. It was made possible by the generous support of Irish Aid, Bakker Brothers and the CGIAR Research Program on Maize (MAIZE). Any opinions, findings, conclusion, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of Irish Aid, Bakker Brothers and MAIZE.

 

Digital imaging tools make maize breeding much more efficient

Mainassara Zaman-Allah conducts a demonstration of the use of unmanned aerial vehicles (UAV) at the Chiredzi research station in Zimbabwe.
Mainassara Zaman-Allah conducts a demonstration of the use of unmanned aerial vehicles (UAV) at the Chiredzi research station in Zimbabwe.

To keep up with growing maize demand, breeders aim at optimizing annual yield gain under various stress conditions, like drought or low fertility soils. To that end, they identify the genetic merit of each individual plant, so they can select the best ones for breeding.

To improve that process, researchers at the International Maize and Wheat Improvement Center (CIMMYT) are looking at cost-effective ways to assess a larger number of maize plants and to collect more accurate data related to key plant characteristics. Plant phenotyping looks at the interaction between the genetic make-up of a plant with the environment, which produces certain characteristics or traits. In maize, for example, this may manifest in different leaf angles or ear heights.

Recent innovations in digital imagery and sensors save money and time in the collection of data related to phenotyping. These technologies, known as high-throughput phenotyping platforms, replace lengthy paper-based visual observations of crop trials.

Authors of a recent review study on high-throughput phenotyping tools observe that obtaining accurate and inexpensive estimates of genetic value of individuals is central to breeding. Mainassara Zaman-Allah, an abiotic stress phenotyping specialist at CIMMYT in Zimbabwe and one of the co-authors, emphasizes the importance of improving existing tools and developing new ones. “Plant breeding is a continuously evolving field where new tools and methods are used to develop new varieties more precisely and rapidly, sometimes at reduced financial resources than before,” he said. “All this happens to improve efficiency in breeding, in order to address the need for faster genetic gain and reduction of the cost of breeding.”

“Under the Stress Tolerant Maize for Africa (STMA) project, we are working on implementing the use of drone-based sensing, among other breeding innovations, to reduce time and cost of phenotyping, so that the development of new varieties costs less,’’ said Zaman-Allah. “The use of drones cuts time and cost of data collection by 25 to 75 percent  compared to conventional methods, because it enables to collect data on several traits simultaneously — for example canopy senescence and plant count,” he explained.

Another great innovation developed under this CIMMYT project is what Zaman-Allah calls the ear analyzer. This low-cost digital imaging app allows to collect maize ear and kernel trait data 90 percent faster. This implies higher productivity and rigor, as more time is dedicated to data analysis rather than time spent on data collection. Using digital image processing, the ear analyzer gives simultaneous data of more than eight traits, including ear size and number, kernel number, size and weight.

Measuring maize attributes such as ear size, kernel number and kernel weight is becoming faster and simpler through digital imaging technologies.
Measuring maize attributes such as ear size, kernel number and kernel weight is becoming faster and simpler through digital imaging technologies.

Some national agricultural research systems and NGOs have adopted this digital imagery tool to better assess maize yields in farmers’ fields. For instance, CIMMYT and GOAL have used this tool to assess the extent of fall armyworm impact on maize crops yield in eastern Zimbabwe.

Scientists are exploring the use of different sensors for phenotyping, such as Red, Green and Blue (RGB) digital imaging or Light Detection and Ranging (LIDAR) devices. Infrared thermal and spectral cameras could lead to further progress towards faster maize breeding.

Such sensors can help collect numerous proxy data relating to important plant physiological traits or the plant environment, like plant height and architecture, soil moisture and root characteristics. This data can be used to assess the maize crop yield potential and stress tolerance.

Such breeding innovations are also making maize research more responsive to climate change and emerging pests and diseases.