Skip to main content

funder_partner: Germany's Federal Ministry for Economic Cooperation and Development (BMZ)

Improved metrics for better decisions

By adopting best practices and established modern tools, national agricultural research systems (NARS) are making data-driven decisions to boost genetic improvement. And they are measuring this progress through tracking and setting goals around “genetic gain.”

Genetic gain means improving seed varieties so that they have a better combination of genes that contribute to desired traits such as higher yields, drought resistance or improved nutrition. Or, more technically, genetic gain measures, “the expected or realized change in average breeding value of a population over at least one cycle of selection for a particular trait of index of traits,” according to the CGIAR Excellence in Breeding (EiB)’s breeding process assessment manual.

CGIAR breeders and their national partners are committed to increasing this rate of improvement to at least 1.5% per year. So, it has become a vital and universal high-level key performance indicator (KPI) for breeding programs.

“We are moving towards a more data-driven culture where decisions are not taken any more based on gut feeling,” EiB’s Eduardo Covarrubias told nearly 200 NARS breeders in a recent webinar on Enhancing and Measuring Genetic Gain. “Decisions that can affect the sustainability and the development of organization need to be based on facts and data.”

Improved metrics. Better decisions. More and better food. But how are NARS positioned to better measure and boost the metric?

EiB researchers have been working with both CGIAR breeding programs and NARS to broaden the understanding of genetic gain and to supply partners with methods and tools to measure it.

The recent webinar, co-sponsored by EiB and the CIMMYT-led Accelerating Genetic Gains in Maize and Wheat (AGG) project, highlighted tools and services that NARS are accessing, such as genotyping, data analysis and mechanization.

Through program assessments, customized expert advice, training and provision of services and resources, EiB researchers are helping national partners arrive at the best processes for driving and measuring genetic gains in their programs.

For example, the EiB team, through Crops to End Hunger (CtEH), is providing guidelines to breeders to help them maximize the accuracy and precision, while reducing the cost of calculating genetic gains. The guidelines make recommendations such as better design of trials and implementing an appropriate check strategy that permits regular and accurate calculation of genetic gain.

A comprehensive example at the project level is EiB’s High-Impact Rice Breeding in East and West Africa (Hi-Rice), which is supporting the modernization of national rice programs in eight key rice-producing countries in Africa. Hi-Rice delivers training and support to modernize programs through tools such as the use of formalized, validated product profiles to better define market needs, genotyping tools for quality control, and digitizing experiment data to better track and improve breeding results. This is helping partners replace old varieties of rice with new ones that have higher yields and protect against elements that attack rice production, such as drought and disease. Over the coming years, EiB researchers expect to see significant improvements in genetic gain from the eight NARS program partners.

And in the domain of wheat and maize, AGG is working in 13 target countries to help breeders adopt best practices and technologies to boost genetic gain. Here, the EiB team is contributing its expertise in helping programs develop their improvement plans — to map out where, when and how programs will invest in making changes.

NARS and CGIAR breeding programs also have access to tools and expertise on adopting a continuous improvement process — one that leads to cultural change and buy-in from leadership so that programs can identify problems and solve them as they come up. Nearly 150 national breeding partners attended another EiB/AGG webinar highlighting continuous improvement key concepts and case studies.

National programs are starting to see the results of these partnerships. The Kenya Agricultural & Livestock Research Organization (KALRO)’s highland maize breeding program has undertaken significant changes to its pipelines. KALRO carried out its first-ever full program costing, and based on this are modifying their pipeline to expand early stage testing. They are also switching to a double haploid breeding scheme with support from the CGIAR Research Program on Maize (MAIZE), in addition to ring fencing their elite germplasm for future crosses.

KALRO has also adopted EiB-supported data management tools, and are working with the team to calculate past rates of genetic gains for their previous 20 years of breeding. These actions — and the resulting data — will help them decide on which tools and methods to adopt in order to improve the rate of genetic gain for highland maize.

“By analyzing historical genetic gain over the last 20 years, it would be interesting to determine if we are still making gains or have reached a plateau,” said KALRO’s Dickson LIgeyo, who presented a Story of Excellence at EiB’s Virtual Meeting 2020. “The assessment will help us select the right breeding methods and tools to improve the program.”

Other NARS programs are on a similar path to effectively measure and increase genetic gain. In Ghana, the rice breeding program at Council for Scientific and Industrial Research (CSIR) have developed product profiles, identified their target market segments, costed out their program, digitized their operations, and have even deployed molecular markers for selection.

With this increased expertise and access to tools and services, national breeding programs are set to make great strides on achieving genetic gain goals.

“NARS in Africa and beyond have been aggressively adopting new ideas and tools,” says EiB’s NARS engagement lead Bish Das. “It will pay a lot of dividends, first through the development of state-of-the-art, and ultimately through improving genetic gains in farmers’ fields. And that’s what it’s all about.”

The beginning of a beautiful partnership

In most developing countries, smallholder farmers are the main source of food production, relying heavily on animal and human power. Women play a significant role in this process — from the early days of land preparation to harvesting. However, the sector not only lacks appropriate technologies — such as storage that could reduce postharvest loss and ultimately maximize both the quality and quantity of the farm produce — but fails to include women in the design and validation of these technologies from the beginning.

“Agricultural outputs can be increased if policy makers and other stakeholders consider mechanization beyond simply more power and tractorization in the field,” says Rabe Yahaya, an agricultural mechanization expert at CIMMYT. “Increases in productivity start from planting all the way to storage and processing, and when women are empowered and included at all levels of the value chain.”

In recent years, mechanization has become a hot topic, strongly supported by the German Federal Ministry for Economic Cooperation and Development (BMZ). Under the commission of BMZ, the German development agency GIZ set up the Green Innovation Centers (GIC) program, under which the International Maize and Wheat Improvement Center (CIMMYT) supports mechanization projects in 16 countries — 14 in Africa and two in Asia.

As part of the GIC program, a cross-country working group on agricultural mechanization is striving to improve knowledge on mechanization, exchange best practices among country projects and programs, and foster links between members and other mechanization experts. In this context, CIMMYT has facilitated the development of a matchmaking and south-south learning matrix where each country can indicate what experience they need and what they can offer to the others in the working group. CIMMYT has also developed an expert database for GIC so country teams can reach external consultants to get the support they need.

“The Green Innovation Centers have the resources and mandate to really have an impact at scale, and it is great that CIMMYT was asked to bring the latest thinking around sustainable scaling,” says CIMMYT scaling advisor Lennart Woltering. “This is a beautiful partnership where the added value of each partner is very clear, and we hope to forge more of these partnerships with other development organizations so that CIMMYT can do the research in and for development.”

This approach strongly supports organizational capacity development and improves cooperation between the country projects, explains Joachim Stahl, a capacity development expert at CIMMYT. “This is a fantastic opportunity to support GIZ in working with a strategic approach.” Like Woltering and Yahaya, Stahl is a GIZ-CIM integrated expert, whose position at CIMMYT is directly supported through GIZ.

A catalyst for South-South learning and cooperation

Earlier this year, CIMMYT and GIZ jointly organized the mechanization working group’s annual meeting, which focused on finding storage technologies and mechanization solutions that benefit and include women. Held from July 7–10 July, the virtual event brought together around 60 experts and professionals from 20 countries, who shared their experiences and presented the most successful storage solutions that have been accepted by farmers in Africa for their adaptability, innovativeness and cost and that fit best with local realities.

CIMMYT postharvest specialist Sylvanus Odjo outlined how to reduce postharvest losses and improve food security in smallholder farming systems using inert dusts such as silica, detailing how these can be applied to large-scale agriculture and what viable business models could look like. Alongside this and the presentation of Purdue University’s improved crop storage bags, participants had the opportunity to discuss new technologies in detail, asking questions about profitability analysis and the many variables that may slow uptake in the regions where they work.

Harvested maize cobs are exposed to the elements in an open-air storage unit in Ethiopia. (Photo: Simret Yasabu/CIMMYT)
Harvested maize cobs are exposed to the elements in an open-air storage unit in Ethiopia. (Photo: Simret Yasabu/CIMMYT)

Discussions at the meeting also focused heavily on gender and mechanization – specifically, how women can benefit from mechanized farming and the frameworks available to increase their access to relevant technologies. Modernizing the agricultural sector in developing countries in ways that would benefit both men and women has remained a challenge for many professionals. Many argue that the existing technologies are not gender-sensitive or affordable for women, and in many cases, women are not well informed about the available technologies.

However, gender-sensitive and affordable technologies will support smallholder farmers produce more while saving time and energy. Speaking at a panel discussion, representatives from AfricaRice and the Food and Agriculture Organization of the United Nations (FAO) highlighted the importance of involving women during the design, creation and validation of agricultural solutions to ensure that they are gender-sensitive, inclusive and can be used easily by women. Increasing their engagement with existing business models and developing tailored digital services and trainings will help foster technology adaptation and adoption, releasing women farmers from labor drudgery and postharvest losses while improving livelihoods in rural communities and supporting economic transformation in Africa.

Fostering solutions

By the end of the meeting, participants had identified and developed key work packages both for storage technologies and solutions for engaging women in mechanization. For the former, the new work packages proposed the promotion of national and regional dialogues on postharvest, cross-country testing of various postharvest packages, promotion of renewable energies for power supply in storing systems and cross-country scaling of hermetically sealed bags.

To foster solutions for women in mechanization, participants suggested the promotion and scaling of existing business models such as ‘Woman mechanized agro-service provider cooperative’, piloting and scaling gender-inclusive and climate-smart postharvest technologies for smallholder rice value chain actors in Africa, and the identification and testing of gender-sensitive mechanization technologies aimed at finding appropriate tools or approaches.

Cover image: A member of Dellet – an agricultural mechanization youth association in Ethiopia’s Tigray region – fills a two-wheel tractor with water before irrigation. (Photo: Simret Yasabu/CIMMYT)

What can the last 30 years of research tell us?

A farmer in Morogoro, Tanzania, discusses differences in his maize ears caused by differences in on-farm conditions. (Photo: Anne Wangalachi/CIMMYT)
A farmer in Morogoro, Tanzania, discusses differences in his maize ears caused by differences in on-farm conditions. (Photo: Anne Wangalachi/CIMMYT)

Global climate change represents an existential threat to many of the world’s most vulnerable farmers, introducing new stresses and amplifying the unpredictability and risk inherent in farming. In low- and middle-income countries that are heavily reliant on domestic production, this increased risk and unpredictability threatens disastrous consequences for the food security and wellbeing of rural and urban populations alike.

Given the stakes, substantial investments have been made towards developing climate-resilient crops. But what happens when the innovations widely considered to be beneficial don’t gain traction on the ground, among those who stand to lose the most from inaction? What can researchers, policymakers and funders do to ensure that the most vulnerable rural populations don’t lose out on the benefits?

These are the questions posed by a new scoping review co-authored by Kevin Pixley, interim deputy director general for research and partnerships and director of the Genetic Resources Program at the International Maize and Wheat Improvement Center (CIMMYT).

The paper relies on a descriptive analysis of 202 studies from the past 30 years which assess the determinants of climate-resilient crop adoption by small-scale producers in low- and middle-income countries. These were identified through an extensive search and screening process of multiple academic databases and grey literature sources, and selected from an initial pool of over 6,000 articles.

Taking stock

The authors identified interventions determining adoption across the literature surveyed. A key theme which emerged was the need for context-sensitive technical and financial support for climate-resilient crop adoption. Nearly 16% of the studies found that adoption depended on access to relevant extension programs. Around 12% identified access to credit and other financial instruments as key, while a further 12% identified the implementation of community programs supporting climate-resilient crops as a determining factor.

However, the study stresses that there are no one-size-fits-all solutions. Increased adoption of climate-resilient agricultural innovations will depend on interventions being highly context informed. For example, the review shows that while some studies identified older farmers as more reluctant to adopt new technologies, an equal number of studies found the opposite.

Moreover, the review identified important opportunities for further research. Gender-based approaches, for example, remain a blind spot in the literature. The majority of studies reviewed only included women if they were household heads, thus overlooking the role they may play in influencing the adoption of new agricultural technologies in male-headed households.

A community-based seed producer in Kiboko, Kenya, inspects her crop of drought-tolerant maize. (Photo: Anne Wangalachi/CIMMYT)
A community-based seed producer in Kiboko, Kenya, inspects her crop of drought-tolerant maize. (Photo: Anne Wangalachi/CIMMYT)

Driving evidence-based policymaking

The review was published as part of a collection of 10 research papers produced as part of Ceres2030: Sustainable Solutions to End Hunger. The project, a partnership between Cornell University, the International Food Policy Research Institute (IFPRI) and the International Institute for Sustainable Development (IISD), distills decades of scientific and development research into a clear menu of policy options for funders committed to achieving the UN’s Sustainable Development Goal 2: Ending world hunger by 2030.

The full collection of papers was published on October 12 across various Nature Research journals.

Speaking at a German government event on achieving Sustainable Development Goal 2, Bill Gates praised the Ceres2030 initiative, noting that “nothing on this scale has ever been done because we lacked the tools to analyze this complex information. But with the new research, solid evidence will drive better policymaking.”

He went on to highlight the CGIAR’s leadership role in these efforts, saying: “The CGIAR system is a key global institution that is investing in these approaches. It’s a critical example of how innovation can lead the way.”

New publications: Power, agency and benefits among women and men maize farmers

For smallholder farmers in sub-Saharan Africa, new agricultural technologies such as improved maize varieties offer numerous benefits — increased incomes, lower workloads and better food security, among others. However, when new technologies are introduced, they can denaturalize and expose gender norms and power relations because their adoption inevitably requires women and men to renegotiate the rules of the game. The adoption of new varieties will often be accompanied by a number of related decisions on the allocation of farm labor, the purchase and use of inorganic fertilizers, switching crops between women- and men-managed plots, and the types of benefit household members expect to secure may change.

In an article published this month in Gender, Technology and Development, researchers from the International Maize and Wheat Improvement Center (CIMMYT) explore how women in Nigeria negotiate these new power dynamics to access and secure the benefits of improved maize varieties and, more broadly, to expand their decision-making space.

Using focus group and interview data collected as part of the GENNOVATE project, the authors draw on case studies from four villages — two in the northern states of Kaduna and Plateau; two in the southwestern state of Oyo — to develop an understanding of the relationship between gender norms, women’s ability and willingness to express their agency, and the uptake of agricultural technologies. “This is an important step toward improving the capacity of agricultural research for development to design and scale innovations,” say the authors. “Achieving this ambition is highly relevant to maize.”

The results were similar across all four sites. The authors found that women in each area were constrained by powerful gender norms which privilege male agency and largely frown upon women’s empowerment, thus limiting their ability to maximize the benefits from improved varieties or realize their agency in other domains.

All women respondents remarked that improved maize varieties were easy to adopt, have higher yields and mature quickly, which meant that income flows started earlier and helped them meet household expenditures on time. They prioritized the contribution of improved maize to securing household food security, which helped them meet their ascribed gender roles as food providers.

“At the same time though, women felt they could not maximize their benefits from improved maize varieties due to men’s dominance in decision-making,” the authors explain. “This was particularly the case for married women.”

“Men are meant to travel far – not women”

Woman selling white maize at Bodija market in Ibadan, Nigeria. (Photo: Adebayo O./IITA)
Woman selling white maize at Bodija market in Ibadan, Nigeria. (Photo: Adebayo O./IITA)

Embedded gender norms – particularly those relating to mobility – infuse the wider environment and mean that women’s access to opportunities is considerably more restricted than it is for men.

The findings demonstrate that both women and men farmers secure benefits from improved maize varieties. However, men accrue more benefits and benefit directly, as they have unfettered mobility and opportunity. They can access markets that are further away, and the maize they sell is unprocessed and requires no transformation. Additionally, men do not question their right to devote profits from maize primarily to their own concerns, nor their right to secure a high level of control over the money women make.

On the other hand, women respondents — regardless of age and income cohort — repeatedly stated that while it is hard to earn significant money from local sales of the processed maize products they make, it is also very difficult for them to enter large markets selling unprocessed, improved maize.

The difficulties women face in trying to grow maize businesses may be partly related to a lack of business acumen and experience, but a primary reason is limited personal mobility in all four communities. For example, in Sabon Birni village, Kaduna, women lamented that though the local market is not large enough to accommodate their maize processing and other agri-business ventures, they are not permitted travel to markets further afield where ‘there are always people ready to buy’.

“Women’s benefits relate to the fact that improved maize varieties increase the absolute size of the ‘maize cake’,” say the authors. “They expect to get a larger slice as a consequence. However, the absolute potential of improved varieties for boosting women’s incomes and other options of importance to women is hampered by gender norms that significantly restrict their agency.”

The implications for maize research and development are that an improved understanding of the complex relational nature of empowerment is essential when introducing new agricultural technologies.

Read the full paper:
Unequal partners: associations between power, agency and benefits among women and men maize farmers in Nigeria

Other recent publications from GENNOVATE:

Continuity and Change: Performing Gender in Rural Tanzania

Engaging men in gender-equitable practices in maize systems of sub-Saharan Africa

Cover photo: Maize and other food crops on sale at Ijaye market, Oyo State, Nigeria. (Photo: Adebayo O./IITA)

Read more recent publications by CIMMYT researchers:

  1. Phenotypic characterization of Canadian barley advanced breeding lines for multiple disease resistance. 2019. Osman, M., Xinyao He, Capettini, F., Helm, J., Singh, P.K. In: Cereal Research Communications v. 47, no. 3, pg. 484-495.
  2. Tillage and crop rotations enhance populations of earthworms, termites, dung beetles and centipedes: evidence from a long-term trial in Zambia. 2019. Muoni, T., Mhlanga, B., Forkman, J., Sitali, M., Thierfelder, C. In: Journal of Agricultural Science v. 157, no. 6, pg. 504-514.
  3. Genética de la resistencia a roya amarilla causada por Puccinia striiiformis f. sp. tritici W. en tres genotipos de trigo (Triticum aestivum L.) = Genetics of the resistance to yellow rust caused by Puccinia striiformis f. sp. tritici W. in three genotypes of wheat (Tritcum aestivum L.). 2019. Rodriguez-Garcia, M.F., Rojas Martínez, R.I., Huerta-Espino, J., Villaseñor Mir, H.E., Zavaleta Mejía, E., Sandoval-Islas, S., Crossa, J. In: Revista Fitotecnia Mexicana v. 42, no. 1, pg. 31-38.
  4. Mapping of maize storage losses due to insect pests in central Mexico. 2019. García-Lara, S., García-Jaimes, E., Bergvinson, D.J. In: Journal of Stored Products Research v. 84, art. 101529.
  5. Analysis of distribution systems for supply of synthetic grain protectants to maize smallholder farmers in Zimbabwe: implications for hermetic grain storage bag distribution. 2019. Govereh, J., Muchetu, R.G., Mvumi, B.M., Chuma, T. In: Journal of Stored Products Research v. 84, art. 101520.
  6. Agronomic performance and susceptibility of seven Ghanaian improved sweet potato varieties to the sweet potato weevil, Cylas spp. (Coleoptera: Brentidae) in Coastal Savanna zone of Ghana. 2019. Adom, M., Fening, K.O., Wilson, D.D., Adofo, K., Bruce, A.Y. In: African Entomology v. 27, no. 2, pg. 312-321.
  7. Validation of candidate gene-based markers and identification of novel loci for thousand-grain weight in spring bread wheat. 2019. Sehgal, D., Mondal, S., Guzman, C., Garcia Barrios, G., Franco, C., Singh, R.P., Dreisigacker, S. In: Frontiers in Plant Science v. 19, art. 1189.
  8. Genomic prediction and genome-wide association studies of flour yield and alveograph quality traits using advanced winter wheat breeding material. 2019. Kristensen, P.S., Jensen, J., Andersen, J.P., Guzman, C., Orabi, J., Jahoor, A. In: Genes v. 10, no. 9, art. 669.
  9. Identification of superior doubled haploid maize (Zea mays) inbred lines derived from high oil content subtropical populations. 2019. Silva-Venancio, S., Preciado-Ortiz, R.E., Covarrubias-Prieto, J., Ortíz-Islas, S., Serna-Saldivar, S.O., García-Lara, S., Terron Ibarra, A., Palacios-Rojas, N. In: Maydica v. 64, no. 1, pg. 1-11.
  10. Tillage and residue-management effects on productivity, profitability and soil properties in a rice-maize-mungbean system in the Eastern Gangetic Plains. 2019. Rashid, M.H., Timsina, J., Islam, N., Saiful Islam. In: Journal of Crop Improvement v. 33, no. 5, pg. 683-710.
  11. Mapping of genetic loci conferring resistance to leaf rust from three globally resistant durum wheat sources. 2019. Kthiri, D., Loladze, A., N’Diaye, A., Nilsen, K., Walkowiak, S., Dreisigacker, S., Ammar, K., Pozniak, C.J. In: Frontiers in Plant Science v. 10, art. 1247.
  12. Compost amended with N enhances maize productivity and soil properties in semi-arid agriculture. 2019. Shahid Iqbal, Arif, M., Khan, H.Z., Yasmeen, T., Thierfelder, C., Tang Li, Khan, S., Nadir, S., Jianchu Xu In: Agronomy Journal v. 111 no. 5, pg. 2536-2544.
  13. Simulation-based maize–wheat cropping system optimization in the midhills of Nepal. 2019. Laborde, J.P., Wortmann, C.S., Blanco-Canqui, H., McDonald, A., Lindquist, J.L. In: Agronomy Journal v. 111, no. 5, pg. 2569-2581.
  14. Affordability linked with subsidy: impact of fertilizers subsidy on household welfare in Pakistan. 2019. Ali, A., Rahut, D.B., Imtiaz, M. In: Sustainability v. 11, no. 19, art. 5161.
  15. Field-specific nutrient management using Rice Crop Manager decision support tool in Odisha, India. 2019. Sharma, S., Rout, K.K., Khanda, C.M., Tripathi, R., Shahid, M., Nayak, A.D., Satpathy, S.D., Banik, N.C., Iftikar, W., Parida, N., Kumar, V., Mishra, A., Castillo, R.L., Velasco, T., Buresh, R.J. In: Field Crops Research v. 241, art. 107578.
  16. Balanced nutrient requirements for maize in the Northern Nigerian Savanna: parameterization and validation of QUEFTS model. 2019. Shehu, B.M., Lawan, B.A., Jibrin, J. M., Kamara, A. Y., Mohammed, I.B., Rurinda, J., Shamie Zingore, Craufurd, P., Vanlauwe, B., Adam, A.M., Merckx, R. In: Field Crops Research v. 241, art. 107585.
  17. Factor analysis to investigate genotype and genotype × environment interaction effects on pro-      vitamin A content and yield in maize synthetics. 2019. Mengesha, W., Menkir, A., Meseka, S., Bossey, B., Afolabi, A., Burgueño, J., Crossa, J. In: Euphytica v. 215, no. 11, art. 180.
  18. Agricultural productivity and soil carbon dynamics: a bioeconomic model. 2019. Berazneva, J., Conrad, J.M., Güereña, D. T., Lehmann, J., Woolf, D. In: American Journal of Agricultural Economics v. 101, no.4, pg. 1021-1046.
  19. Effect of manures and fertilizers on soil physical properties, build-up of macro and micronutrients and uptake in soil under different cropping systems: a review. 2019. Dhaliwal, S.S., Naresh, R.K., Mandal, A., Walia, M.K., Gupta, R.K., Singh, R., Dhaliwal, M.K. In: Journal of Plant Nutrition v. 42, no. 2, pg. 2873-2900.
  20. Combined study on genetic diversity of wheat genotypes using SNP marker and phenotypic reaction to Heterodera filipjevi. 2019. Majd Taheri, Z., Tanha Maafi, Z., Nazari, K., Zaynali Nezhad, K., Rakhshandehroo, F., Dababat, A.A. In: Genetic Resources and Crop Evolution v. 66, no. 8, pg. 1791-1811.
  21. Characterization of QTLs for seedling resistance to tan spot and septoria nodorum blotch in the PBW343/Kenya Nyangumi wheat recombinant inbred lines population. 2019. Singh, P.K., Sukhwinder-Singh, Zhiying Deng, Xinyao He, Kehel, Z., Singh, R.P. In: International Journal of Molecular Sciences v. 20, no. 21, art. 5432.
  22. Rapid identification and characterization of genetic loci for defective kernel in bread wheat. 2019. Chao Fu, Jiuyuan Du, Xiuling Tian, He Zhonghu, Luping Fu, Yue Wang, Dengan Xu, Xiaoting Xu, Xianchun Xia, Zhang Yan, Shuanghe Cao In: BMC Plant Biology v. 19, no. 1, art. 483.
  23. Nitrogen fertilizer rate increases plant uptake and soil availability of essential nutrients in continuous maize production in Kenya and Zimbabwe. 2019. Pasley, H.R., Cairns, J.E., Camberato, J.J., Vyn, T.J. In: Nutrient Cycling in Agroecosystems v. 115, no. 3, pg. 373-389.
  24. Identification of a conserved ph1b-mediated 5DS–5BS crossing over site in soft-kernel durum wheat (Triticum turgidum subsp. durum) lines. 2019. Ibba, M.I., Mingyi Zhang, Xiwen Cai, Morris, C.F. In: Euphytica v. 215, art. 200.
  25. Optimum and decorrelated constrained multistage linear phenotypic selection indices theory. 2019. Ceron Rojas, J.J., Toledo, F.H., Crossa, J. In: Crop Science v. 59, no. 6, pg. 2585-2600.
  26. Comparison of weighted and unweighted stage-wise analysis for genome-wide association studies and genomic selection. 2019. Tigist Mideksa Damesa, Hartung, J., Gowda, M., Beyene, Y., Das, B., Fentaye Kassa Semagn, Piepho, H.P. In: Crop Science v. 59, no. 6, pg. 2572-2584.
  27. Effects of drought and low nitrogen stress on provitamin a carotenoid content of biofortified maize hybrids. 2019. Ortiz-Covarrubias, Y., Dhliwayo, T., Palacios-Rojas, N., Thokozile Ndhlela, Magorokosho, C., Aguilar Rincón, V.H., Cruz-Morales, A.S., Trachsel, S. In: Crop Science v. 59, no. 6, pg. 2521-2532.
  28. Designing interventions in local value chains for improved health and nutrition: insights from Malawi. 2019. Donovan, J.A., Gelli, A. In: World Development Perspectives v. 16, art. 100149.

Scaling out climate-smart agriculture in southern Africa

The United Nations Framework Convention on Climate Change estimates that temperatures in Africa are set to rise significantly in coming years, with devastating results for farmers. Some regions could experience two droughts every five years, and see drastic reductions in maize yields over the next three decades.

Research demonstrates that climate-smart agriculture (CSA) is good method of mitigating the effects of climate change, for both farmers and the planet. Associated practices, which increase soil moisture levels and soil biodiversity have been shown to decrease soil erosion by up to 64%. They also have the potential to increase maize yields by 136% and incomes in dry environments by more than twice as much.

However, adoption rates remain low in some of the countries which stand to benefit the most, such as Malawi, Zambia and Zimbabwe, where the adoption of complete conservation agriculture systems is currently at 2.5%.

A new series of infographics describes some of the farming constraints will have to be addressed in order to scale climate-smart agricultural practices successfully in the region, taking into account both benefits and challenges for farmers.

Download the infographics:

Can we scale out Climate-Smart Agriculture? An overview.

Feasibility study of Climate-Smart Agriculture for rural communities in southern Africa: the approach.

Identifying the two best-bet CSA options to test.

A perfect storm: climate change jeopardizes food security in Malawi, Zambia and Zimbabwe.

Benefits and challenges of climate-smart agriculture for farmers in southern Africa.

Gender-sensitive climate-smart agriculture in southern Africa.

There is a strong business case for scaling out CSA in Malawi, Zambia and Zimbabwe.

It’s time to change the system, not just the technology

Society faces enormous challenges in the transition to sustainable rural development. We are unlikely to make this transition unless we move away from the 20th-century paradigm that sees the world as a logical, linear system focused on “scaling up” the use of technologies to reach hundreds of millions of smallholders.

In a new article published this week on NextBillion, Lennart Woltering of CIMMYT contends that “farming communities are unlikely to continue using a new practice or technology if the surrounding system remains unchanged, since it is this very system that shaped their conventional way of farming.”

Woltering calls on the research for development community to work towards producing deeper system change and offers some key considerations for moving in the right direction.


Read the full article:
‘Pilots Never Fail, Pilots Never Scale’: Why the Global Development Community Needs a More Realistic Approach to Reaching Billions

Download the infographic:
Sustainable systems change at scale: Not “scaling up” but getting “down to earth”

New manual provides quantitative approach to drought stress phenotyping

A researcher uses a vertical probe to measure moisture at different soil depths. (Photo: CIMMYT)
A researcher uses a vertical probe to measure moisture at different soil depths. (Photo: CIMMYT)

Since 1900, more than two billion people have been affected by drought worldwide, according to the Food and Agriculture Organization of the United Nations (FAO). Drought affects crops by limiting the amount of water available for optimal growth and development, thereby lowering productivity. It is one of the major abiotic stresses responsible for variability in crop yield, driving significant economic, environmental and social impacts.

A new technical manual, “Management of drought stress in field phenotyping,” provides a quantitative approach to drought stress phenotyping in crops. Phenotyping is a procedure vital to the success of crop breeding programs that involves physical assessment of plants for desired traits.

The manual provides guidance for crop breeders, crop physiologists, agronomists, students and field technicians who are working on improving crop tolerance to drought stress. It will help ensure drought screening trials yield accurate and precise data for use by breeding programs.

A sprinkler system irrigates a drought phenotyping trial field in Hyderabad, India. (Photo: CIMMYT)
A sprinkler system irrigates a drought phenotyping trial field in Hyderabad, India. (Photo: CIMMYT)

Based on decades of CIMMYT’s research and experience, the manual covers aspects related to field site selection, effects of weather, crop management, maintaining uniform stress in trials, and duration of stress. It focuses on an approach that standardizes the required intensity, timing and uniformity of imposed drought stress during field trials.

Such a rigorous and accurate approach to drought screening allows for precision phenotyping. Careful management of imposed drought stress also allows the full variability in a population’s genotype to be expressed and identified during phenotyping, which means the full potential of the drought tolerance trait can be harnessed.

Variability among maize genotypes for agronomic and yield traits under managed drought stress. (Photo: CIMMYT)
Variability among maize genotypes for agronomic and yield traits under managed drought stress. (Photo: CIMMYT)

“Crop breeding programs using conventional or molecular breeding approaches to develop crops with drought tolerance rely heavily on high-quality phenotypic data generated from drought screening trials,” said author and CIMMYT scientist P.H. Zaidi. “By following the guidance in this manual, users can maximize their quality standards.”

The International Maize and Wheat Improvement Center (CIMMYT) has been a pioneer in developing and deploying protocols for drought stress phenotyping, selection strategy and breeding for drought tolerance. CIMMYT’s research on drought stress in maize began in the 1970s and has since remained a top priority for the organization. Drought-tolerant maize is now one of CIMMYT’s flagship products and is a key component of CIMMYT’s portfolio of products aimed to cope with the effects of climate change in the tropics.

Read the manual:
Pervez H. Zaidi, 2019. Management of drought stress in field phenotyping. CIMMYT, Mexico.

The information presented in the manual is based on the work on quantitative management of drought stress phenotyping under field conditions that received strong and consistent support from several donor agencies, especially Germany’s Federal Ministry for Economic Cooperation and Development (BMZ), Germany’s GIZ and the CGIAR Research Program on Maize (MAIZE). The manual itself was funded by the CGIAR Excellence in Breeding (EiB) platform.

Research, innovation, partnerships, impact

On May 15, 2019, as part of the CGIAR System Council meeting held at the ILRI campus in Addis Ababa, Ethiopia, around 200 Ethiopian and international research and development stakeholders convened for the CGIAR Agriculture Research for Development Knowledge Share Fair. This exhibition offered a rare opportunity to bring the country’s major development investors together to learn and exchange about how CGIAR investments in Ethiopia help farmers and food systems be more productive, sustainable, climate resilient, nutritious, and inclusive.

Under the title One CGIAR — greater than the sum of its parts — the event offered the opportunity to highlight close partnerships between CGIAR centers, the Ethiopian government and key partners including private companies, civil society organizations and funding partners. The fair was organized around the five global challenges from CGIAR’s business plan: planetary boundaries, sustaining food availability, promoting equality of opportunity, securing public health, and creating jobs and growth. CGIAR and its partners exhibited collaborative work documenting the successes and lessons in working through an integrated approach.

There were 36 displays in total, 5 of which were presented by CIMMYT team members. Below are the five posters presented.

How can the data revolution help deliver better agronomy to African smallholder farmers?

This sustainability display showed scalable approaches and tools to generate site-specific agronomic advice, developed through the Taking Maize Agronomy to Scale in Africa (TAMASA) project in Nigeria, Tanzania and Ethiopia.

Maize and wheat: Strategic crops to fill Ethiopia’s food basket

This poster describes how CGIAR works with Ethiopia’s research & development sector to support national food security priorities.

Addressing gender norms in Ethiopia’s wheat sector

Research shows that restrictive gender norms prevent women’s ability to innovate and become productive. This significantly impacts Ethiopia’s economy (over 1% GDP) and family welfare and food security.

Quality Protein Maize (QPM) for better nutrition in Ethiopia

With the financial support of the government of Canada, CIMMYT together with national partners tested and validated Quality Protein Maize as an alternative to protein intake among poor consumers.

Appropriate small-scale mechanization

The introduction of small-scale mechanization into the Ethiopian agriculture sector has the potential to create thousands of jobs in machinery service provision along the farming value chain.

About the CGIAR System Council

The CGIAR System Council is the strategic decision-making body of the CGIAR System that keeps under review the strategy, mission, impact and continued relevancy of the System as a whole. The Council meets face-to-face not less than twice per year and conducts business electronically between sessions. Additional meetings can be held if necessary.

Related outputs from the Share Fair 2019

Is a world without hunger possible, asks Germany’s minister Gerd Müller during his visit to CIMMYT

CIMMYT staff welcome Minister Müller and his team at the entrance of CIMMYT’s global headquarters in Mexico. (Photo: Alfonso Cortés/CIMMYT)
CIMMYT staff and management welcome Minister Müller (front row, fifth from left) and his team at the entrance of CIMMYT’s global headquarters in Mexico. (Photo: Alfonso Cortés/CIMMYT)

On March 4, 2019, staff from the International Maize and Wheat Improvement Center (CIMMYT) welcomed Gerd Müller, Germany’s Federal Minister of Economic Cooperation and Development (BMZ), for a short visit to CIMMYT’s global headquarters in Mexico. Before exploring the campus and sitting down to hear about CIMMYT’s latest innovations in maize and wheat research, Minister Müller challenged the scientists gathered there by asking: “Is a world with no hunger actually possible?”

“It is possible, but it will require a lot of research and development activities to get there,” replied CIMMYT’s director general, Martin Kropff.

With $3.5 billion generated in benefits annually, CIMMYT is well positioned for Minister Müller’s challenge. CIMMYT works throughout the developing world to improve livelihoods and foster more productive, sustainable maize and wheat farming. Its portfolio squarely targets critical challenges, including food insecurity and malnutrition, climate change and environmental degradation. In addition, over 50 percent of maize and wheat grown in the developing world is based on CIMMYT varieties.

The director of CIMMYT’s Global Wheat Program, Hans Braun (left), shows one of the 28,000 unique maize seed varieties housed at CIMMYT’s genebank, the Wellhausen-Anderson Plant Genetic Resources Center. (Photo: Alfonso Cortés/CIMMYT)
The director of CIMMYT’s Global Wheat Program, Hans Braun (left), shows one of the 28,000 unique maize seed varieties housed at CIMMYT’s genebank, the Wellhausen-Anderson Plant Genetic Resources Center. (Photo: Alfonso Cortés/CIMMYT)

Germany has generously supported CIMMYT’s work for decades in a quest to answer this very question, which aligns with the German government’s agenda to improving food and nutrition security, the environment and livelihoods.

“CIMMYT is working to find ways to allow developing countries to grow maize and wheat on less land so that a larger percentage of it can be freed for nutritious and higher value cash crops. This requires better seeds that are adapted to biotic and abiotic stressors, smarter agronomy and machinery, which CIMMYT develops with partners,” Kropff explained.

CIMMYT works between smallholders and small companies to create an incentive on one side to grow varieties and on the other side, to increase demand for quality grain that will ultimately become the tortillas and bread on customers’ dinner tables. These sustainable sourcing and breeding efforts depend on the breathtaking diversity of maize and wheat housed at CIMMYT’s genebank, the Wellhausen-Anderson Plant Genetic Resources Center, which is supported by German funding along with solar panels that generate clean energy for the genebank.

Through funding for the CGIAR Research Program on WHEAT and the CIM Integrated Experts Program, Germany’s GIZ and BMZ have also supported CIMMYT research into gender and innovation processes in Africa, Central and South Asia, enhancing gender awareness in both projects and rural communities and mainstreaming gender-sensitive approaches in agricultural research. As a result, CIMMYT researchers and partners have increased gender equality in wheat-based cropping systems in Ethiopia, reduced the burden of women’s wheat cleaning work in Afghanistan, and hosted a series of training courses promoting the integration of gender awareness and analysis in research for development.

The German delegation watches the work of a lab technician counting wheat root chromosomes. (Photo: Alfonso Cortés/CIMMYT)
The German delegation watches the work of a lab technician counting wheat root chromosomes. (Photo: Alfonso Cortés/CIMMYT)

In addition, the CIM Integrated Experts program has allowed CIMMYT to increase its efforts to scale up agricultural innovations and link research to specific development needs. With support from GIZ and in collaboration with the PPPLab, in 2018 CIMMYT researchers developed a trial version of the Scaling Scan, a tool which helps researchers to design and manage scaling at all project phases: at the beginning, during and after implementation.

CIMMYT is committed to improving livelihoods and helping farmers stay competitive through increasing labor productivity and reducing costs. CIMMYT’s mechanization team works to identify, develop, test and improve technologies that reduce drudgery and enable smallholders in Mexico, sub-Saharan Africa and South Asia to adopt sustainable intensification practices, which require greater farm power and precision. In Ethiopia, CIMMYT has an ongoing collaboration with the GIZ/BMZ green innovation center — established as part of the ONE WORLD – No Hunger initiative — and is working with GIZ in Namibia to provide knowledge, expertise and capacity building on conservation agriculture. This includes the organization of training courses to mechanics and service providers on everything from the use to the repair of machinery and small-scale mechanization services.

“We’re on a mission to improve livelihoods through transforming smallholder agriculture, much of which depends on empowering women, scaling, market development and pushing for policies that would create the right incentives. Partnerships with local and international stakeholders such as Germany are at the core of CIMMYT’s operations and allow for us to have global impact,” said Kropff.

More photos of the visit are available here.

“Could we turn it on?” asks Germany’s federal minister of economic cooperation and development, Gerd Müller, during a small-scale machinery demonstration to show off the latest achievements of MasAgro, an innovative sustainable intensification project that works with more than 500,000 maize and wheat farmers in Mexico. (Photo: Alfonso Cortés/CIMMYT)
“Could we turn it on?” asks Germany’s federal minister of economic cooperation and development, Gerd Müller, during a small-scale machinery demonstration to show off the latest achievements of MasAgro, an innovative sustainable intensification project that works with more than 500,000 maize and wheat farmers in Mexico. (Photo: Alfonso Cortés/CIMMYT)

Bekele Geleta Abeyo

Bekele Geleta Abeyo works on germplasm development, variety release, early generation seed multiplication, demonstration and popularization of new wheat varieties with recommended packages to realize better yield gains on farmers’ fields with NARS partners for nine sub-Saharan African countries.

He facilitates germplasm exchange among NARs within and across countries, NARS capacity building through training and mentoring of young professionals, material support by developing competitive and compelling projects pertinent to the country, data and experience sharing, and joint publication of new research findings.

He also organizes national, regional and international conferences and workshops, creating networks among NARs in the region, representing CIMMYT and the Global Wheat Program (GWP) in various forums. He liaises with government officials, institutions, and offices at various levels for collaboration effective partnerships.

CIMMYT promotes gender awareness in agriculture research and development in Ethiopia

CIMMYT research in Ethiopia and other countries has shown that, in communities where women and men work together and women have access to knowledge and resources and share in decision making, everyone benefits. Photo: CIMMYT/Apollo Habtamu
CIMMYT research in Ethiopia and other countries has shown that, in communities where women and men work together and women have access to knowledge and resources and share in decision making, everyone benefits. Photo: CIMMYT/Apollo Habtamu

Gender awareness and gender-sensitive approaches are slowly spreading into agricultural research, extension, and policy in Ethiopia, based on recent statements from a cross section of professionals and practitioners in the country.

An initiative led by the International Maize and Wheat Improvement Center (CIMMYT) is helping to drive evidence-based approaches to foster gender equality and include it in mainstream agricultural research.

Moges Bizuneh, deputy head of the agricultural office of Basona District, attended a CIMMYT-organized workshop in which Ethiopia-specific results were presented from GENNOVATE, a large-scale qualitative study involving focus groups and interviews with more than 7,500 rural men and women in 26 developing countries. “I have learned a lot about gender and it’s not just about women, but about both women and men,” said Bizuneh.

The District of Basona has nearly 30,000 households, 98 percent of which depend on agriculture for food and livelihoods but have access to an average of only 1.5 hectares of land. More than 10,000 of those households are headed by females, because many males and youth have left Basona to seek opportunities in large cities or other countries.

Bizuneh and his colleagues are working with a district gender specialist and a women and gender unit to make gender sensitive approaches a regular part of their activities. In this, he concedes that he and other professionals are contending with “deep-rooted social and cultural norms around divisions of labor and a lack of awareness regarding gender issues.”

One surprise for Bizuneh, from group discussions regarding innovation and involvement in CIMMYT’s gender research, was that women said it was important to share experiences with other farmers and obtain new knowledge.

“No men mentioned that,” he remarked. “This shows that, if provided with information and support, women can innovate.”

Kristie Drucza, CIMMYT gender and development specialist, has been studying, publishing on, and presenting widely about people-centered, evidence-based approaches for gender equality that are being taken up by agirculture for development professionals. Photo: CIMMYT/Apollo Habtamu
Kristie Drucza, CIMMYT gender and development specialist, has been studying, publishing on, and presenting widely about people-centered, evidence-based approaches for gender equality that are being taken up by agriculture-for-development professionals. Photo: CIMMYT/Apollo Habtamu

Women and men plan and change together

Another product from the project is a 2017 review of gender-transformative methodologies for Ethiopia’s agriculture sector, co-authored by Kristie Drucza, project lead, and Wondimu Abebe, a research assistant, both from CIMMYT.

Drucza presented on the people-centered methodologies described in the publication at a recent workshop in Addis Ababa, offering diverse lessons of use for research and development professionals.

“The methodologies involve participatory research to help households and communities assess their situation and develop solutions to problems,” said Drucza. “By working with men and boys and allowing communities to set the pace of change, these approaches reduce the likelihood of a backlash against women—something that too frequently accompanies gender-focused programs.”

Annet Abenakyo Mulema, social scientist in gender at the International Livestock Research Institute (ILRI), intends to apply some of the same methods to help rural families understand household and community gender dynamics and their role in managing the families’ goats, sheep, and other livestock.

Annet Abenakyo Mulema, social scientist in gender at the International Livestock Research Institute (ILRI), is applying participatory research and gender-sensitive methods to help households and communities assess their situation and develop solutions to problems. Photo: ILRI archives
Annet Abenakyo Mulema, social scientist in gender at the International Livestock Research Institute (ILRI), is applying participatory research and gender-sensitive methods to help households and communities assess their situation and develop solutions to problems. Photo: ILRI archives

“A 2015 study we did uncovered gender relationships associated with disease transmission,” Mulema explained. “Women and girls normally clean the animal pens and so are exposed to infections. Social conventions in the community make women feel inferior and not empowered to speak out about animal health, which is considered a man’s domain. We encouraged men and women to share roles and work together, and this made it easier for both to quickly identify disease outbreaks at early stages and prevent infections from spreading throughout the herd or to humans.”

Mulema said Drucza’s workshop helped her to understand and appreciate methodologies such as social analysis and action, community conversations, and gender action learning systems to support a shared, local response to the problem. “As another outcome, we spoke to service providers, such as veterinarians and extension agents, who needed to understand how gender related to animal health and the fact that the relationships between women and men in a community can change.”

Meskerem Mulatu, gender and nutrition specialist in Ethiopia’s Agricultural Growth Program II (AGP II) Capacity Development Support Facility (CDSF), said her group invited Drucza to speak on gender and social norms at a national workshop organized by AGP II CDSF in October 2017.

“Our event was on gender, nutrition, and climate-smart agriculture,” according to Meskerem. “Many technologies are gender-sensitive but research and extension are not giving this adequate attention because there is no common operational definition. Their preconception is ‘technology is technology; it’s the same for men and women.’ Drucza’s evidence-based presentation showed that men and women may have different technology demands.”

Meskerem is going to train district agricultural officers to use a transformative methodology identified by Drucza. “Kristie’s report is really good timing,” she said. “We were thinking of doing something in terms of gender and these methodologies make sense.”

Recording data on changes in social norms

In June 2017, Drucza presented the findings of her meta-analysis of evaluations of gender in Ethiopian agricultural development at a senior staff meeting of the Ethiopia office of CARE, the global humanitarian organization. Among the 26 agricultural program evaluations considered, explained Drucza, only three had strong findings, a heavy inclusion of gender, and evidence of changes in social norms—and all three were CARE projects.

Moges Bizuneh helps lead an agricultural office in Basona District, home to more than 10,000 female-headed households, and is working to support innovation by women. Photo: CIMMYT/Mike Listman
Moges Bizuneh helps lead an agricultural office in Basona District, home to more than 10,000 female-headed households, and is working to support innovation by women. Photo: CIMMYT/Mike Listman

One was the Graduation with Resilience to Achieve Sustainable Development (GRAD) initiative. As an outcome of Drucza’s presentation, CARE is refining the way it records certain social data, according to Elisabeth Farmer, Deputy Chief of Party for the CARE’s Feed the Future Ethiopia–Livelihoods for Resilience Activity project, which emerged from GRAD.

“Our baseline study protocol and questionnaire for the new project hadn’t been finalized yet,” Farmer said. “We were thinking through the difference between using a scale that scores responses along a range, such as a Likert scale, versus asking respondents “yes or no”-type questions, for instance regarding women’s access to information or equitable decision-making in the household.

“As Drucza explained, when it comes to gender norms, you may not get all the way from a “no” to a “yes”, but only from a “2” to “3”, and we want to make sure that we are capturing these smaller shifts, so we incorporated scales with ranges into our baseline and will ensure that these are used in future assessments to track transformations in social norms.”

According to Drucza, who leads the CIMMYT project “Understanding gender in wheat-based livelihoods for enhanced WHEAT R4D impact in Afghanistan, Pakistan and Ethiopia,” funded by the German Federal Ministry for Economic Cooperation and Development, research must be relevant and useful.

“I’m happy to learn that our results are useful to a diverse range of actors, from development partners to policy makers and local agricultural officers,” she said.

Pakistan seminar highlights roles of women and youth in wheat-based agriculture

CIMMYT and the Pakistan Agricultural Research Council are set to hold a seminar on women and youth in wheat-based farming systems on March 8. Photo: CIMMYT archives
CIMMYT and the Pakistan Agricultural Research Council are set to hold a seminar on women and youth in wheat-based farming systems on March 8. Photo: CIMMYT archives

ISLAMABAD, Pakistan (CIMMYT) – As part of activities around 2018 International Women’s Day, the International Maize and Wheat Improvement Center (CIMMYT) and the Pakistan Agricultural Research Council (PARC) will hold a seminar on women and youth in wheat-based farming systems: How do women and youth contribute? What are their problems and concerns? How can their issues be addressed to increase farm productivity and benefit all household members?

The event will draw some 70 participants from public, private, and academic organizations, including high-level wheat sector officials, social scientists from all Pakistan provinces, and scientists from CIMMYT, the global leader in publicly-funded research on maize and wheat and related farming systems.

Among other topics, speakers will share and discuss Pakistan-specific findings from GENNOVATE, a large-scale qualitative study by CGIAR during 2014-16, based on focus groups and interviews involving more than 7,500 rural men and women in 26 developing countries.

The event, which takes place in the Inspire Meeting Hall, Agricultural Economics Research Institute (AERI), NARC Premises, Park Road, Islamabad, on Thursday, 8 March from 8:45 to 11:30 a.m., will feature presentations followed by question and answer sessions and discussions and will be chaired by Ghulam Muhammad Ali, Director General, NARC, and Dr. Imtiaz Muhammad, Country Representative, CIMMYT Pakistan.

The program includes Muhammad Khair and Zarmina Achakzi from Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), who will highlight the role of women in farming in Balochistan and factors that limit their income and social status. Sidra Majeed and Nusrat Habib of the Agricultural Economics Research Institute (AERI), NARC, will present on gender roles and responsibilities in Pakistan.

From CIMMYT, Mulunesh Tsegaye, a research associate, will describe GENNOVATE findings on women and youth’s roles in wheat-based agriculture in Khyber Pakhtunkhwa and Baluchistan provinces. Consultant Sidra Minhas will share gender-related results from 14 agricultural program evaluations in Pakistan and how better to address gender dynamics in project design, programming, monitoring, and evaluation. Kristie Drucza, gender and social development research manager, will introduce results of three quantitative surveys that highlight the need for greater participation of women in agriculture research to raise the sector’s productivity and profitability.

The theme of 2018 International Women’s Day is #PressforProgress, and encourages global momentum in striving for gender parity.

According to the Food and Agriculture Organization (FAO), women make up 43 percent of the agricultural workforce in developing countries, but for many access to resources and services is severely restricted and they are often left out of decisions regarding use of income—even that which they earn.

You can obtain a two-page summary of the GENNOVATE report “Gender and Innovation Processes in Wheat-Based Systems” by clicking on the title.

GENNOVATE is supported by generous funding from the World Bank; the CGIAR Gender & Agricultural Research Network; the government of Mexico through MasAgro; Germany’s Federal Ministry for Economic Cooperation and Development (BMZ); numerous CGIAR Research Programs; and the Bill & Melinda Gates Foundation. 

For further information or interviews:

Kashif Syed, Communications Specialist, CIMMYT
k.syed@cgiar.org, cell: +92 (334) 5559205

Dr. Akhter Ali, Agricultural Economist, CIMMYT
akhter.ali@cgiar.org

Dr. Kristie Drucza, Gender and Social Development Research Manager, CIMMYT, Ethiopia
k.drucza@cgiar.org

Community-based approach to gender research has far-reaching impacts

Kristie Drucza leads a gender workshop. Photo courtesy of Kristie Drucza.
Kristie Drucza leads a gender workshop. Photo courtesy of Kristie Drucza.

Researchers are changing rural development in Ethiopia by putting local communities in control of initiatives.

A project funded by the German Federal Ministry for Economic Cooperation and Development is working to increase gender equality in wheat-based cropping systems in Ethiopia, Sub-Saharan Africa’s largest wheat producer.

Kristie Drucza, a gender and social development research manager at the International Maize and Wheat Improvement Center (CIMMYT) and project lead, recently co-authored a report detailing how researchers can boost gender equality and reach program goals even faster by applying people-centered research methods in their work.

Traditionally, communities are not involved enough in development processes for researchers to offer permanent solutions. The seven methodologies laid out in the report use participatory methods, such as mapping exercises, to put people in control of the agenda.

“Program managers seem to be looking for ways to improve gender within their programs, these methodologies work and should be used more. Currently, non-government organizations implement these methodologies to change behaviors and gender norms, but the data is not collected. These methodologies generate a rich source of data that reveals how gender norms change and at what pace, this data could advance our understanding of how and why gender norms change.”

Drucza tells us more about these methodologies and where they’ve been successful in the following interview:

Creating a gender balance tree. Photo courtesy of Kristie Drucza.
Creating a gender balance tree. Photo courtesy of Kristie Drucza.

Q: What are ‘participatory methodologies’?

Participatory methodologies are a collection of research tools or activities that are designed to get participants to think, learn, analyze and plan for action. They often use visioning exercises and diagram tools to enable participants to see the world in a new way, build empathy for those who are less fortunate and plan to change what they do not like.

One example from the Gender Action Learning System (GALS) methodology is a gender balance tree.

Each participant draws all the members of their household at the trunk, and the tasks family members do at the roots. The branches represent expenses and symbols are placed on the tree to show who owns what property and who makes which decisions.

The participants discuss any imbalances and draw an action plan to make the tree more balanced.

This exercise helps put a focus on gaps that are directly identified and agreed upon by families and helps illiterate people envision a future that they can control.

Q: How do these methodologies boost gender equality?

Participants at a gender workshop. Photo courtesy of Kristie Drucza.
Participants at a gender workshop. Photo courtesy of Kristie Drucza.

We collected data from four wheat-growing communities, and in one there was a really big difference in gender relations: in how people understood it, explained it and how equal their relations were.

We found out that this community was doing community conversations (CCs), a methodology that we identified as being very effective. This community was part of a health program that was using CCs, but it also had a positive and unintended impact on the agricultural sector by enabling women and men to work as one economic unit.

Usually, men make decisions without consulting their wives on things like household expenditure and which crops to grow. This can leave a wife having to secretly take from the harvest, or sell assets so that she can make ends meet. In the community where CCs were held, households worked better together to make more informed and transparent decisions that benefited the whole family.

Q: How does your project help boost gender equality?

The most important thing we need to realize is that gender equality doesn’t just mean focusing on women, and doing so can actually create more inequality. We need to empower women but not at the expense of male sense of self and happiness.

Moreover, the social norms that underpin gender inequality need to be addressed for lasting change to ensue. Because these methodologies put communities in the driving seat, they deliver empowerment with community cohesion.

 

Learn more about the Understanding gender in wheat-based livelihoods for enhanced WHEAT R4D impact in Afghanistan, Pakistan and Ethiopia Project and read the full report “Gender transformative methodologies in Ethiopia’s agricultural sector: a review” here.

BMZ_2017_Web2x_en

CIMMYTNEWSlayer1

Improved wheat helps reduce women’s workload in rural Afghanistan

Afghan women from wheat farming villages in focus-group interviews as part of Gennovate, a global study on gender and agricultural innovation. Photo: CIMMYT archives
Afghan women from wheat farming villages in focus-group interviews as part of Gennovate, a global study on gender and agricultural innovation. Photo: CIMMYT archives

EL BATAN, Mexico (CIMMYT) — New research shows improved wheat raises the quality of life for men and women across rural communities in Afghanistan.

A recent report from Gennovate, a major study about gender and innovation processes in developing country agriculture, found that improved wheat varieties emerged overwhelmingly among the agricultural technologies most favored by both men and women.

In one striking example from Afghanistan, introducing better wheat varieties alone reduced women’s work burden, showing how the uptake of technology – whether seeds or machinery – can improve the quality of life.

“Local varieties are tall and prone to falling, difficult to thresh, and more susceptible to diseases, including smuts and bunts, which requires special cleaning measures, a task normally done by women,” said Rajiv Sharma, a senior wheat scientist at the International Maize and Wheat Improvement Center (CIMMYT) and country liaison officer for CIMMYT in Afghanistan. “Such varieties may comprise mixes of several seed types, including seed of weeds. They also give small harvests for which threshing is typically manual, with wooden rollers and animals, picking up sticks, stones, and even animal excrement that greatly complicates cleaning the grain.”

Both women and men spoke favorably about how improved wheat varieties have eased women’s wheat cleaning work.  “Improved seeds can provide clean wheat,” said an 18-year old woman from one of the study’s youth focus groups in Panali, Afghanistan. “Before, we were washing wheat grains and we exposed it to the sun until it dried. Machineries have [also] eased women’s tasks.”

Finally, Sharma noted that bountiful harvests from improved varieties often lead farmers to use mechanical threshing, which further reduces work and ensures cleaner grain for household foods.

Gennovate: A large-scale, qualitative, comparative snapshot

Conceived as a “bottom-up” idea by a small gender research team of CGIAR in 2013, Gennovate involves 11 past and current CGIAR Research Programs. The project collected data from focus groups and interviews involving more than 7,500 rural men and women in 26 countries during 2014-16.

According to estimates of the Food and Agriculture Organization of the United Nations (FAO), if women farmers had the same access to resources as men, agricultural output in developing countries would rise by an estimated average of as high as 4 percent. Photo: CIMMYT archives
According to estimates of the Food and Agriculture Organization of the United Nations (FAO), if women farmers had the same access to resources as men, agricultural output in developing countries would rise by an estimated average of as high as 4 percent. Photo: CIMMYT archives

Some 2,500 women and men from 43 rural villages in 8 wheat-producing countries of Africa and Asia participated in community case studies, as part of the CGIAR Research Program on Wheat.

“Across wheat farm settings, both men and women reported a sense of gradual progress,” said Lone Badstue, gender specialist at CIMMYT and Gennovate project leader. “But women still face huge challenges to access information and resources or have a voice in decision making, even about their own lives.”

According to estimates of the Food and Agriculture Organization of the United Nations (FAO), if women farmers, who comprise 43 per cent of the farm labor force in developing countries, had the same access to resources as men, agricultural output in 34 developing countries would rise by an estimated average of as high as 4 percent.

“Gender-related restrictions such as limitations on physical mobility or social interactions, as well as reproductive work burden, also constitute key constraints on rural women’s capacity to innovate in agriculture,” Badstue explained.

Gender equity drives innovation

The Gennovate-wheat report identified six “positive outlier communities” where norms are shifting towards more equitable gender relations and helping to foster inclusiveness and agricultural innovation. In those communities, men and women from all economic scales reported significantly higher empowerment and poverty reductions than in the 37 other locations. Greater acceptance of women’s freedom of action, economic activity, and civic and educational participation appears to be a key element.

“In contexts where gender norms are more fluid, new agricultural technologies and practices can become game-changing, increasing economic agency for women and men and rapidly lowering local poverty,” Badstue said.

The contributions and presence of CIMMYT in Afghanistan, which include support for breeding research and training for local scientists, date back several decades. In the last five years, the Agricultural Research Institute of Afghanistan (ARIA) of the country’s Ministry of Agriculture, Irrigation & Livestock (MAIL) has used CIMMYT breeding lines to develop and make available to farmers seed of 15 high-yielding, disease resistant wheat varieties.

Read the full report “Gender and Innovation Processes in Wheat-Based Systems” here.

GENNOVATE has been supported by generous funding from the World Bank; the CGIAR Gender & Agricultural Research Network; the government of Mexico through MasAgro; Germany’s Federal Ministry for Economic Cooperation and Development (BMZ); numerous CGIAR Research Programs; and the Bill & Melinda Gates Foundation.

Q+A: Agricultural mechanization fuels opportunity for youth in rural Africa

Farmers test out agricultural mechanization tools in Zimbabwe as part of CIMMYT's
Farmers test out agricultural mechanization tools in Zimbabwe as part of CIMMYT’s Farm Mechanization and Conservation Agriculture for Sustainable Intensification project. Photo: CIMMYT/ Frédéric Baudron

EL BATAN, Mexico (CIMMYT) – Small-scale agricultural mechanization is showing signs it has the potential to fuel rural employment for youth in sub-Saharan Africa, according to researchers at the International Maize and Wheat Improvement Center (CIMMYT).

Across Africa, youth are struggling with high unemployment and working poverty, the International Labor Organization records. However, increased adoption of agricultural mechanization –  especially machines that are small, affordable and easy to maintain such as two-wheel tractors – is stimulating jobs and entrepreneurial opportunities for African youth, said Frédéric Baudron, senior systems agronomist at CIMMYT.

“Small-scale mechanization is more equitable than other forms of mechanization as even the poorest and most vulnerable have access to it,” he said.

Youth, along with women, are typically subject to labor intensive farm activities causing them to shun agriculture. But with mechanization improving productivity while reducing drudgery, youth are seeing economic opportunity in agribusiness, on rural farms and as service providers, said Rabe Yahaya, a CIM/GIZ integrated expert specialized in mechanization for sustainable agriculture intensification.

As a result, new jobs along the value chain from mechanics to spare parts providers have been created, he added.

Relatively cheap and easy to operate two-wheel tractors can be used for many different applications. On-farm, the tractors are used to speed up crop establishment while conserving soils through reduced tillage and precision fertilizer application. They allow farmers to tap into surface water for irrigation as well as aid shelling grain to reduce the time taken to get to market. The machinery has also been used to start rural commercial hire and transport services.

Beyene Abebe from Ethiopia, is one youth gaining economic opportunity as a mechanization service provider. Photo: CIMMYT/
Beyene Abebe from Ethiopia, is one youth gaining economic opportunity as a mechanization service provider. Photo: CIMMYT/ Frédéric Baudron

24-year-old Beyene Abebe from Ethiopia is one youth benefiting from mechanization. Through CIMMYT managed training, Abebe has developed the skills needed to become a mechanization service provider. He now provides transportation services for an average of 200 households annually and ploughing services for 40 farmers in his village using two-wheel tractors. With the income from his service, Abebe can cover his family’s expenses and he bought farmland with his savings.

National government support for training and innovation is key to bolster agricultural mechanization throughout Africa, said Baudron. By creating a conductive business environment to attract private sector actors, governments can grease the wheels to scale out success.

Both Yahaya and Baudron shared some insights on the opportunities agricultural mechanization can provide rural communities in the following interview.

Q: Why is it important that agricultural research for development targets youth in rural areas?

RY: A growing population and diet change is increasing food demand in Africa, however, the amount of arable land is decreasing. This affects rural areas, where agriculture remains the main source of income and livelihood. Agriculture in the way it is currently practiced in rural areas is no longer attractive to the new generation of youth as it is labor intensive, rudimentary, risky, unproductive and does not support a good livelihood.

In addition, only 2 percent of Africa’s youth are undertaking agricultural curriculum at the university level. Despite young Africans being more literate than their parents, they suffer from increased unemployment. Agriculture could be the solution in tackling youth unemployment in rural areas, therefore providing peace, stability and food security.

FB: Youth unemployment is growing. Agriculture is perceived as a sector that can absorb much of this unemployment, particularly when combined with entrepreneurship.

In my view, an important issue when tackling issues of sustainable development as opposed to simply ‘development,’ is the issue of equity. We must ensure that the largest amount of people benefit from our interventions. Rural youth represent a large proportion of the vulnerable households in the areas where we work, because they lack capital and other resources, similar to women-headed households.

Q: How is mechanization creating new rural opportunities for youth and women?

RY: In many societies, youth and women are unequally disadvantaged and perform the most labor intensive agricultural activities such as plowing, sowing, weeding, harvesting, shelling, water pumping, threshing and transportation with very rudimentary implements using human and animal power. Therefore, increasing the use of engine power in agriculture will free youth and women from production drudgery discrepancies and most importantly increase farm productivity and consequently improve income generation if an organized value chain exists with a strong private sector involvement.

FB: Mechanization creates rural employment. It creates work for service provider jobs and it also stimulates other businesses along the mechanization value chains. Once demand for mechanization is established, employment opportunities grow for mechanics, fuel providers, savings and loans associations, spare part dealers, etc.

Q: What lessons are there to aid youth to be successful mechanization service providers?

RY: Training in mechanical, agronomic and business skills. Again training and constant follow up is key in order not only to produce successful youth mechanization service provider, but to ensure their continued success. In addition, infrastructure, aftersales — service and spare parts dealerships and financial schemes, promote the adoption of mechanization and support the development of value chain markets are crucial to success.

And remember whatever the technology may be, the farmer has to be able to earn money from it, otherwise they will not use it!

FB: Youth also tend to be better at managing modern technologies. We found consistently, in all countries where we work, that being a successful service provider is highly correlated to be a member of the youth. However, other factors are also important such as being entrepreneurial, educated, able to contribute to the cost of the machinery, and preferably having an experience in similar businesses and particularly in mechanics

Working with CIMMYT’s Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project, researchers have sought to promote the delivery and adoption of small-scale machines to make farming practices – including planting, harvesting, water pumping, shelling and transporting – more productive and sustainable in eastern and southern Africa. Funded by the Australian Center for International Agricultural Research, FACASI offers support throughout the supply chain, from importers to manufacturers, service providers and extension workers to ensure mechanization reaches farmers.

CIMMYT’s mechanization team has ongoing collaboration with GIZ/BMZ green innovation center in Ethiopia and works in Namibia with GIZ to provide knowledge, expertise and capacity building on conservation agriculture.

Further information:

Rural21 features CIMMYT mechanization experts

Mechanization for smallholder farmers fact sheet