Skip to main content

funder_partner: Foundation for Food & Agricultural Research (FFAR)

CropSustaiN BNI Wheat Mission

The Novo Nordisk Foundation and CIMMYT have launched the 4-year CropSustaiN initiative to determine the global potential of wheat that is significantly better at using nitrogen, thanks to Biological Nitrification Inhibition (BNI)—and to accelerate breeding and farmer access to BNI wheat varieties.

With a budget of US$ 21 million, CropSustaiN addresses the pressing challenges of nitrogen pollution and inefficient fertilizer use, which contribute to greenhouse gas (GHG) emissions and ecological degradation. Currently, no other seed or agronomic practice-based solution matches BNI crops’ mitigation impact potential. Growing BNI crops can complement other climate mitigation measures.

The challenge

Agriculture is at the heart of both food and nutrition security and environmental sustainability. The sector contributes ca. 10-12% of global GHG emissions, including 80% of the highly potent nitrous oxide (N2O) emissions. Fertilizer use contributes to such N losses, because plants take up about 50%, the remainder being lost. Wheat is the world’s largest ‘crop’ consumer of nitrogen-based fertilizer—a relatively nitrogen-inefficient cereal—at the same time providing affordable calories to billions of resource-poor people and ca. 20% of globally consumed protein. CropSustaiN targets this nexus of productivity and planetary boundary impact by verifying and thus de-risking the needed breeding, agronomic, and social innovations.

A solution: BNI-wheat

BNI is a natural ability of certain plant species to release metabolites from their roots into the soil. They influence the nitrogen-transforming activity of nitrifying bacteria, slowing down the conversion of ammonium to nitrate in the soil. This preserves soil ammonium levels for a longer time, providing plants with a more sustained source of available nitrogen and making them more nitrogen-use efficient (nitrogen plant use efficiency). As a result, BNI helps reduce the release of N2O gas emissions and nitrate leaching to the surrounding ecosystem.

A research breakthrough in 2021, led by the Japan International Research Center of Agricultural Sciences (JIRCAS) in collaboration with CIMMYT, demonstrated that the BNI trait can be transferred from a wheat wild relative to a modern wheat variety by conventional breeding. BNI wheat can be made available to farmers worldwide.

Growing BNI wheat could reduce nitrogen fertilizer usage by 15-20%, depending on regional farming conditions, without sacrificing yield or quality.

 

Incorporating BNI into additional crops would reduce usage further. Farmers can get the same yield with less external inputs.

Other BNI-crops

CropSustaiN will work on spring and winter wheats. Rice, maize, barley, and sorghum also have BNI potential. CropSustaiN will build the knowledge base and share with scientists working on other crops and agronomic approaches.

Objectives and outcomes

This high risk, high reward mission aims to:

  • Verify the global, on-farm potential of BNI-wheat through field trial research and breeding.
  • Build the partnerships and pathways to meet farmer demand for BNI-wheat seeds.
  • Work with stakeholders on policy change that enables BNI crops production and markets

Success will be measured by determining nitrogen pollution reduction levels under different soil nitrogen environments and management conditions on research stations, documenting crop performance and safety, breeding for BNI spring and winter wheats for a wide range of geographies, and gauging farmer needs, interest, and future demand.

Wheat spikes against the sky at CIMMYT’s El Batán, Mexico headquarters. (Photo: H. Hernandez Lira/CIMMYT)

A collaborative effort

CIMMYT is the lead implementer of Novo Nordisk Foundation’s mission funding. CropSustaiN’s interdisciplinary, intersectoral, systems approach relies on building partnerships and knowledge-sharing within and outside this research initiative. 45+ partners are engaged in CropSustaiN.

The potential GHG emissions reduction from deploying BNI-wheat is estimated to be 0.016-0.19 gigatonnes of CO2-equivalent emissions per year, reducing 0.4-6% of total global N2O emissions annually, plus a lowering of nitrate pollution.

Impact on climate change mitigation and Nationally Determined Contributions (NDCs)

The assumption is that BNI wheat is grown in all major wheat-growing areas and that farmers will practice a behavioral shift towards lower fertilizer use and higher fertilizer use efficiency. That could lead to ca. a reduction of 17 megatons per year globally. This can help nations achieve their NDCs under the Paris Agreement.

International public goods, governance, and management

CIMMYT and the Foundation are committed to open access and the dissemination of seeds, research data, and results as international public goods. The governance and management model reinforces a commitment to equitable global access to CropSustaiN outputs, emphasized in partnership agreements and management of intellectual property.

Invitation to join the mission

The CropSustaiN initiative is a bold step towards agricultural transformation. You are invited to become a partner. You can contribute to the mission with advice, by sharing methods, research data and results, or becoming a co-founder.

Please contact CropSustaiN Mission Director, Victor Kommerell, at v.kommerell@cgiar.org or Novo Nordisk Foundation’s Senior Scientific Manager, Jeremy A. Daniel, at jad@novo.dk.

Additional reference material

  1. BNI International Consortium (Japan International Research Center for Agricultural Sciences, JIRCAS)
  2. Nitrification inhibitors: biological and synthetic (German Environment Agency, Umweltbundesamt)
  3. CropSustaiN: new innovative crops to reduce the nitrogen footprint form agriculture
  4. Annual Technical Report 2024. CropSustaiN: A new paradigm to reduce the nitrogen footprint from agriculture
  5. BNI-Wheat Future: towards reducing global nitrogen use in wheat
  6. CIMMYT Publications Repository

Unlocking the power of collaboration in global wheat science

CIMMYT Global Wheat Program (GWP) scientists visited National Agricultural Research Systems (NARS) partners in Pakistan, Nepal, and India during February 2024. The key purpose was to review current approaches and explore new opportunities to enhance collaborative wheat improvement activities.

NARS partners described their current priorities and recent changes in their activities, while CIMMYT shared recent modernization efforts of its wheat breeding and highlighted opportunities to enhance collaborative wheat improvement. GWP representatives included Interim Wheat Director Kevin Pixley, and scientists Naeela Qureshi, Velu Govindan, Keith Gardner, Sridhar Bhavani, T.P. Tiwari, and Arun K Joshi.

Representatives from the Pakistan Agricultural Research Council (PARC) and CIMMYT meet to identify chances for improved cooperation in wheat breeding research. (Photo: Awais Yaqub/CIMMYT)

Planning the future of South Asian wheat

In each country, CIMMYT and NARS leaders held a one-day meeting to review and plan their wheat improvement partnership, with attendance from 25-30 wheat scientists in each country. The sessions aimed to review and identify bottlenecks to the wheat impact pathway in each country, describe recent changes in the breeding programs of CIMMYT and NARS partners, and prioritize and agree updates to the NARS-CIMMYT wheat improvement collaborations.

NARS partners highlighted their wheat improvement programs through field visits to research stations. Visitors attended Wheat Research Institute (ARI), Faisalabad and National Agricultural Research Center (NARC), Islamabad in Pakistan; National Wheat Research Program (NWRP), Bhairahawa and National Plant Breeding & Genetics Research Center (NPBGRC), Khumaltar in Nepal; and Indian Institute of Wheat and Barley Research (IIWBR), Punjab Agricultural University (PAU), Borlaug Institute for South Asia (BISA), and the Indian Agricultural Research Institute (IARI) in India.

The GWP team also visited: Faisalabad Agricultural University, with a special focus on collaborative zinc biofortification work in Pakistan; farmers’ fields in Nepal to see participatory evaluations of elite wheat lines (candidates for release as new varieties) and to hear from farmers about challenges and expectations from improved varieties; and the Lumbini Seed Company to learn about the crucial role of seed companies, bottlenecks, and opportunities in the pathway from research to impact in farmers’ fields.

NARS scientists and directors in all three countries were enthusiastic about the opportunities for enhanced partnership to adopt some of the modernizing technologies that AGG has brought to CIMMYT. Partners are especially keen to –

  1. Receive earlier generation varieties, segregating breeding lines to empower them to select in their own environments.
  2. Model and explore strategies to shorten their breeding cycles.
  3. Apply quantitative genetics tools to better select parents for their crossing blocks.
  4. Adopt experimental designs that improve efficiency.
  5. Explore opportunities for co-implementing improvement programs through shared testing schemes, communities of practice (e.g. for quantitative genetics or use of exotic germplasm to address challenges from climate change), and more.
A highlight of the trip in Nepal: visiting on-farm trials, where farmers share insights about their preferences for improved varieties, where they often mentioned tolerance over lodging. (Photo: CIMMYT)

“The visit provided CIMMYT and NARS wheat scientists with the opportunity to exchange experiences and ideas, and to explore ways of enhancing collaborations that will strengthen our joint impact on wheat farmers and consumers,” said Pixley.

Following these visits, the Bangladesh Wheat and Maize Research Institute (BWMRI) soon reached out to CIMMYT to request a similar review and planning meeting, with a vision to modernize and strengthen their wheat improvement partnership.

Bargaining for Better: How gender roles in household decision-making can impact crop disease resilience

‘A better understanding of the links between gender roles in household decision-making and the adoption of technologies can enhance the uptake of innovations in smallholder farming systems,’ concludes a recently published paper by CIMMYT. The paper connects women’s bargaining power in households with the adoption of rust resistant wheat varieties, based on the work of Accelerating Genetic Gains in Maize and Wheat (AGG) in Ethiopia.

“While an emerging body of literature finds positive correlations between women’s influence in household decision-making and socioeconomic, health, and nutritional outcomes, few studies have analyzed the links between intra-household decision-making and the adoption of agricultural technologies,” said Michael Euler, agriculture research economist at CIMMYT.

A case study in Ethiopia

For this study, researchers used a dataset from Ethiopian wheat-producing households.

Ethiopia is the second-largest wheat producer in Africa, with an aggregate grain production of 5.5 million metric tons and 4-5 million farmers engaged in cultivation. The Ethiopian Highlands are a hot spot for wheat rust. With recurrent epidemics in the last decade, the emergence of new strains of wheat rust increased production risks. On the positive side, farmers seem to be responsive to the management of rust diseases. Rust-resistant bread wheat varieties, released since 2010, have been widely adopted by smallholder farmers across Ethiopia.

The CIMMYT study surveyed 1,088 wheat-producing households in Ethiopia to analyze the links between women’s role in household decision-making concerning crop production and the adoption and turnover rates of rust-resistant wheat varieties. Female and male members from the same households responded separately, which facilitated capturing individual perceptions and the intra-household dynamics in decision-making.

Farmer Shumuna Bedeso weeds her wheat field. (Photo: Peter Lowe/CIMMYT)

Intra-household decision-making arrangements and wheat varietal choice

Overall, the study reveals a positive association between women’s role in decision-making regarding the selection of wheat seed and the adoption of rust-resistant wheat varieties and wheat varietal turnover. Findings may be related to differences in risk aversion between women and men farmers. While women farmers may tend to advocate for the adoption of rust resistant varieties to avoid potential financial difficulties that arise from purchase of fungicide in the growing season, men farmers may be more inclined to adopt high yielding varieties and use fungicides to combat rust within the season.

Spouses may agree or have different opinions regarding their decision-making roles. Spousal agreement on the woman having a role in making crop variety decisions is associated with higher adoption rates compared to spousal agreement that the woman has no role. Joint decision-making with mutually uncontested spousal roles may yield better outcomes due to larger combined exposure to information, as well as spousal discussion and reflection on potential implications of the varietal choice decision.

Conclusion: It is about negotiation, contestation and consensus

Household decisions, including the decision to adopt agricultural technologies often result from negotiation, contestation, and consensus between wife and husband. This process is shaped by diverging interests, motivations and objectives, while its results are determined by different levels of individual bargaining power. “Our findings indicate that women’s ownership of agricultural land and household assets is strongly associated with their active role in household decisions on wheat varietal choice, and with spousal agreement,” said Moti Jaleta, senior agricultural economist at CIMMYT. The dynamics in intra-household decision-making are likely to influence households’ adoption of agricultural technologies.

Disregarding the dynamics in decision-making implies that households are unilateral decision-makers, a scenario which probably does not hold true considering the level of spousal disagreement regarding their roles and influence in choosing crop varieties. A deeper understanding of the connections between gender dynamics in household decision-making and adoption choices can enhance the efficiency of public extension systems, increase the adoption rates of modern innovations, improve agricultural productivity, and enhance livelihoods in smallholder agriculture.

Read the complete paper here.

Advancing wheat breeding through rapid marker-selectable trait introgression

The experimental research station in Toluca, Mexico. (Photo: S. Herrera/CIMMYT)

In the ever-evolving field of agriculture, AGG-WHEAT is leading a transformative approach through rapid marker-selectable trait introgression in wheat breeding programs. This method aims to streamline the process of integrating desirable traits into various genetic backgrounds.

At the core of AGG-WHEAT’s strategy is the establishment of a centralized marker-selectable trait introgression pipeline. This initiative seeks to facilitate the transfer of specific genes from a centralized source into various genetic backgrounds within plant breeding programs. Molecular markers play a crucial role in efficiently identifying and selecting target traits.

The merits of a centralized trait introgression pipeline extend beyond convenience. This approach ensures a more uniform and controlled transfer of genetic material, enhancing the precision of trait introgressions across diverse breeding lines. Molecular markers streamline the selection process, improving the accuracy of desired trait incorporation into wheat varieties.

Speed breeding facilities in Toluca, Mexico

AGG-WHEAT’s marker-selectable trait introgression pipelines are implemented at the speed breeding facilities located at the CIMMYT research station in Toluca, Mexico. These facilities serve as the incubators for innovation, where new selection candidates are evaluated based on various criteria. The decision-making process involves an expert panel comprising geneticists, trait specialists, and breeders. This panel annually determines the selection candidates, considering factors such as trait demand, genetic diversity, evidence of Quantitative Trait Loci (QTL) effects, selection efficiency, and available funding.

The decision-making process involves a multifaceted evaluation of potential selection candidates. Documented trait pipelines and product profiles guide decision-making to ensure alignment with the overarching goals of wheat breeding programs. Considerations include the need for phenotypic variation and the existence of limited genetic diversity for the trait under consideration.

The decision-making process also explores existing in-house or external evidence of QTL effects and the underlying gene mechanisms. Selection efficiency, contingent on the availability of accurate molecular markers and a known purified donor parent, further refines the pool of potential candidates. Established phenotypic protocols for product testing and the crucial element of available funding complete the decision-making criteria.

Achievements

In a significant step towards innovation, the products of the first marker-selectable trait introgression pipelines entered yield trials in 2023. This marks a transition from conceptualization to tangible impact, reflecting the efficacy of AGG-WHEAT’s approach. A total of 97 F5-lines, cultivated through the marker-assisted backcross (MABC) scheme, now grace the fields.

These lines carry novel genes associated with fusarium head blight and rust resistance, derived from wheat genetic resources and wild relatives. The choice of these traits underscores AGG-WHEAT’s commitment to addressing challenges faced by wheat crops, ensuring improved resilience and sustainability in the face of evolving environmental conditions.

The success of these initial trait introgression pipelines represents more than a scientific achievement; it marks a pivotal moment in the trajectory of wheat breeding. The 97 F5-lines, standing as testaments to enhanced resistance traits, are poised to make a transition into mainstream breeding pipelines. This marks the commencement of a broader dissemination strategy, where these lines will be distributed for testing at National Agricultural Research and Extension Services (NARES).

The journey from the experimental fields to mainstream adoption involves a meticulous process. These lines, having undergone rigorous evaluation and selection, now hold the potential to catalyze changes in commercial wheat varieties. The lessons learned from their cultivation will shape future breeding strategies and contribute to the resilience of wheat crops in diverse agricultural landscapes.

Rapid marker table. (Photo: CIMMYT)

AGG-WHEAT’s lasting impact

AGG-WHEAT’s marker-selectable trait introgression stands as an innovative approach in wheat breeding. The centralized approach, the strategic use of molecular markers, and the meticulous decision-making process exemplify the commitment to excellence and precision. The journey from concept to reality—marked by the entry of 97 F5-lines into yield trials—signals a new era in wheat breeding.

As these lines traverse from experimental fields to mainstream adoption, they carry the promise of transforming the landscape of commercial wheat varieties. AGG-WHEAT’s lasting impact goes beyond the scientific realm; it extends to the fields where farmers strive for sustainable and resilient wheat crops. In the tapestry of agricultural progress, AGG-WHEAT has woven a thread of innovation that holds the potential to redefine the future of wheat cultivation.

East African wheat breeding pipeline and E&SSA network

Healthy wheat and wheat affected by Ug99 stem rust in farmer’s field, Kenya. (Photo: CIMMYT)

The East African wheat breeding pipeline aims to improve wheat varieties and contribute to regional food security by ensuring a stable and resilient wheat supply. In 2022, CIMMYT, in partnership with the Kenya Agriculture and Livestock Research Organization (KALRO) established a Joint Breeding Program in Njoro, a town southwest of the Rift Valley in Kenya. This was one of the first integrated breeding pipelines between CGIAR and National Agricultural Research and Extension Systems (NARES) partners.

Over the last three decades, genetic trials of over 77 varieties have been conducted in several regions. In East Africa, an expanded testing network that spans over multiple research institutes in Kenya and Ethiopia has been established for Stage 1 and Stage 2 trials in network countries. This makes the pipeline a powerful driver of positive impacts, rapidly enhancing both farm productivity and production in target regions. In Kenya specifically, a genetic gain trial was conducted at two sites in 2023 with the Stage 1 trials evaluated across eight locations. These are being distributed to NARES partners to establish correlations between the breeding site in Kenya and the Target Population of Environments (TPEs) in the E&SSA regions. This breeding pipeline demarcates the population improvement from product development. Other areas in the trials include the enhancement of genetic diversity to build resilience, adaptability, and quality enhancement to meet market and consumer demands.

The trial will continue in 2024 and 2025 to establish a baseline for genetic gains and to enable the assessment of the breeding pipeline’s progress in the coming years. The first cohort of pipeline materials (250 crosses) has been advanced to F2 generation and will be ready for distribution to E&SSA partners in 2025.

Accelerated breeding

The anticipation is that accelerated breeding techniques will be implemented in Kenya by incorporating a three-year rapid generation bulk advancement (RGBA) scheme aimed at diminishing the time necessary for variety development and release. This collaborative effort encompasses various activities, including joint crossing block, generation advancement, yield testing, and population improvement. The three-year RGBA scheme, coupled with data-driven selection utilizing advanced data analytics (GEBV, SI) and genomic selection approaches, is expected to play a pivotal role in facilitating informed breeding decisions in the East African region.

3-year RGBA scheme. (Photo: Sridhar Bhavani)

Varietal improvement

The project aims to develop and release improved wheat varieties that are well adapted to the East African agroecological conditions. The Kenyan environment closely mirrors wheat-growing conditions in Ethiopia, Tanzania, Uganda, Rwanda, and Burundi, and spillover impacts to sub-Saharan countries such as Zambia and Zimbabwe. This strategic alignment with local conditions and close cooperation with NARES partner organizations has proven to be very effective in addressing critical gaps, including high-yield potential, disease resistance, and climate resilience, and aligns with CIMMYT’s overall wheat strategy for Africa.

Enhanced disease resistance

Kenya stands out as a hotspot for rust diseases, showcasing notable diversity in stem rust variants (ug99) and yellow rust. The virulence spectrums of these diseases differ from those found in Mexico, posing challenges to effective breeding strategies. It is expected that the breeding pipeline will effectively tackle these challenges as well as those associated with fusarium, Septoria, and wheat blast, which are on the rise in African environments.

Climate adaptation

The East African wheat breeding pipeline is committed to breeding wheat varieties that can thrive in changing climatic conditions, including heat and drought tolerance, and expanding testing in marginal rainfed environments experiencing heat and drought stress.

Through the support of our partners and funders from the Bill and Melinda Gates Foundation, Foundation for Food and Agriculture Research (FFAR), and Foreign, Commonwealth and Development Office FCDO, the following achievements can be reported:

Regional collaboration and cooperation

For over four decades, the enduring collaboration with KALRO has yielded significant successes including the operation of the largest phenotyping platform for stem rust and various diseases. The Mexico-Kenya shuttle breeding program, incorporating Ug99 resistance, has successfully countered the threat of stem rust by releasing over 200 varieties in targeted regions and advancing the East African wheat breeding pipeline. The plan is to replicate these accomplishments in other target regions through the E&SSA network. To address limitations in KALRO’s breeding program and to conduct standardized trials, a strategic partnership with a private seed company Agventure Cereal Growers Association has been established. This collaboration will facilitate yield testing at multiple sites in Kenya to identify lines with superior performance for the East African region. So far, lines exhibiting high yield potential of up to 8 tons/ha, even under rain-fed environments, have been identified. The collaborative efforts are already making a noticeable impact, as evidenced by reports indicating increased adoption of zero-tillage practices among farmers. This shift has proven beneficial, especially during years marked by heat and drought challenges, resulting in higher returns for these farmers.

Increased capacity of national programs

From 1-13 October 2023, the AGGMW project held a training program on “Enhancing Wheat Disease Early Warning Systems, Germplasm Evaluation, Selection, and Tools for Improving Wheat Breeding Pipelines”. The course which brought together 33 participants from over 13 countries was held at the KALRO station in Njoro- Kenya. The comprehensive program covered a wide range of crucial subjects in the field of wheat breeding and research. Topics included breeding methodologies, experimental design, data collection, statistical analysis, and advanced techniques such as genomic selection. Participants also engaged in practical hands-on data analysis, explored rust pathology, and delved into early warning systems. Moreover, they had the opportunity for direct evaluation and selection of breeding materials. The course aimed to equip participants with a diverse skill set and knowledge base to enhance their contributions to the field of wheat breeding and research.

Other initiatives supporting the breeding pipeline include CGIAR programs, Accelerated Breeding and Crops to End Hunger. This multi-faceted approach within the breeding pipeline underpins the importance of fostering regional collaboration, knowledge sharing, and strategic investments in enhancing wheat production and addressing critical challenges in the region.

Enhancing wheat breeding efficiency in South Asia through early germplasm access

Wheat field. (Photo: CGIAR)

In the dynamic landscape of wheat breeding, early access to germplasm emerges as a strategic catalyst for accelerating variety turnover and meeting the evolving challenges faced by farmers in South Asia. Since its inception, the Accelerating Genetic Gains in Maize and Wheat (AGG) project has pioneered new tools to optimize the wheat breeding process. One such tool, the efficient and low-cost 3-year breeding cycle, has been fine-tuned in Mexico, using the Toluca screenhouse and field advancement in Obregón, laying the groundwork for faster variety turnover.

The inaugural set of lines generated through this enhanced breeding cycle is already undergoing Stage 1 trials in the Obregón 2023-24 season. However, the innovation doesn’t stop there; to expedite the variety release process and garner robust data from the Target Population of Environments (TPE), Stage 2 lines are being rigorously tested at over 20 sites in South Asia through collaboration with National Agricultural Research and Extension Services (NARES) partners. In the seasons spanning 2021-2024, a total of 918 Stage 2 lines underwent rigorous trials, aiming to provide early access to improved wheat lines for testing and release by NARES and establish a genetic correlation matrix between Obregón selection environments and diverse sites across South Asia.

These extensive trials serve a dual purpose. Firstly, they facilitate early access to improved wheat lines for testing and release by NARES, bolstering the agricultural landscape with resilient and high-yielding varieties. Secondly, they contribute to the establishment of a genetic correlation matrix between the selection environments in Obregón and the diverse sites across South Asia. This matrix becomes a guiding compass, aiding in selecting the most promising lines for broader TPEs in South Asia and beyond.

Transformative impact on wheat varieties in South Asia

Through the support of our partners and funders from the Bill & Melinda Gates Foundation, the Foundation for Food and Agriculture Research (FFAR), the UK Foreign, Commonwealth & Development Office (FCDO), and the US Agency for International Development (USAID), great achievements have been recorded throughout the region. India, a prominent player in wheat cultivation, stands as a testament to the transformative impact of early access to advanced lines. The top three varieties, namely DBW187, DBW303, and DBW 222, covering over 6 million hectares, trace their roots to CIMMYT varieties. Adopting a fast-track approach through early-stage testing of these advanced lines at BISA sites in India, supported by the Delivering Genetic Gain in Wheat (DGGW) project, facilitated the release of these varieties two years ahead of the regular testing process. This expedited varietal release was complemented by the innovative early seed multiplication and dissemination approach introduced by the Indian Council of Agricultural Research (ICAR). Recent additions to this accelerated channel include varieties such as DBW 327, DBW 332, DBW 370, and 371, promising further advancements in wheat cultivation.

Pakistan

In Pakistan, the early access to advanced lines has been a catalyst for releasing high-yielding, climate-resilient, and nutritious wheat varieties. In 2023 alone, 12 new varieties were released, with the renowned ‘Akbar-19,’ introduced in 2019, covering a substantial 42% of cultivated land in Punjab. Data released by the Ayub Agricultural Research Institute (AARI), shows that this variety, known for its high yield potential, disease resistance, and enriched zinc content, has significantly contributed to increased wheat production in the region.

Nepal

Guided by policy interventions in the national varietal testing process, Nepal has experienced the fast-track commercialization of high-yielding and climate-resilient wheat varieties. Allowing multilocation testing of CIMMYT nurseries and advanced elite lines, Nepal released six biofortified zinc wheat varieties in 2020. The expeditious seed multiplication of these released and pre-release varieties has facilitated the rapid spread of new and improved wheat varieties.

The strategic utilization of early access to wheat germplasm in South Asia holds promise in accelerating variety turnover, offering farmers resilient and high-performing wheat varieties. Collaborative efforts between research institutions, government bodies, and international organizations exemplify the power of innovation in transforming agriculture. With an ongoing dedication to refining breeding cycles, expanding testing initiatives, and fostering collaboration, the AGG project contributes to building a sustainable and resilient agricultural future in South Asia. Early access to wheat germplasm emerges as a practical approach in this scientific endeavor, laying the foundation for a climate-resilient and food-secure region. The successes witnessed in India, Pakistan, and Nepal underscore the transformative potential of this approach, offering tangible benefits for agricultural communities in South Asia and beyond. In navigating the complexities of a changing climate and growing food demand, early access to wheat germplasm remains a pragmatic ally, propelling agricultural innovation and resilience to new heights.

Five new CIMMYT maize hybrids available from the Latin America breeding program

CIMMYT is happy to announce five new, improved tropical and subtropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across Latin America and similar agro-ecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

How does CIMMYT’s improved maize get to the farmer?
Newly available CIMMYT hybrids Key traits Target Agro-ecology
CIM21LAPP1A-12 Intermediate maturing, white, high yielding, and resistant to TSC, MLB, and Ear rots Lowland tropics
CIM21LAPP1C-10 Intermediate maturing, yellow, high yielding, and resistant to TSC, MLB and Ear rots
CIM21LAPP2A-4 Intermediate-maturing, white, high-yielding, FSR, GLS, and Ear rots. Mid-altitudes/

Spring-Summer season

CIM21LAPP2A-8
CIM20LAPP2B-12 Intermediate-maturing, yellow, high-yielding, resistant to GLS, and Ear rots.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the 03-22LTHTWM4M, 04-22LTHTYM4M, 01-22MASTCHSTW and 02-22MASTCHSTY Stage 5 Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored in particular for smallholder farmers in stress-prone agroecologies of Latin America.

Performance data Download the CIMMYT LATAM Maize Regional (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2020 -2021 and 2022 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is December 1st, 2023. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Debora Escandón, Project Administrator, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

India transforms wheat for the world

India can applaud a hallmark in national food production: in 2023, the harvest of wheat—India’s second most important food crop—will surpass 110 million tons for the first time.

This maintains India as the world’s number-two wheat producer after China, as has been the case since the early 2000s. It also extends the wheat productivity jumpstart that begun in the Green Revolution—the modernization of India’s agriculture during the 1960s-70s that allowed the country to put behind it the recurrent grain shortages and extreme hunger of preceding decades.

“Newer and superior wheat varieties in India continually provide higher yields and genetic resistance to the rusts and other deadly diseases,” said Distinguished Scientist Emeritus at CIMMYT, Ravi Singh. “More than 90 percent of spring bread wheat varieties released in South Asia in the last three decades carry CIMMYT breeding contributions for those or other valued traits, selected directly from the Center’s international yield trials and nurseries or developed locally using CIMMYT parents.”

Wheat grain yield in Indian farmers’ fields rose yearly by more than 1.8 percent—some 54 kilograms per hectare—in the last decade, a remarkable achievement and significantly above the global average of 1.3 percent. New and better wheat varieties also reach farmers much sooner, due to better policies and strategies that speed seed multiplication, along with greater involvement of private seed producers.

“The emergence of Ug99 stem rust disease from eastern Africa in the early 2000s and its ability to overcome the genetic resistance of older varieties drove major global and national initiatives to quickly spread the seed of newer, resistant wheat and to encourage farmers to grow it,” Singh explained. “This both protected their crops and delivered breeding gains for yield and climate resilience.”

CIMMYT has recently adopted an accelerated breeding approach that has reduced the breeding cycle to three years and is expected to fast-track genetic gains in breeding populations and hasten delivery of improvements to farmers. The scheme builds on strong field selection and testing in Mexico, integrates genomic selection, and features expanded yield assays with partner institutions. To stimulate adoption of newer varieties, the Indian Institute of Wheat and Barley Research (IIWBR, of the Indian Council of Agricultural Research, ICAR) operates a seed portal that offers farmers advanced booking for seed of recently released and other wheat varieties.

Private providers constitute another key seed source. In particular, small-scale seed producers linked to the IIWBR/ICAR network have found a profitable business in multiplying and marketing new wheat seed, thus supporting the replacement of older, less productive or disease susceptible varieties.

Farm innovations for changing climates and resource scarcities

Following findings from longstanding CIMMYT and national studies, more Indian wheat farmers are sowing their crops weeks earlier so that the plants mature before the extreme high temperatures that precede the monsoon season, thus ensuring better yields.

New varieties DBW187, DBW303, DBW327, DBW332 and WH1270 can be planted as early as the last half of October, in the northwestern plain zone. Recent research by Indian and CIMMYT scientists has identified well-adapted wheat lines for use in breeding additional varieties for early sowing.

Resource-conserving practices promoted by CIMMYT and partners, such as planting wheat seed directly into the unplowed fields and residues from a preceding rice crop, shave off as much as two weeks of laborious plowing and planking.

Weeds in zero-tillage wheat in India. (Photo: Petr Kosina/CIMMYT)

“This ‘zero tillage’ and other forms of reduced tillage, as well as straw management systems, save the time, labor, irrigation water and fuel needed to plant wheat, which in traditional plowing and sowing requires many tractor passes,” said Arun Joshi, CIMMYT wheat breeder and regional representative for Asia and managing director of the Borlaug Institute for South Asia (BISA). “Also, letting rice residues decompose on the surface, rather than burning them, enriches the soil and reduces seasonal air pollution that harms human health in farm communities and cities such as New Delhi.”

Sustainable practices include precision levelling of farmland for more efficient irrigation and the precise use of nitrogen fertilizer to save money and the environment.

Science and policies ensure future wheat harvests and better nutrition

Joshi mentioned that increased use of combines has sped up wheat harvesting and cut post-harvest grain losses from untimely rains caused by climate change. “Added to this, policies such as guaranteed purchase prices for grain and subsidies for fertilizers have boosted productivity, and recent high market prices for wheat are convincing farmers to invest in their operations and adopt improved practices.”

To safeguard India’s wheat crops from the fearsome disease wheat blast, native to the Americas but which struck Bangladesh’s wheat fields in 2016, CIMMYT and partners from Bangladesh and Bolivia have quickly identified and cross-bred resistance genes into wheat and launched wheat disease monitoring and early warning systems in South Asia.

“More than a dozen wheat blast resistant varieties have been deployed in eastern India to block the disease’s entry and farmers in areas adjoining Bangladesh have temporarily stopped growing wheat,” said Pawan Singh, head of wheat pathology at CIMMYT.

Building on wheat’s use in many Indian foods, under the HarvestPlus program CIMMYT and Indian researchers applied cross-breeding and specialized selection to develop improved wheats featuring grain with enhanced levels of zinc, a micronutrient whose lack in Indian diets can stunt the growth of young children and make them more vulnerable to diarrhea and pneumonia.

“At least 10 such ‘biofortified’ wheat varieties have been released and are grown on over 2 million hectares in India,” said Velu Govindan, CIMMYT breeder who leads the Center’s wheat biofortification research. “It is now standard practice to label all new varieties for biofortified traits to raise awareness and adoption, and CIMMYT has included high grain zinc content among its primary breeding objectives, so we expect that nearly all wheat lines distributed by CIMMYT in the next 5-8 years will have this trait.”

A rigorous study published in 2018 showed that, when vulnerable young children in India ate foods prepared with such zinc-biofortified wheat, they experienced significantly fewer days of pneumonia and vomiting than would normally be the case.

Celebrating joint achievements and committing for continued success

The April-June 2018 edition of the “ICAR Reporter” newsletter called the five-decade ICAR-CIMMYT partnership in agricultural research “…one of the longest and most productive in the world…” and mentioned mutually beneficial research in the development and delivery of stress resilient and nutritionally enriched wheat, impact-oriented sustainable and climate-smart farming practices, socioeconomic analyses, and policy recommendations.

Speaking during an August 2022 visit to India by CIMMYT Director General Bram Govaerts,  Himanshu Pathak, secretary of the Department of Agricultural Research and Education (DARE) of India’s Ministry of Agriculture and Farmers Welfare and Director General of ICAR, “reaffirmed the commitment to closely work with CIMMYT and BISA to address the current challenges in the field of agricultural research, education and extension in the country.”

“The ICAR-CIMMYT collaboration is revolutionizing wheat research and technology deployment for global food security,” said Gyanendra Singh, director, ICAR-IIWBR. “This in turn advances global peace and prosperity.”

India and CIMMYT wheat transformers meet in India in February, 2023. From left to right: Two students from the Indian Agricultural Research Institute (IARI); Arun Joshi, CIMMYT regional representative for Asia; Rajbir Yadav, former Head of Genetics, IARI; Gyanendra Singh, Director General, Indian Institute of Wheat and Barley Research (IIWBR); Bram Govaerts, CIMMYT director general; Harikrishna, Senior Scientist, IARI. (Photo: CIMMYT)

According to Govaerts, CIMMYT has concentrated on strategies that foster collaboration to deliver greater value for the communities both ICAR and the Center serve. “The way forward to the next milestone — say, harvesting 125 million tons of wheat from the same or less land area — is through our jointly developing and making available new, cost effective, sustainable technologies for smallholder farmers,” he said.

Wheat research and development results to date, challenges, and future initiatives occupied the table at the 28th All India Wheat & Barley Research Workers’ Meeting, which took place in Udaipur, state of Rajasthan, August 28-30, 2023, and which ICAR and CIMMYT wheat scientists attended.

Generous funding from various agencies, including the following, have supported the work described: The Australian Centre for International Agricultural Research (ACIAR), the Bill & Melinda Gates Foundation, the Federal Ministry for Economic Cooperation and Development of Germany (BMZ), the Foreign, Commonwealth & Development Office of UK’s Government (FCDO), the Foundation for Food & Agricultural Research (FFAR), HarvestPlus, ICAR, the United States Agency for International Development (USAID), funders of the One CGIAR Accelerated Breeding Initiative (ABI), and the Plant Health Initiative (PHI).

Harnessing new high-resolution satellite imagery to plant breeding

In plant breeding, efforts to increase the rate of genetic gains and enhance crop resilience to the effects of climate change are often limited by the inaccessibility and costs of phenotyping methods. The recent rapid development of sensors, image-processing technology and data analysis has provided new opportunities for multiple scales phenotyping methods and systems. Among these, satellite imagery may represent one of the best ways to remotely monitor trials and nurseries planted in multiple locations, while standardizing protocols and reducing costs.

This is because relevant data collected as part of crop phenotyping can be generated from satellite images. For instance, the sensors onboard the SkySat satellite constellation of Planet Labs have four spectral bands—blue, green, red, and infrared—which can be used to calculate the normalized difference vegetation index (NDVI), which is a measure of vegetation and its greenness, and various canopy traits like ground cover, leaf area index and chlorosis. It can also be used to monitor plot establishment and phenological parameters.

High-resolution RGB orthomosaic of wheat experiments, assessing the effect of plot size and spacing in the spectral signature, collected from SkySat satellite images. (Photo: Gilberto Thompson)

The use of satellite-based phenotyping in breeding trials has typically been restricted by low resolution, high cost and long intervals between fly-overs. However, the advent of a new generation of high-resolution satellites—such as the SkySat constellation—now offers multispectral images at a 0.5m resolution with close to daily acquisition attempts on any place on Earth. This could be a game changer in terms of the scale at which yield trials can be conducted, enabling more precise variety placement and thereby increasing genetic diversity across farmer’s fields and reducing the probability of disease epidemics. It could also revolutionize the capacity for research in realistic field conditions, since traits can be measured throughout the cycle in a highly standardized way, over multiple sites at low cost. For example, an image which covers 25 km2 can monitor an entire research station at a cost of about US$300.

To test the suitability of this technology, a team of researchers from CIMMYT set out to evaluate the reliability of SkySat NDVI estimates for maize and wheat breeding plots of different sizes and spacing, as well as testing its capacity for detecting seasonal changes and genotypic differences.

Both their initial findings, recently published in Frontiers in Plant Science, and more recently acquired data, show that the SkySat satellites can be used to monitor plots commonly used in wheat and maize nurseries. While wheat yield plots usually are 1.2m wide, maize plots tend to consist of at least two rows, resulting in a width of 1.5m. Plot length ranges from 2-4m. The authors also discuss on other factors to be considered when extracting and interpreting satellite data from yield trials, such as plot spacing.

Through the successful collection of six satellite images in Central Mexico during the rainy season and parallel monitoring of a maize trial in Zimbabwe, the researchers demonstrate the flexibility of this tool. Beyond the improvement of spatial resolution, the researchers suggest that the next challenge will be the development and fine-tuning of operational procedures that ensure high quality, standardized data, allowing them to harness the benefits of the modern breeding triangle, which calls for the integration of phenomics, enviromics and genomics, to accelerate breeding gains.

Read the full study: Satellite imagery for high-throughput phenotyping in breeding plots

This research was supported by the Foundation for Food and Agriculture Research, the CGIAR Research Program on Maize, the CGIAR Research Program on Wheat, and the One CGIAR Initiatives on Digital Innovation, F2R-CWANA, and Accelerated Breeding.

Research awards to tackle challenge of fortifying wheat against heat and drought

A golden wheat field in Ciudad Obregon, Mexico, at sunrise. (Photo: Bibiana Espinosa/CIMMYT)

As part of its crucial mission to accelerate wheat adaptation to rapidly changing climate conditions due to global warming, the Heat and Drought Wheat Improvement Consortium (HeDWIC) with the support of the Foundation for Food & Agriculture Research (FFAR) has granted 10 awards since 2021, crowdsourcing innovative research from around the world.

Like other crops, wheat – which makes up 20 percent of the human diet – is affected by threats to the global food system from persistent population growth and economic and climate pressures. These challenges are further exacerbated by the fallout from the COVID-19 pandemic and the war in Ukraine. There is an urgent need to prioritize climate resilient wheat varieties to protect this food staple.

Some five years after HeDWIC was launched in 2014 to incorporate the most advanced research technologies into improving heat and drought tolerance of wheat, the Intergovernmental Panel on Climate Change reported that climate change was having an impact on food security through increasing temperatures, changing precipitation patterns and greater frequency of extreme weather events in its Special Report on Climate Change and Land.

“While some areas are becoming more conducive to wheat growing, crop yields are suffering in other regions around the world traditionally known as bread baskets,” said wheat physiologist Matthew Reynolds, who leads HeDWIC at the International Maize and Wheat Improvement Center (CIMMYT).

“Wheat is one of our fundamental crops, and we must spare no effort in protecting it from current and future challenges,” said Saharah Moon Chapotin, FFAR executive director. “Global collaborations are necessary to address global concerns, and these grants are bringing together international teams to share and build the science and research that will ensure the stability of this crop.”

The 10 recipient projects are under the umbrella of the HeDWIC project Harnessing Translational Research Across a Global Wheat Improvement Network for Climate Resilience, funded by FFAR. The first five awardee projects were identified in 2021, and an additional five projects were awarded in 2022.

To boost new ideas in “climate-proofing” crops, HeDWIC conducts virtual meetings that include all awarded research teams to take advantage of the collective global expertise in heat and drought resilience, leading to cross-pollination of ideas and further leverage of resources and capabilities.

In March, Reynolds led in-person discussions with some of the collaborating researchers at CIMMYT’s experimental research station on the outskirts of Ciudad Obregon, a city in Mexico’s Sonoran Desert, during CIMMYT’s annual Visitors’ Week.

Projects awarded in 2022

  • Exploring the potential of chlorophyll fluorescence for the early detection of drought and heat stress in wheat (FluoSense4Wheat)

“The HeDWIC mini proposal allows us to explore the potential of chlorophyll fluorescence for the early detection of drought and heat stress in wheat. The controlled irrigation conditions for wheat grown in Obregon give us the opportunity to quantify photosynthesis by fluorescence while drought develops. Detecting a drought-specific fluorescence response and/or the interaction between active and passive fluorescence is relevant for breeding selecting purposes as well as large spatial scale detection of drought by monitoring the plant.” – Onno Muller, Forschungszentrum Jülich, Institute of Bio- and Geosciences, Germany

  • Physiological basis of amelioration of heat stress through nitrogen management in wheat

“Heat stress during grain filling can restrict the availability of carbohydrates needed for grain development. India has been experiencing sudden spikes in both minimum and maximum temperatures by 3 to 5 degrees above normal from late-February onwards, which is an important time for wheat grain-filling and has resulted in declining wheat productivity. Our team is examining the ability of pre-flowering nitrogen applications to support biomass accumulation and overcome the grain-filling source (carbohydrate) limitation during heat spikes. If successful, the results could have broad-reaching benefits given that farmers are familiar with and well-skilled in using nitrogen applications regimes in crop management.” – Renu Pandey, Division of Plant Physiology, Indian Agricultural Research Institute

  • Can reproductive development be protected from heat stress by the trehalose 6-phosphate pathway?

“The HeDWIC funding provides a unique opportunity to test how the regulatory sugar, trehalose 6-phosphate (T6P) can protect wheat yields against increasingly common chronic and acute heat stress events. We have already shown that T6P spray increases wheat yields significantly in field conditions under a range of rainfall in wet and dry years. With increasing likelihood of heat stress events in the years ahead, in unique facilities at CIMMYT, we will test the potential of T6P to protect reproductive development from catastrophic yield loss due to chronic and acute heat.” – Matthew Paul, Rothamsted Research, UK

  • Investigating tolerance of heat resilient wheat germplasm to drought

“Over the last decade, we have developed heat tolerant wheat germplasm at the University of Sydney that maintains yield under terminal heat stress. In our new HeDWIC project, this material will be tested under combined drought and heat stress under field conditions. This will provide plant breeders with highly valuable information on field tested germplasm for use in accelerated breeding programs targeting combined heat and drought tolerance. The work is critical for future food security considering the inextricable link between temperature and plant water demand, and the increased frequency and intensity of heat and drought events under projected climate change.” – William Salter, University of Sydney, Australia

  • Novel wheat architecture alleles to optimize biomass under drought

“Wheat Rht-1 dwarfing genes were an essential component that led to spectacular increases in grain yields during the Green Revolution. Although Rht1 and Rht2 are still used widely in wheat breeding 50 years after they were introduced, they are suboptimal under drought conditions and are often associated with a yield penalty. Using a more extensive range of Rht-1 dwarfing alleles that were developed at Rothamsted, we will introduce them into CIMMYT germplasm to optimize biomass and ultimately increase grain yields under drought stress.” – Steve Thomas, Rothamsted Research, UK

Additional comments from 2021 awardees

“This opportunity has enabled the collection of significant amounts of data that will contribute to the advancement of knowledge in crop physiology and root biology. It has also provided early career researchers with opportunities to gain hands-on experience, develop important skills, and grow their networks. Additionally, this initiative has stimulated further ideas and collaborations among researchers, fostering a culture of innovation and cooperation that is essential for progress.” – Hannah Schneider, Wageningen University & Research, Netherlands

“The project is a unique opportunity for research groups from around the world to coordinate efforts on identifying ways to improve heat tolerance of wheat.” – Owen Atkin, Australian National University, Australia

“It is important to understand how high temperature limits crop growth and yield and to identify genetic variation that can be used for breeding climate resilient crops. This project has already begun to develop new methods for rapidly screening growth and physiological processes in genetically diverse panels which we hope will be invaluable to researchers and breeders.” – Erik Murchie, University of Nottingham, UK

“This project will provide novel phenotyping screens and germplasm to breeders and lay the groundwork for genetic analysis and marker development.” – John Foulkes, University of Nottingham, UK


FOR FURTHER INFORMATION OR INTERVIEWS

Sarah Fernandes
Head of Communications
CIMMYT
s.fernandes@cgiar.org

or

Matthew Reynolds
Distinguished Scientist
CIMMYT
m.reynolds@cgiar.org


 ABOUT CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT) is an international organization focused on non-profit agricultural research and training that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis. Applying high-quality science and strong partnerships, CIMMYT works to achieve a world with healthier and more prosperous people, free from global food crises and with more resilient agri-food systems. CIMMYT’s research brings enhanced productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.

CIMMYT is a member of CGIAR, a global research partnership for a food secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.

KALRO research station at Kiboko revamped to accelerate crop breeding

CIMMYT Global Maize Program Director and CGIAR Plant Health Initiative Lead, BM Prasanna cutting a ribbon at the entrance of a new shed housing, marking the commissioning of five new seed drying machines courtesy of the of the Accelerating Genetic Gains (AGG) Project. (Photo: Susan Otieno/CIMMYT)

Kenya Agricultural and Livestock Research Organization (KALRO)’s research station at Kiboko, Kenya, where several partner institutions including the International Maize and Wheat Improvement Center (CIMMYT), conduct significant research activities on crop breeding and seed systems, is now equipped with five new seed drying machines along with a dedicated shed to house these units, a cold room for storing breeding materials, and an additional irrigation dam/reservoir. These infrastructural upgrades are worth approximately US $0.5 million.

During the commissioning of the new facilities on February 7, 2023, CIMMYT Global Maize Program Director, BM Prasanna thanked the donors, Crops to End Hunger (CtEH) Initiative and Accelerated Genetic Gains (AGG) project, that supported the upgrade of the research station, and recognized the strong partnership with KALRO.

“Today is a major milestone for CIMMYT, together with KALRO, hosting this center of excellence for crop breeding. This facility is one of the largest public sector crop breeding facilities in the world, with hundreds of hectares dedicated to crop breeding. These new facilities will enable CIMMYT and KALRO crop breeders to optimize their breeding and seed systems’ work and provide better varieties to the farming communities,” said Prasanna.

Kenya suffered one of its worst droughts ever in 2022, and the newly commissioned facilities will support expedited development of climate-resilient and nutritious crop varieties, including resistance to major diseases and pests.

Visitors at the KALRO research station in Kiboko, Kenya, looking at the newly commissioned cold room storage. (Photo: Susan Otieno/CIMMYT)

Improvements and enhancements

The efficiency of the seed driers capabilities to quickly reduce moisture content in seed from above 30% to 12% in two to three days, reducing the time taken for seed drying and allowing for more than two crop seasons per year in a crop like maize.

The additional water reservoir with a capacity of 16,500 cubic meters will eliminate irrigation emergencies and will also enhance the field research capacity at Kiboko. Reliable irrigation is essential for accelerating breeding cycles.

At the same time, the new cold room can preserve the seeds up to two years, preventing the loss of valuable genetic materials and saving costs associated with frequent regeneration of seeds.

KALRO Director General Eliud Kireger officiating the opening of the cold room storage facility at KALRO research station at Kiboko, Kenya. Looking on is CIMMYT Global Maize Program Director, BM Prasanna. (Photo: Susan Otieno/CIMMYT)

World-class research center

“The Kiboko Research Center is indeed growing into an elite research facility that can serve communities in entire sub-Saharan Africa through a pipeline of improved varieties, not only for maize but in other important crops. This will not only improve climate resilience and nutrition, but will contribute to enhanced food and income security for several million smallholder farmers,” said Prasanna.

KALRO Director General Eliud Kireger appreciated the establishment of the new facilities and thanked CIMMYT and its partners for their support.

“Today is a very important day for us because we are launching new and improved facilities for research to support breeding work and quality seed production. This research station is in Makueni County, a very dry area yet important place for research because there is adequate space, especially for breeding,” said Kireger. “We are significantly improving the infrastructure at Kiboko to produce and deliver better seed to our farmers.”

For more than three decades, CIMMYT has conducted research trials at the Kiboko Research Station, focusing on drought tolerance, nitrogen use efficiency, and resistance to pests and diseases, such as fall armyworm and stem borer. The maize Double Haploid (DH) facility established in 2013 at Kiboko, with the support of the Bill & Melinda Gates Foundation, offers DH line production service for organizations throughout Africa, and is key to increasing genetic gains in maize breeding.

Market Intelligence Briefs – a new publication series to inform crop-breeding decisions

The CGIAR Initiative on Market Intelligence represents a new effort to engage social scientists, crop breeding teams and others to work together toward the design and implementation of a demand-led breeding approach. (Photo: Susan Otieno/CIMMYT)

What is ‘Market Intelligence’?

Strategies for breeding and seed systems to deliver greater impact will benefit from reliable and comparable evidence on the needs and requirements of farmers, processors and consumers. This includes anticipating how farmers may respond to emerging threats and opportunities in light of seed-sector and product-market evolution and the changing environment. Experts generally agree that ‘demand-led breeding’ will be essential to achieve more impact from investments in crop breeding. But the continued interest in a demand-led approach to the design of varieties and the prioritization of breeding pipelines requires reliable, comparable and timely market intelligence. It also requires new mechanisms for how market intelligence is collected, shared and discussed with those engaged in the design and funding of breeding pipelines and seed systems.

Over the past 25 years, social science researchers from CGIAR, NARES and universities have generated important insights on the traits and varieties farmers prefer. These farmer preferences for traits and varieties have been explored through household surveys, participatory rural appraisals and participatory varietal selection. More recently, economists have employed tools such as choice experiments, experimental auctions and gamification of farmer priority traits. Overall, a large body of work has emerged, but variations in research questions, methodologies and interventions have contributed to disparate research findings and limited the opportunities for consolidation and comparative analyses.

Looking ahead, a strategic opportunity to guide more impactful investments in crop breeding and seed systems development lies in:

  • designing a consistent approach for generating and disseminating market intelligence
  • coordinating research across CGIAR and NARES to deliver timely market intelligence;
  • establishing processes for coordination across social science teams and among social science, crop modelers, CGIAR-NARES networks and the private sector.

The CGIAR Initiative on Market Intelligence (‘Market Intelligence’ for brevity) represents a new effort to engage social scientists, crop breeding teams and others to work together toward the design and implementation of a demand-led breeding approach.

Within this initiative, the International Maize and Wheat Improvement Center (CIMMYT) leads Work Package 1, ‘Market Intelligence’, which is responsible for the design of innovative methods and tools to collect market intelligence and the application of these tools across different regions and crops relevant for CGIAR breeding. The Work Package engages either other CGIAR centers and external partners, such as CIRAD and the World Vegetable Center. An early, but critical, challenge facing the Work Package team was how to disseminate in an accessible and timely manner market intelligence to breeding teams, funders, and the private sector.

Market Intelligence Briefs

Traditionally, researchers from CGIAR, NARES and universities who have sought to inform crop breeding and seed systems programming have done so by publishing their work in reputable international peer-reviewed journals. However, the process can be slow, potentially requiring multiple revisions over years. The practical nature of market intelligence research can limit its relevance for journal editors who are looking to push theoretical debates forward. Thus, for Market Intelligence to deliver on its promise, new ways of communicating will be essential. In looking to address these limitations, work package 1 has led the design and implementation of a new publication series called Market Intelligence Briefs (MIB). Each brief is reviewed by peers, is concise (less than 4000 words), avoids technical jargon, and attempts to present conclusions in a clear and decisive manner. In 2022 the first two editions of the MIB series were published, both led by CIMMYT researchers and available online.

MIB 1: a framework for informing crop breeding

This brief defines several important concepts that, when taken together, form the basic framework used by the Initiative to generate comparable and useful market intelligence. Some of the definitions are inspired by previous work on demand-led breeding, while others build on work by CGIAR’s Excellence in Breeding (EiB) platform. A confusing set of terms and definitions has emerged around market intelligence—a field rooted in commercial product innovation—with different terms and definitions for similar concepts. In the interest of clear communication and understanding among those engaged in crop breeding, seed systems and social science, this brief presents key concepts and definitions that have been discussed extensively during the initial months of implementation of Market Intelligence. We conclude the brief with reflections on the way forward for implementation.

MIB 2: future market segments for hybrid maize

The second brief zooms into the maize market segments in East Africa and proposes a new methodology for gathering insights from farmers about their varietal preferences to inform future market segmentation. This brief explains the conceptual and methodological underpinnings of Video-based Product Concept Testing (VPCT) and presents an application of the tool in hybrid maize. Seven new product concepts (representing potential future market segments) were identified based on discussions with breeders, seed companies and farmers, which we labelled: home use, intercropping, drought avoidance, nutritious, feed (yellow), green maize and food and fodder. These future concepts, together with the resilient benchmark product concept (the current breeding target), were evaluated through triadic comparisons with 2400 farmers in Kenya and Uganda. The results showed that concepts focused on agronomic performance were preferred over concepts focused on end use characteristics, but that diversity in farming practices can lead to different seed preferences.

Looking ahead

In 2023, several briefs will be published from scientists working in the market intelligence initiative and various partners of Market Intelligence from outside the CGIAR. An on-line repository for these briefs is being designed now. Future briefs will cover a variety of topics, from competition in maize seed markets in Kenya (based on a two year study that tracked seed sales at the retail level), methods for assessing the demand for future step-change innovations in genetic innovations, and preferences for future groundnut seed products in Tanzania, considering the needs of farmers and processors. We believe that these briefs will become a valuable communication tool to support informed decision making by crop breeders, seed system specialists, and donors on future priorities and investments by CGIAR, NARS, the private sector and non-governmental organizations (NGOs).

This project received funding from the Accelerating Genetic Gains in Maize and Wheat project (AGG) [INV-003439], funded by the Bill & Melinda Gates Foundation, the UK’s Foreign, Commonwealth & Development Office (FCDO), the Foundation for Food & Agricultural Research (FFAR) and the United States Agency for International Development (USAID).

Read the original article: Market Intelligence Briefs – a new publication series to inform crop-breeding decisions

In maize research, farmers’ priorities are our priorities

Figuring out what kinds of crops and crop varieties farmers want – high yielding, disease resistant, drought tolerant, early maturing, consumer-preferred, nutritious etc. – is a crucial step in developing locally adapted, farmer-friendly and market preferred varieties as part of more sustainable seed grain sectors.

While scientists aim to develop the best crop varieties with multiple traits, there are always trade-offs to be made due to the limits of genetics or competing preferences. For example, a variety may be more tolerant to drought but perform less well in consumer taste preferences such as sweet grains, or it may be higher yielding but more vulnerable to pests and diseases. Some of these trade-offs, such as vulnerability to pests or adverse climate, are not acceptable and must be overcome by crop scientists. The bundle of traits a crop variety offers is often a major consideration for farmers and can be the difference between a bumper harvest and a harvest lost to pests and diseases or extreme weather conditions.

Economists from the International Maize and Wheat Improvement Center (CIMMYT) have been working with smallholder farmers across sub-Saharan Africa to document their preferences when it comes to maize. Results from Ethiopia were recently published in the journal PLOS ONE.

In a survey with almost 1,500 participants in more than 800 households, researchers found that both male and female farmers valued drought tolerance over other traits. For many farmers in areas where high-yielding, medium-maturing hybrids were available, early maturity was not considered a priority, and sometimes even disliked, as farmers felt it made their harvests more vulnerable to theft or increased their social obligations to share the early crop with relatives and neighbors if they were the only ones harvesting an early maize crop. Farmers therefore preferred varieties which matured more in sync with other farmers.

The team also found some gender differences, with female farmers often preferring taste over other traits, while male farmers were more likely to prioritize plant architecture traits like closed tip and shorter plants that do not easily break in the wind or bend over to the ground. These differences, if confirmed by ongoing and further research, suggest that gender differences in maize variety choices may occur due to differentiated roles of men and women in the maize value chains. Any differences observed should be traced to such roles where these are distinctly and socially differentiated. In aspects where men and women’s roles are similar — for example, when women express preferences in their role as farmers as opposed to being custodians of household nutrition — they will prioritize similar aspects of maize varieties.

The results of the study show that overall, the most important traits for farmers in Ethiopia, in addition to those that improve yields, are varieties that are drought and disease tolerant, while in taste-sensitive markets with strong commercial opportunities in green maize selling, farmers may prioritize varieties that satisfy these specific consumer tastes. The findings of the study also highlight the impact of the local social environment on variety choices.

By taking farmers’ preferences on board, maize scientists can help develop more sustainable maize cropping systems which are adapted to the local environment and respond to global climatic and economic changes driven by farmers’ and consumers’ priorities.

Harvesting maize cobs at KALRO Katumani Research Station in Machakos, Kenya. (Photo: Peter Lowe/CIMMYT)

Drought and striga tolerance come out top for Kenyan farmers

In related research from western Kenya, published in June 2022 in Frontiers in Sustainable Food Systems, results showed that farmers highly valued tolerance to drought, as well as tolerance to striga weed, low nitrogen soils and fall armyworm, in that order. CIMMYT researchers surveyed 1,400 smallholder farmers across three districts in western Kenya.

The scientists called for a more nuanced approach to seed markets, where seed prices might reflect the attributes of varieties. Doing so, they argue, would allow farmers to decide whether to pay price premiums for specific seed products thereby achieving greater market segmentation based on relative values of new traits.

“Both studies show that farmers, scientists and development experts in the maize sector are grappling with a wide array of demands,” said Paswel Marenya, CIMMYT senior scientist and first author of both studies.

“Fortunately, the maize breeding systems in CIMMYT, CGIAR and National Agricultural Research Systems (NARS) have produced a wide range of locally adapted, stress tolerant and consumer preferred varieties.”

The results of both these studies provide a framework for the kinds of traits scientists should prioritize in maize improvement programs at least in similar regions as those studied here in central Ethiopia or western Kenya. However, as Marenya noted, there is still work to do in supporting farmers to make informed choices: “The challenge is to implement rigorous market targeting strategies that sort and organize this complex landscape for farmers, thereby reducing the information load, search costs and learning times about new varieties. This will accelerate the speed of adoption and genetic gains on farmers’ fields as envisaged in this project.”

Read the studies:

Maize variety preferences among smallholder farmers in Ethiopia: Implications for demand-led breeding and seed sector development

Building Resilient Maize Production Systems With Stress-Adapted Varieties: Farmers’ Priorities in Western Kenya

Cover photo: Roadside vendor sells roasted maize cobs to a customer in Timau, Kenya. (Photo: Peter Lowe/CIMMYT)

Seven new CIMMYT maize hybrids available from Southern Africa Breeding Program

How does CIMMYT’s improved maize get to the farmer?
How does CIMMYT’s improved maize get to the farmer?

CIMMYT is happy to announce seven new, improved tropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across southern Africa and similar agro-ecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

Newly available CIMMYT hybrids Key traits
CIM21SAPP1-14 Intermediate-maturing, white grain, high-yielding, drought-tolerant, NUE, resistant to GLS, MSV, TLB, and ear rots
CIM21SAPP1-10
CIM21SAPP1-01 Late-maturing, white grain, high-yielding, drought-tolerant, NUE, resistant to MSV, TLB, and ear rots
CIM21SAPP1-08
CIM21SAPP2-12 Early-maturing, white grain, high-yielding, drought-tolerant, NUE, resistant to GLS, MSV, TLB
CZH1815A Early-maturing, PVA biofortified, orange grain, high yielding, drought-tolerant, NUE, resistant to GLS, TLB, ear rots, MSV
CZH1805A
Performance data Download the CIMMYT Southern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2019, 2021, and 2022 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is 10 January 2023. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the 2021/22 Southern Africa Stage 5 Regional On-Farm Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored in particular for smallholder farmers in stress-prone agroecologies of southern Africa.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

How does physical disturbance of soil impact carbon mineralization?

Higher levels of potential carbon mineralization (Cmin) in soil indicate that the soil is healthier. Many reports indicate that Cmin in agricultural soils increases with reductions in soil disturbance through tillage, but the mechanisms driving these increases are not well understood.

The International Maize and Wheat Improvement Center (CIMMYT) has established a network of research platforms in Mexico, where collaborating scientists evaluate conservation agriculture and other sustainable technologies to generate data on how to improve local production systems. This network of research trials, many of which have over five years in operation, allowed us to participate with Mexican sites in the North American Project to Evaluate Soil Health Measurements (NAPESHM). This project aimed to identify widely applicable soil health indicators and evaluate the effects of sustainable practices on soil health in 124 long-term experiments across Canada, the United States of America, and Mexico.

Experienced field teams from CIMMYT sampled the soils from 16 experiments in Mexico, which were then analyzed by the Soil Health Institute for this study. Potential carbon mineralization, 16S rRNA sequences, and soil characterization data were collected, with results demonstrating that microbial (archaeal and bacterial) sensitivity to physical disturbance is influenced by cropping system, the intensity of the disturbance, and soil pH.

A subset of 28 percent of amplicon sequence variants were enriched in soils managed with minimal disturbance. These enriched sequences, which were important in modeling Cmin, were connected to organisms that produce extracellular polymeric substances and contain metabolic strategies suited for tolerating environmental stressors.

The unique sampling design of this study – analyzing across a variety of agricultural soils and climate – allows to evaluate management impacts on standardized measures of soil microbial activity. Additionally, understanding the microbial drivers of soil health indicators like Cmin can help with the interpretation of those indicators and ultimately the understanding of how to better manage soils.

Read the study: Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage

Cover photo: Soil sampling in the Tlaltizapan station, Mexico in March 2019. (Photo: Simon Fonteyne/CIMMYT)