Skip to main content

funder_partner: Foundation for Food & Agricultural Research (FFAR)

Reaching women with improved maize and wheat

By 2050, global demand for wheat is predicted to increase by 50 percent from today’s levels and demand for maize is expected to double. Meanwhile, these profoundly important and loved crops bear incredible risks from emerging pests and diseases, diminishing water resources, limited available land and unstable weather conditions – with climate change as a constant pressure exacerbating all these stresses.

Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) is a new 5-year project led by the International Maize and Wheat Improvement Center (CIMMYT) that brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat.

Funded by the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth & Development Office, the U.S. Agency for International Development (USAID) and the Foundation for Food and Agriculture Research (FFAR), AGG fuses innovative methods to sustainably and inclusively improve breeding efficiency and precision to produce seed varieties that are climate-resilient, pest- and disease-resistant, highly nutritious, and targeted to farmers’ specific needs.

AGG seeks to respond to the intersection of the climate emergency and gender through gender-intentional product profiles for its improved seed varieties and gender-intentional seed delivery pathways.

AGG will take into account the needs and preferences of female farmers when developing the product profiles for improved varieties of wheat and maize. This will be informed by gender-disaggregated data collection on current varieties and preferred characteristics and traits, systematic on-farm testing in target regions, and training of scientists and technicians.

Farmer Agnes Sendeza harvests maize cobs in Malawi. (Photo: Peter Lowe/CIMMYT)
Farmer Agnes Sendeza harvests maize cobs in Malawi. (Photo: Peter Lowe/CIMMYT)

To encourage female farmers to take up climate-resilient improved seeds, AGG will seek to understand the pathways by which women receive information and improved seed and the external dynamics that affect this access and will use this information to create gender-intentional solutions for increasing varietal adoption and turnover.

“Until recently, investments in seed improvement work have not actively looked in this area,” said Olaf Erenstein, Director of CIMMYT’s Socioeconomics Program at a virtual inception meeting for the project in late August 2020. Now, “it has been built in as a primary objective of AGG to focus on [
] strengthening gender-intentional seed delivery systems so that we ensure a faster varietal turnover and higher adoption levels in the respective target areas.”

In the first year of the initiative, the researchers will take a deep dive into the national- and state-level frameworks and policies that might enable or influence the delivery of these new varieties to both female and male farmers. They will analyze this delivery system by mapping the seed delivery paths and studying the diverse factors that impact seed demand. By understanding their respective roles, practices, and of course, the strengths and weaknesses of the system, the researchers can diagnose issues in the delivery chain and respond accordingly.

Once this important scoping step is complete, the team will design a research plan for the following years to understand and influence the seed information networks and seed acquisition. It will be critical in this step to identify some of the challenges and opportunities on a broad scale, while also accounting for the related intra-household decision-making dynamics that could affect access to and uptake of these improved seed varieties.

“It is a primary objective of AGG to ensure gender intentionality,” said Kevin Pixley, Director of CIMMYT’s Genetic Resources Program and AGG project leader. “Often women do not have access to not only inputs but also information, and in the AGG project we are seeking to help close those gaps.”

Cover photo: Farmers evaluate traits of wheat varieties, Ethiopia. (Photo: Jeske van de Gevel/Bioversity International)

Historic wheat research station poised to host cutting-edge research

It was the site where International Maize and Wheat Improvement Center (CIMMYT) scientist Norman Borlaug famously received news of his 1970 Nobel Peace Prize win. Now, Toluca station will become CIMMYT’s new testing site for rapid generation advancement and speed breeding in wheat – a method that accelerates generation advancement of crops and shortens the breeding cycle using tools like continuous lighting and temperature control.

Recent progress of the rapid generation advancement facility under construction at Toluca station. (Photo: Suchismita Modal/CIMMYT)
Recent progress of the 2-hectare rapid generation advancement screenhouse under construction at Toluca station. (Photo: Suchismita Modal/CIMMYT)

The Toluca wheat experimental station is one of CIMMYT’s five experimental stations in Mexico, located in a picturesque town on the outskirts of Mexico’s fifth largest city, Toluca, about 60 kilometers southwest of Mexico City. The station was strategically chosen for its cool, humid conditions in summer. These conditions have made it an ideal location for studying wheat resistance to deadly diseases including yellow rust and Septoria tritici blotch.

Since its formal establishment in 1970, Toluca has played a key role in CIMMYT’s wheat breeding program. The site is also of significant historical importance due to its origins as a testing ground for Borlaug’s shuttle breeding concept in the 1940s, along with Ciudad Obregón in the Sonora state of northern Mexico. The breeding method allowed breeders to plant at two locations to advance generations and half the breeding cycle of crops.

Applying this unorthodox breeding method, Borlaug was able to advance wheat generations twice as fast as standard breeding programs. Planting in contrasting environments and day lengths — from the cool temperatures and high rainfall of Toluca to the desert heat of Ciudad Obregón — also allowed Borlaug and his colleagues to develop varieties that were more broadly adaptable to a variety of conditions. His shuttle breeding program was so successful that it provided the foundations of the Green Revolution.

Toluca was also the site where the first sexual propagation of the destructive plant pathogen Phytophtora infestans was reported. The deadly pathogen is best known for causing the potato late blight disease that triggered the Irish potato famine.

Early photo of Toluca station. (Photo: Fernando Delgado/CIMMYT)
Early photo of Toluca station. (Photo: Fernando Delgado/CIMMYT)

New life for the historic station

More than 50 years since its establishment, the station will once again host cutting-edge innovation in wheat research, as the testing ground for a new speed breeding program led by wheat scientists and breeders from Accelerating Genetic Gains in Maize and Wheat (AGG).

Funded by the Bill & Melinda Gates Foundation, the UK Department for International Development (DFID), the U.S. Agency for International Development (USAID) and the Foundation for Food and Agriculture Research (FFAR), AGG aims to accelerate the development and delivery of more productive, climate-resilient, gender-responsive, market-demanded, and nutritious maize and wheat varieties.

While most breeding programs typically take between 7-8 years before plants are ready for yield testing, shuttle breeding has allowed CIMMYT to cut the length of its breeding programs in half, to just 4 years to yield testing. Now, AGG wheat breeders are looking to shorten the breeding cycle further, through rapid generation advancement and speed breeding.

Speed breeding room at Toluca station. The Heliospectra lights support the faster growth of plants. (Photo: Suchismita Mondal/CIMMYT)
Speed breeding room at Toluca station. The Heliospectra lights support the faster growth of plants. (Photo: Suchismita Mondal/CIMMYT)

“The AGG team will use a low-cost operation, in-field screenhouse, spanning 2 hectares, to grow up to 4 generations of wheat per year and develop new germplasm ready for yield testing within just 2 years,” said Ravi Singh, CIMMYT distinguished scientist and head of wheat improvement. “This should not only save on cost but also help accelerate the genetic gain due to a significant reduction in time required to recycle best parents.”

Construction of the new rapid generation advancement and speed breeding facilities is made possible by support from the Bill and Melinda Gates Foundation and DFID through Delivering Genetic Gain in Wheat (DGGW), a 4-year project led by Cornell University, which ends this year. It is expected to be complete by September.

 

Rapid generation advancement screenhouse under construction at Toluca station in October 2019. (Photo: Alison Doody/CIMMYT)
Rapid generation advancement screenhouse under construction at Toluca station in October 2019. (Photo: Alison Doody/CIMMYT)
Wheat fields at Toluca station. (Photo: Fernando Delgado/CIMMYT)
Wheat fields at Toluca station. (Photo: Fernando Delgado/CIMMYT)
Early photo of Toluca station. (Photo: Fernando Delgado/CIMMYT)
Early photo of Toluca station. (Photo: Fernando Delgado/CIMMYT)
Wheat fields at Toluca station. Nevado de Toluca features in the background. (Photo: Fernando Delgado/CIMMYT)
Wheat fields at Toluca station. Nevado de Toluca features in the background. (Photo: Fernando Delgado/CIMMYT)
Early landscape of wheat fields at Toluca station (Photo: Fernando Delgado/CIMMYT)
Early landscape of wheat fields at Toluca station (Photo: Fernando Delgado/CIMMYT)
Rapid generation advancement screenhouse under construction at Toluca station in October 2019. (Photo: Alison Doody/CIMMYT)
Rapid generation advancement screenhouse under construction at Toluca station in October 2019. (Photo: Alison Doody/CIMMYT)
Recent progress of the rapid generation advancement facility under construction at Toluca station. (Photo: Suchismita Modal/CIMMYT)
Recent progress of the rapid generation advancement screenhouse under construction at Toluca station. (Photo: Suchismita Modal/CIMMYT)
Speed breeding room at Toluca station. The Heliospectra lights support the faster growth of plants. (Photo: Suchismita Mondal/CIMMYT)
Speed breeding room at Toluca station. The Heliospectra lights support the faster growth of plants. (Photo: Suchismita Mondal/CIMMYT)

The concept of speed breeding is not new. Inspired by NASA’s efforts to grow crops in space, scientists at the University of Sydney, the University of Queensland (UQ) and the John Innes Centre developed the technique to accelerate the development of crops and improve their quality. The breeding method has been successfully used for crops like spring wheat, barley, pea, chickpea, radish and canola.

CIMMYT Global Wheat Program Director Hans Braun highlighted the importance of testing the new breeding scheme. “Before completely adopting the new breeding scheme, we need to learn, optimize and analyze the performance results to make necessary changes,” he said.

If all goes well, Toluca could once again be on the vanguard of wheat research in the near future.

“We plan to use the speed breeding facility for rapid integration of traits, such as multiple genes for resistance, to newly-released or soon to be released varieties and elite breeding lines,” said CIMMYT Wheat Breeder Suchismita Mondal, who will lead the work in these facilities. We are excited to initiate using the new facilities.”

“Better, faster, equitable, sustainable” – wheat research community partners join to kick off new breeding project

Wheat fields at the Campo Experimental Norman E. Borlaug (CENEB) near Ciudad ObregĂłn, Sonora, Mexico. (Photo: M. Ellis/CIMMYT)
Wheat fields at the Campo Experimental Norman E. Borlaug (CENEB) near Ciudad ObregĂłn, Sonora, Mexico. (Photo: M. Ellis/CIMMYT)

More than 100 scientists, crop breeders, researchers, and representatives from funding and national government agencies gathered virtually to initiate the wheat component of a groundbreaking and ambitious collaborative new crop breeding project led by the International Maize and Wheat Improvement Center (CIMMYT).

The new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods, or AGG, brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat — two of the world’s most important staple crops.

Funded by the Bill & Melinda Gates Foundation, the U.K. Department for International Development (DFID), the U.S. Agency for International Development (USAID), and the Foundation for Food and Agriculture Research (FFAR), the project specifically focuses on supporting smallholder farmers in low- and middle-income countries. The international team uses innovative methods — such as rapid cycling and molecular breeding approaches — that improve breeding efficiency and precision to produce varieties that are climate-resilient, pest and disease resistant and highly nutritious, targeted to farmers’ specific needs.

The wheat component of AGG builds on breeding and variety adoption work that has its roots with Norman Borlaug’s Nobel Prize winning work developing high yielding and disease resistance dwarf wheat more than 50 years ago. Most recently, AGG builds on Delivering Genetic Gain in Wheat (DGGW), a 4-year project led by Cornell University, which ends this year.

“AGG challenges us to build on this foundation and make it better, faster, equitable and sustainable,” said CIMMYT Interim Deputy Director for Research Kevin Pixley.

At the virtual gathering on July 17, donors and partner representatives from target countries in South Asia joined CIMMYT scientists to describe both the technical objectives of the project and its overall significance.

“This program is probably the world’s single most impactful plant breeding program. Its products are used throughout the world on many millions of hectares,” said Gary Atlin from the Bill & Melinda Gates Foundation. “The AGG project moves this work even farther, with an emphasis on constant technological improvement and an explicit focus on improved capacity and poverty alleviation.”

Alan Tollervey from DFID spoke about the significance of the project in demonstrating the relevance and impact of wheat research.

“The AGG project helps build a case for funding wheat research based on wheat’s future,” he said.

Nora Lapitan from the USAID Bureau for Resilience and Food Security listed the high expectations AGG brings: increased genetic gains, variety replacement, optimal breeding approaches, and strong collaboration with national agricultural research systems in partner countries.

India’s farmers feed millions of people. (Photo: Dakshinamurthy Vedachalam)
India’s farmers feed millions of people. (Photo: Dakshinamurthy Vedachalam)

Reconnecting with trusted partners

The virtual meeting allowed agricultural scientists and wheat breeding experts from AGG target countries in South Asia, many of whom have been working collaboratively with CIMMYT for years, to reconnect and learn how the AGG project both challenges them to a new level of collaboration and supports their national wheat production ambitions.

“With wheat blast and wheat rust problems evolving in Bangladesh, we welcome the partnership with international partners, especially CIMMYT and the funders to help us overcome these challenges,” said Director General of the Bangladesh Wheat and Maize Research Institute Md. Israil Hossain.

Director of the Indian Institute for Wheat and Barley Research Gyanendra P. Singh praised CIMMYT’s role in developing better wheat varieties for farmers in India.

“Most of the recent varieties which have been developed and released by India are recommended for cultivation on over 20 million hectares. They are not only stress tolerant and high yielding but also fortified with nutritional qualities. I appreciate CIMMYT’s support on this,” he said.

Executive Director of the National Agricultural Research Council of Nepal Deepak K. Bhandari said he was impressed with the variety of activities of the project, which would be integral to the development of Nepal’s wheat program.

“Nepal envisions increased wheat productivity from 2.84 to 3.5 tons per hectare within five years. I hope this project will help us to achieve this goal. Fast tracking the replacement of seed to more recent varieties will certainly improve productivity and resilience of the wheat sector,” he said.

The National Wheat Coordinator at the National Agricultural Research Center of Pakistan, Atiq Ur-Rehman, told attendees that his government had recently launched a “mega project” to reduce poverty and hunger and to respond to climate change through sustainable intensification. He noted that the support of AGG would help the country increase its capacity in “vertical production” of wheat through speed breeding. “AGG will help us save 3 to 4 years” in breeding time,” he said.

For CIMMYT Global Wheat Program Director Hans Braun, the gathering was personal as well as professional.

“I have met many of you over the last decades,” he told attendees, mentioning his first CIMMYT trip to see wheat programs in India in 1985. “Together we have achieved a lot — wheat self-sufficiency for South Asia has been secured now for 50 years. This would not be possible without your close collaboration, your trust and your willingness to share germplasm and information, and I hope this will stay. “

Braun pointed out that in this project, many national partners will gain the tools and capacity to implement their own state of the art breeding strategies such as genomic selection.

“We are at the beginning of a new era in breeding,” Braun noted. “We are also initiating a new era of collaboration.”

The wheat component of AGG serves more than 30 million wheat farming households in Bangladesh, Ethiopia, India, Kenya, Nepal and Pakistan. A separate inception meeting for stakeholders in sub-Saharan Africa is planned for next month.

New project to ramp up genetic gains in maize for better livelihoods

Drought tolerant maize route out of poverty for community-based seed producer, Kenya. (Photo: Anne Wangalachi/CIMMYT)
Drought tolerant maize route out of poverty for community-based seed producer, Kenya. (Photo: Anne Wangalachi/CIMMYT)

As plant pests and diseases continue to evolve, with stresses like drought and heat intensifying, a major priority for breeders and partners is developing better stress tolerant and higher yielding varieties faster and more cost effectively.

A new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG), seeks to achieve these results by speeding up genetic gains in maize and wheat breeding to deliver improved, stress resilient, nutritious seed to smallholders in 13 countries in sub-Saharan Africa (SSA) and four in South Asia. The 5-year AGG project is funded by the Bill & Melinda Gates Foundation, the UK Department for International Development (DFID), the U.S. Agency for International Development (USAID), and the Foundation for Food and Agriculture Research (FFAR).

The maize component of the project brings together diverse partners, including the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA) as co-implementers; national agricultural research systems (NARS); and small and medium-sized (SME) seed companies.

Ambitious targets

At the inception meeting of the maize component of AGG on July 10, 2020, project leaders, partners and funders lauded the ambitious targets that aim to bolster the resilience and better the livelihoods, food and nutritional security of millions of smallholder farmers in SSA. At least 150,000 metric tons of certified seed is expected to be produced, adopted by 10 million households, planted on 6 million hectares by 2024 and benefiting 64 million people.

“We are developing climate resilient, nutritious, efficient, productive maize varieties for the farming community in sub-Saharan Africa. We will continue to work closely with our partners to develop product profiles, which are centered on the varieties that are really needed,” said CIMMYT Interim Deputy Director for Research Kevin Pixley.

AGG draws a solid foundation from previous projects such as Drought Tolerant Maize for Africa (DTMA), Improved Maize for Africa Soils (IMAS), Water Efficient Maize for Africa (WEMA) and Stress Tolerant Maize for Africa (STMA). Several high-yielding maize varieties that tolerate and/or resist diseases such as maize lethal necrosis (MLN), gray leaf spot (GLS), northern corn leaf blight, maize streak virus (MSV), turcicum leaf blight (TLB) and are drought-tolerant (DT), were developed and released to farmers across SSA. Varieties with nutritional traits such as nitrogen use efficiency (NUE) and quality protein maize (QPM) were also developed in the preceding initiatives.

Drought Tolerant Maize for Africa (DTMA) project monitoring and evaluation takes place in Tanzania. (Photo: Florence Sipalla/CIMMYT)
Drought Tolerant Maize for Africa (DTMA) project monitoring and evaluation takes place in Tanzania. (Photo: Florence Sipalla/CIMMYT)

A matter of “life or death”

“When farmers are confronted by aggressive farming challenges, they want products that address those challenges at the earliest opportunity. Waiting for years could mean the difference between life and death,” remarked David Chikoye, the director of Southern Africa Hub at IITA.

A key focus of AGG is to incorporate gender-intentionality – special attention to the needs of women farmers and consumers – from the traits bred into new varieties, through the communication and technology deployment strategies.

“AGG provides an excellent opportunity to reorient our maize breeding, seed scaling and delivery strategies for greater impact on the livelihoods of smallholder farmers, especially women and the disadvantaged communities that are not well reached so far,” said B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize. “Our vision is to accelerate genetic gains to 1.5-2 percent annually across different breeding pipelines in the 13 participating countries in SSA and to reach over 10 million households with improved varieties.”

AGG will strengthen the capacity of partners to achieve and sustain accelerated variety replacement — or turnover — and increase genetic gains in farmers’ fields.

Old vs new

Many improved varieties have been released in the past decade. However, the turnover of old and obsolete varieties with new and improved ones is not happening as quickly as anticipated.

“We are producing good products and getting them out, but not at the speed that farmers need. How do we make it possible and profitable for seed companies to quickly introduce new hybrids?” posed Gary Atlin, program officer at the Bill & Melinda Gates Foundation. “We need to move towards a breeding and seed system where we know that we can develop a new product in 4 or 5 years and then get it to the farmers much more quickly. This is a complex problem.”

To enhance AGG’s ability to identify new products that perform well for farmers under their challenging circumstances, on-farm testing will be scaled up significantly.

Guest of honor, Ethiopia’s Minister of State for Agriculture Mandefro Nigussie, lauded CIMMYT’s support in improving the resilience and productivity of maize and wheat in the country. He observed that this has helped improve maize productivity in Ethiopia from around 2 tons/ha to about 4 tons/ha over the past two decades.

“We consider such a huge accomplishment as a combination of efforts in germplasm development and breeding efforts of CIMMYT and the Ethiopian national programs. That partnership will flourish further in this new project,” he said.

Accelerating Genetic Gains in Maize and Wheat (AGG)

Accelerating Genetic Gains in Maize and Wheat (AGG)

Accelerating Genetic Gains in Maize and Wheat (AGG), a project led by the International Maize and Wheat Improvement Center (CIMMYT), brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat — two of the world’s most important staple crops.

Specifically focusing on supporting smallholder farmers in low- and middle-income countries, the project uses innovative methods that improve breeding efficiency and precision to produce varieties that are climate-resilient, pest- and disease-resistant, and highly nutritious, targeted to farmers’ specific needs.

The maize component of the project serves 13 target countries: Ethiopia, Kenya, Malawi, Mozambique, South Africa, Tanzania, Uganda, Zambia and Zimbabwe in eastern and southern Africa; and Benin, Ghana, Mali, and Nigeria in West Africa. The wheat component of the project serves six countries: Bangladesh, India, Nepal, and Pakistan in South Asia; and Ethiopia and Kenya in sub-Saharan Africa.

This project builds on the impact of the Delivering Genetic Gain in Wheat (DGGW) and Stress Tolerant Maize for Africa (STMA) projects.

Objectives

The project aims to accelerate the development and delivery of more productive, climate-resilient, gender-responsive, market-demanded, and nutritious maize and wheat varieties in support of sustainable agricultural transformation in sub-Saharan Africa and South Asia.

To encourage adoption of new varieties, the project works to improve equitable access, especially by women, to seed and information, as well as capacity building in breeding, disease surveillance, and seed marketing.

Funders

Project funding is provided by the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth & Development Office, the United States Agency for International Development and the Foundation for Food and Agricultural Research (FFAR).

Key partners

The primary partners for this project are the national agricultural research systems in the project target countries and, for the maize component, the International Institute for Tropical Agriculture (IITA) and small and medium enterprise (SME) seed companies.

Scientific and technical steering committees

We are grateful to our excellent maize and wheat scientific and technical steering committees for their suggestions and thoughtful question on key issues for the success of AGG. Read about the recommendations from the maize steering committee here and the wheat steering committee here.

Year 1 Executive Summary

In its first year of operation, AGG has made great strides in collaboration with our national partners towards the project goals –despite the unprecedented challenges of working through a global pandemic. For specific milestones achieved, we invite you to review our AGG Year 1 Executive Summary and Impact Report (PDF).

Year 2 Executive Summary

AGG has made progress towards all outcomes. Our scientists are implementing substantial modifications to breeding targets and schemes. AGG is also in a continuous improvement process for the partnership modalities, pursuing co-ownership and co-implementation that builds the capacities of all involved. For specific milestones achieved, we invite you to review our AGG Year 2 Executive Summary and Impact Report (PDF).

CIMMYT’s adult plant resistance breeding strategy

Download a summary of CIMMYT’s breeding strategy for adult plant resistance (PDF).

Subscribe to the AGG newsletter

Velu Govindan

Velu Govindan is a senior wheat breeder at the CIMMYT’s Global Wheat Program in Mexico. He has been engaged in wheat improvement research for the past 15 years. During this period, he made significant contributions towards the development and release of more than 20 biofortified wheat varieties in South Asia with enhanced zinc and iron concentration, with tolerance to rusts & other foliar diseases and climate change-induced heat and drought stress.

Govindan is leading the two of the spring wheat breeding pipelines targeted to early maturing wheat environments with wheat yield potential, climate resilience and yield stability across diverse environments by combining traditional breeding and cutting-edge genomic tools. He is leading the CIMMYT breeding efforts towards mainstreaming grain Zn across elite wheat lines through accelerated breeding strategies. He has published more than 80 peer-reviewed journal articles and 15 book chapters. He received young scientist award from India.

Sridhar Bhavani

Sridhar Bhavani is a Senior Scientist, Head of Rust Pathology and Molecular Genetics working at CIMMYT HQ.

He is a passionate researcher leader with over 15 years of experience working on wheat traits especially rust diseases. He has demonstrated leadership in executing multiple international projects and established strong networks and linkages in East Africa, Asia and various global wheat partners.

As the Head of Rust Pathology, he oversees pathology, molecular genetics, and breeding strategy components in major projects such as: Accelerating Genetic Gains in Maize and Wheat (AGGMW) funded by BMGF; DFID, FCDO, BMGF & DFID funded Zn mainstreaming project; GRDC and ACRCP funded projects on delivering genetic tools and knowledge required to breed wheat and barley with resistance to leaf rust, stripe rust and stem rust; USAID funded project on wheat rust breeding; NMBU-Norway funded project on sustainable management of rust diseases in wheat; and a project led by Kansas State on New Sources of Genetic Disease Resistance.

Pieter Rutsaert

Pieter Rutsaert is a markets and value chain specialist with CIMMYT, based in Kenya. His work focuses on the demand side of formal seed systems development in Eastern Africa with special focus on the role of agro-dealers, farmer drivers for varietal turnover and collecting market intelligence data for breeding priorities.

He obtained his MSc in Tropical Natural Resources Management from KULeuven and a PhD from Ghent University in Belgium. Before joining CIMMYT, he worked as a Postdoctoral Fellow at IRRI in the Philippines and as research director for Haystack International, a market research consultancy firm in Belgium.