Skip to main content

funder_partner: Food and Agriculture Organization of the United Nations (FAO)

Why GM wheat may be the key to stave off world hunger

IMG_8188Sanjaya Rajaram is the 2014 World Food Prize laureate for scientific research that led to an increase in world wheat production by more than 200 million tons. Any views expressed are his own.

Unless global policymakers redouble their efforts to properly support a strategy to ensure a future food supply, the current hunger crisis threatens only to get worse.

A gathering of more than 500 scientists at the 2015 International Wheat Conference in Sydney, Australia, provides an opportunity to revisit these matters.

Already almost 800 million people worldwide – about one in nine people – are undernourished and do not get enough food to eat to lead a healthy active life, according to the U.N. Food and Agriculture Organization (FAO).

By 2050, the current global population of 7.3 billion is projected to grow 33 percent to almost 10 billion, according to the United Nations.

A recent report from the Taskforce on Extreme Weather and Global Food System Resilience projects that food demand, driven by population growth, demographic changes and increasing global wealth, will rise more than 60 percent.

The majority of hungry people live in developing countries where almost 14 percent of the population is undernourished, the FAO states in its 2015 “State of Food Insecurity in the World” report. The current refugee crisis in Europe provides dramatic evidence that wealthy countries must increase investments that will help promote food security and political stability in poor countries.

BOLSTERING FOOD SECURITY

Investments in agricultural science must be at the top of the list. Wheat currently provides 20 percent of calories and 20 percent of protein to the global human diet. In order to keep up with population growth, we must increase wheat production from the current annual 700 million metric tons a year to 1 billion. We also face the threat of climate change-related global warming.

Over the past 50 years, the 15-member CGIAR consortium of agricultural researchers – where I worked for most of my career with the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA) – have been helping smallholder farmers to increase crop yields and stave off devastating diseases.

To date, however, scientists have been unable to sufficiently increase yields to meet demand through hybridization. Production must grow 70 percent over the next 35 years – an achievable goal if annual wheat yields are increased from a current level of below 1 percent to at least 1.7 percent. It is time to invest in biotechnology to ensure yields can provide nourishment for an ever-hungrier planet.

Simultaneously, we must maintain balance in the food chain and restore depleted carbon in the soil. Such concerns as disease resilience, seed diversity, water management and micronutrient imbalance must be tackled.

Governments and the private sector must more fully support research efforts to accelerate the development of new wheat varieties or face the risk of further global insecurity related to price

Impacts of international wheat improvement research: 1994 – 2014

Improved wheat varieties developed using CGIAR breeding lines, either in cross-pollinations or as direct releases, cover more than 100 million hectares — nearly two-thirds of the area sown to improved wheat worldwide, new research (Lantican et al., in press) shows. Benefits in added grain from CGIAR wheat research range from $2.8 to 3.8 billion each year — a very high return for the work’s annual, public funding of only $30 million, according to the full-length study. Consistent and secure funding is crucial to maintain the research and institutional capacities required to deliver such impact, particularly given the mounting challenges facing wheat food security and farm livelihoods in developing countries.

According to the study, the impacts derive largely from research and development activities conducted by the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA), both members of the CGIAR Consortium of agricultural research centers, with support from the CGIAR Research Program on Wheat (WHEAT) and partners worldwide including national research programs, advanced research institutes, and private companies.

Findings show that since 1994, farmers globally have enjoyed access to 4,604 improved wheat varieties and that there is continued and significant use in the developing world of CIMMYT and ICARDA wheat lines, which are bred and shared freely through international partnerships. CIMMYT-derived varieties alone cover as much as 80% of the wheat area in South Asian countries and, in sub-Saharan Africa, more than 90% of the area in Kenya and in Ethiopia.

More than a quarter of all wheat varieties and 40 percent of all spring wheat varieties released in this century contain CIMMYT germplasm.

In addition to profiting farmers in the developing world, where CIMMYT and ICARDA’s efforts are focused, the surplus grain produced also benefits wheat consumers — particularly the poor who spend a large portion of their income on food — according to evidence cited.

Specifically, the authors made reference to the study of Stevenson et al. (2013), published in the Proceedings of the National Academy of Sciences, which showed that, in the absence of CGIAR wheat improvement, global wheat prices would have been 29-59% higher in 2004 than they actually were.

Evidence also shows that elite wheat lines from CIMMYT or ICARDA are immediately useful for most wheat improvement programs worldwide and that their use saves a decade or more of cross-breeding for those programs. Moreover, far from representing a bottleneck in diversity, breeding stocks from the two centers have significantly enhanced the genetic diversity of improved wheat, particularly for critical traits like yield potential, grain processing quality, disease resistance, and early maturity, according to research cited by the authors (Warburton et al. 2006; Huang et al. 2015, pp. 13-14).

Finally, in contrast to the commonly-held belief that modern varieties are less resilient than farmers’ traditional varieties, the authors cite the study by Gollin (2006) showing that the increased use of improved wheat varieties over the past 40 years has made grain yields more stable and actually reduced farmers’ risk.

In addition to leading the world’s largest publicly-funded wheat improvement networks, CIMMYT and ICARDA delivering impact through extensive partnerships and longstanding research on productive and sustainable cropping practices. Crucial to their success are initiatives that foster farmers’ access to quality seed of new varieties and capacity-strengthening activities that target individuals and partner institutions. Notably, the two centers maintain, study, and share seed collections of wheat genetic diversity comprising nearly 200,000 unique samples wheat landraces, improved varieties, and wild relatives.

The new study proves that international collaboration on wheat research continues to provide the impressive returns on investments, as occurred during the 1960s-70s. Wheat breeding impacts at that time helped to spark the Green Revolution from which the 15-member CGIAR arose and to keep food prices at historically low levels for decades (Evenson and Gollin in Science, 2003).

Wheat farming in an age of changing climate and shifting markets

Although the costs of basic food commodities have fallen recently, they are still well above the decades-long, stable levels that preceded the 2008 food crisis. Worse, despite low grain prices, global stocks have shrunk 30% from levels at the outset of the millennium (Brown, L.R. 2012. Full Planet, Empty Plates; The New Geopolitics of Food Scarcity.). Reverberations of relatively local disturbances, like droughts or crop disease outbreaks, now cause inordinate price spikes and worsen food insecurity for the world’s poorest.

Looking forward, by 2050 the current global population of 7.3 billion is projected to grow 33 percent to 9.7 billion, according to the United Nations. Demand for food, driven by population, demographic changes and increasing global wealth, will rise more than 60 percent, according to a recent report from the Taskforce on Extreme Weather and Global Food System Resilience. Wheat farmers must meet this rising demand from the same or less land area, while confronting more extreme and erratic rainfall and temperatures and using inputs like water and fertilizer much more effectively.

As the world’s policymakers begin to acknowledge the interconnected nature of food, energy, water, and peace, every effort made to improve global food security is an investment in the future of humanity. Food insecurity drastically affect all sectors of society; either through hunger, high food prices, or social conflicts that send massive waves of desperate refugees in flight.

Farmers have met repeated food security challenges since the Industrial Revolution, with the support of science and focused development efforts, but science and development require investment. Wheat breeding and crop management research have long horizons – typically, for example, it takes much more than a decade for a variety to go from initial crosses to farmers’ fields.

The requisite research and institutional capacities for this work also take years to develop, but can be lost very quickly in the absence of committed policy support and consistent and secure funding. Publicly-funded wheat research barely has the resources to maintain the essential breeding and capacity building activities that underpin the impacts documented in this new publication, which will be released in November 2015 and aims to set the record straight on the magnitude of CGIAR contributions to global food supplies.

As of 2015, CIMMYT and ICARDA have agreed to operate their wheat research as a single joint program. They are struggling to find support for work on new technologies, such as advanced phenotyping platforms for heat and drought tolerance, or advanced global consortia focusing on traits that dramatically raise the genetic yield potential of wheat. Those and other tools and initiatives will be crucial for public wheat breeding research to partner effectively with the private sector and keep step with societal demands for food security and nutrition.

Funded through the CGIAR Wheat Research Program, the study is based on a survey sent to 94 countries that produce at least 5,000 tons of wheat each year. Responses came from 66 wheat-growing countries — 44 of them developing countries that account for nearly all the developing world’s wheat output. Survey data were complemented with information from published wheat varietal guides, figures on wheat varietal area insured or grown, papers in scientific journals, technical bulletins, and on-line sources including the US Department of Agriculture National Agricultural Statistics Services (USDA-NASS), the Annual Wheat Newsletter, and wheat area, production and yield statistics from the Food and Agriculture Organization of the United Nations (FAO). The study updates results of Lantican et al. (2005).

Lantican, M.A., T.S. Payne, K. Sonder, R. Singh, M. van Ginkel, M.Baum, H.J. Braun, and O. Erenstein. In press. Impacts of International Wheat Improvement Research in the World, 1994-2014. Mexico, D.F.: CIMMYT.

Replacing gender myths and assumptions with knowledge

CIMMYT Director General Martin Kropff speaks on the topic of ‘Wheat and the role of gender in the developing world’ prior to the 2015 Women in Triticum Awards at the Borlaug Global Rust Initiative Workshop in Sydney on 19 September.

If we are to be truly successful in improving the lives of farmers and consumers in the developing world, we need to base our interventions on the best evidence available. If we act based only on our assumptions, we may not be as effective as we could be or, even worse, actively cause harm.

One example is the common perception that women are not involved in the important wheat farming systems of North Africa and South Asia. By recognizing and engaging with these myths, we are beginning to build a more sophisticated understanding of how agriculture works as a social practice.

Currently, there are only a few published studies that take a closer examination of the roles played by women in wheat-based farming systems. These studies have found that, in some cases, men are responsible for land preparation and planting, and women for weeding and post-harvest activities, with harvest and transport duties being shared. Between different districts in India, huge variations may be found in the amount of time that women are actively involved in wheat agriculture. This shows that some careful study into the complexities of gender and agricultural labor may hold important lessons when intervening in any particular situation.

We must also never assume that, just because women are not as involved in agriculture in a particular context, they can not benefit from more information. In a survey carried out by CIMMYT researcher Surabhi Mittal in parts of rural India, it was found that women used a local cellphone agricultural advisory service just as much as men, and that this knowledge helped them get more involved in farming-related decision-making.

Gender is not just about women

For all that it is important to include women, along with other identity groups in project planning, implementation and data collection, it is important not to get into the trap of thinking that gender-integrated approaches are just about targeting women.

For example, the World Health Organization estimates that micronutrient deficiency affects at least two billion people around the world, causing poor health and development problems in the young. The effects of micronutrient deficiency start in the womb, and are most severe from then through to the first two years of life. Therefore it would make sense to target women of childbearing age and mothers with staple varieties that have been bio-fortified to contain high levels of important micronutrients such as zinc, iron or vitamin A.

However, to do so risks ignoring the process in which the decision to change the crop grown or the food eaten in the household is taken. Both men and women will be involved in that decision, and any intervention must therefore take the influence of gender norms and relations, involving both women and men, into account.

The way ahead

To move forward, each component of the strategy for research into wheat farming systems at CIMMYT also has a gender dimension, whether focused on improving the evidence base, responding to the fact that both women and men can be end users or beneficiaries of new seeds and other technologies, or ensuring that gender is considered as a part of capacity-building efforts.

Already, 20 of our largest projects are actively integrating gender into their work, helping to ensure that women are included in agricultural interventions and share in the benefits they bring, supplying a constant stream of data for future improvement.

We have also experienced great success in targeting marginalized groups. For instance, the Hill Maize Research Project in Nepal, funded by the Swiss Agency for Development and Cooperation (SDC) alongside the U.S. Agency for International Development (USAID), focused on food-insecure people facing discrimination due to their gender or social group. By supporting them to produce improved maize varieties in community groups, the project managed not only to greatly increase their incomes, but also to improve their self-confidence and recognition in society.

CIMMYT researchers are also among the leaders of a global push to encode gender into agricultural research together with other international research partnerships. In over 125 agricultural communities in 26 countries, a field study of gender norms, agency and agricultural innovation, known as GENNOVATE, is now underway. The huge evidence base generated will help spur the necessary transformation in how gender is included in agricultural research for development.

Further information:

The Borlaug Global Rust Initiative, chaired by Jeanie Borlaug Laube, has the overarching objective of systematically reducing the world’s vulnerability to stem, yellow, and leaf rusts of wheat and advocating/facilitating the evolution of a sustainable international system to contain the threat of wheat rusts and continue the enhancements in productivity required to withstand future global threats to wheat. This international network of scientists, breeders and national wheat improvement programs came together in 2005, at Norman Borlaug’s insistence, to combat Ug99. The Durable Rust Resistance in Wheat (DRRW) project at Cornell University serves as the secretariat for the BGRI. The DRRW, CIMMYT, the International Center for Agricultural Research in the Dry Areas (ICARDA) and the FAO helped establish the BGRI a decade ago. Funding is provided by the UK Department for International Development (DFID) and the Bill & Melinda Gates Foundation. For more information, please visit www.globalrust.org.

CIMMYT is the global leader in research for development in wheat and maize and related farming systems. CIMMYT works throughout the developing world with hundreds of partners to sustainably increase the productivity of maize and wheat to improve food security and livelihoods. CIMMYT belongs to the 15-member CGIAR Consortium and leads the Consortium Research Programs on wheat and maize. CIMMYT receives support from national governments, foundations, development banks and other public and private agencies.

Follow the #BGRI2015 hashtag on social media

Twitter: @CIMMYT, @KropffMartin and @GlobalRust

SIMLESA-Mozambique learns more about conservation agriculture technologies in Brazil

Three agriculturalists from the Sustainable Intensification of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA)–Mozambique made a training visit to Brazil on 3-13 June 2015.

The objective of the visit was for the three researchers to acquire conservation agriculture (CA) skills, with a special focus on soil health and climate change. The training sessions were also expected to give participants the opportunity to share their knowledge and experience with their Brazilian counterparts at Brazilian Corporation of Agricultural Research (EMBRAPA) sites.

“By visiting and interacting with farmers, observing trials and having discussions with CA advisors, researchers, policy makers and agriculture industry representatives, we gained new knowledge of CA technologies,” said team leader Domingos Dias, SIMLESA-Mozambique National Coordinator.

During the 11-day visit, participants were presented with real-life CA challenges so they could solve them interactively. Having learned the required theory and facts through demonstrations, question-and-answer sessions and multimedia presentations, they are now expected to apply these technologies in their respective countries.

Smallholder farmers in Mozambique are affected by the poor farming methods they practice, such as late weeding and inefficient residue application, and the lack of farm mechanization. The participants learned to use and maintain agro-machinery, such as direct seeders and rippers, as well as when to plant forage crops such as Brachiaria, which produces much biomass and whose deep root system plays a critical role in improving soil properties.

“We learned very useful practices and will test some of them under our conditions. The training in Brazil presented alternative uses of residues and rotations based on soil properties suitable for Southern African countries,” said SIMLESA-Mozambique participant Custodio Jorge.

Both farmers and extension staff who participated in the first phase of SIMLESA (2010-2014) lacked basic skills and knowledge of CA farming systems. The second phase of the project (2014-2018) is focused on filling this gap through training.

 

SIMLESA-Mozambique National Coordinator Domingos Dias observes Brachiaria ssp., an African grass that is rotated and intercropped with soybean, maize and wheat under conservation agriculture at EMBRAPA, Passo Fundo, Rio Grande do Sul. Photo: Custodio Jorge

QPM maize expected to improve protein intake in Ethiopia

For community health extension workers (CHWs) in Ethiopia, as elsewhere, educating smallholder farmers on the importance of protein is a continuous task year in, year out. It’s not that farmers don’t know how important protein is. The big problem has been the availability of affordable protein that is within the reach of smallholder farmers. Now life is getting easier for CHWs in Ethiopia thanks to quality protein maize (QPM), a pioneering technology developed several decades ago by CIMMYT scientists. Read more here at CIMMYT’s Nutritious Maize for Ethiopia project page.

Livestock key to breaking Zambia’s poverty trap

Malende is a small village near the town of Monze in southern Zambia, a region that has been a focus of CIMMYT’s major research programs since 2005 and where cropping systems based on the principles and practices of conservation agriculture have been introduced.

Farmers in Malende are typical of smallholder farmers in Sub-Saharan Africa; they farm relatively small areas, their soils are often degraded and they suffer serious effects of climate variability such as increased heat stress, erratic rainfall and intra-seasonal droughts. Subsistence farming is predominant, as farmers lack access to functional markets for both inputs and produce. Most farmers in Malende rely on manual or animal traction and lack access to alternative farm power, which limits their landholdings to around five hectares.

CIMMYT has been working with partners to implement climate-resilient technologies such as direct seeding, mulching and diversified crop rotation to increase farmer productivity and environmental resilience. A survey conducted during the implementation of an International Fund for Agricultural Development (IFAD) project classified Zambian farmers involved in different farming operations by their household characteristics, i.e., land size, cattle and income. To validate the study of farmer typologies, CIMMYT, in collaboration with Zambia’s Ministry of Agriculture and Livestock, interviewed a smallholder farmer who owned no cattle and a farmer who owned more than 15 head in March 2015.

Jacob Sibanje farms a total of five hectares. His family consists of five adults and five children, all of whom work on the farm. He has practiced conservation agriculture for many years, produces consistently stable yields, and has started rotating maize with groundnuts, cassava, cowpeas and sweet potatoes.

When asked how his farm operations are doing, Sibanje answered, “I am struggling!” Despite progress achieved through conservation agriculture, the high price of farm inputs (specifically fertilizer and herbicides) and the lack of formal markets for his produce erode his profits annually. This means he has to take on off-farm work to get by. Sibanje’s maize harvest is solely for home consumption, and his situation is unstable, since he has to rent livestock to cultivate his land.

Lyson Sakala cultivates six hectares and supports his family of three adults and two children. Unlike Sibanje, Sakala’s approach is clearly market oriented. He practices conservation agriculture on three hectares, where he rotates maize with soybeans, cowpea and sunflower both for the local market and home consumption. The other three hectares are used as pastureland for livestock.

Sakala feeds all crop residues to his animals and applies manure mainly to the grazing area. He produces 15 liters of milk daily; seven are for home consumption and the rest are sold. Cattle are also a source of cash in case of a family emergency. Sakala can count on selling two to four cows every year for an average price of US $197 per cow. Combined milk and meat revenue allows him to purchase fertilizers at a much higher price than his fellow farmers in Malende. As Sakala’s profits increased, he started employing two farm helpers, and is now able to send all his children to school. He also obtains fodder from his neighboring farmers as supplementary feed during the dry winter season in exchange for renting animals during planting time.

How can Sibanje achieve the same success as Sakala?

CIMMYT used farm typologies based on diverse socio-economic and agricultural criteria to define different livelihood strategies in southern Zambia, and owning livestock was identified as one way of breaking the poverty trap many farmers like Sibanje are stuck in. CIMMYT is also demonstrating the added value of manure, defining the trade-offs between leaving residue on the soil and feeding it to cattle; we also identified the agroecological and socioeconomic conditions where crop-livestock integration can bring positive solutions to farmers.

When he was re-visited in June, Sibanje had already bought four heifers with the current season’s produce. He also plans to modify his farm operations to create a mixed crop-livestock system with the goal of maximizing the whole system instead of only one component, which will generate positive trade-offs.

According to the Food and Agriculture Organization of the United Nations, “The choice of mixed farming is not always a sign of improvement of the situation in which people may find themselves.” However, Sibanje and Sakala show that though all smallholders may not become market-oriented livestock farmers, they should at least own enough cattle to avoid having to rent animals for plowing and to have manure and reduce their dependency on expensive mineral fertilizers.

Maize that packs a punch in face of adversity: unveiling new branded varieties for Africa

Even in the best years, significant swathes of sub-Saharan Africa suffer from recurrent drought. Drought wreaks havoc on the livelihoods of millions of Africans – livelihoods heavily leaning on rain-dependent agriculture without irrigation, and with maize as a key staple. And that is not all: drought makes a bad situation worse. It compounds crop failure because its dry conditions amplify the susceptibility of maize in farmers’ fields to disease-causing pests, whose populations soar during drought.

Providing maize farmers with context-specific solutions to combat low yields and chronic crop failure is a key priority for CIMMYT and its partners, such as those in the Water Efficient Maize for Africa (WEMA) Project.

“Our main focus is to give famers durable solutions,” remarks Dr. Stephen Mugo, CIMMYT Regional Representative for Africa and a maize breeder, who also coordinates CIMMYT’s work in WEMA. “These seeds are bred with important traits that meet the needs of the farmers, with ability to give higher yields within specific environments.”

Farmers in Kenya, Uganda, Tanzania and South Africa will soon access WEMA’s high-yielding drought-tolerant maize hybrids. In total, 13 hybrids were approved for commercial production by relevant authorities in these countries. These approvals were spread between October 2014 and March 2015 in the various countries.

Kenya’s National Variety Release Committee (NVRC) approved four hybrids in February 2015 (WE2109, WE2111, WE2110 and WE2106), while neighboring Uganda’s NVRC also approved four hybrids at the end of 2014 (WE2101, WE2103, WE2104 and WE2106). Across Uganda’s southern border, in March 2015, the Tanzania Official Seed Certification Institute approved for commercial release WE3117, WE3102 and WE3117. Still further south, South Africa’s Department for Agriculture registered two hybrids (WE3127 and WE3128) in October 2014.

In each country, all the hybrids successfully underwent the mandatory National Performance Trials (NPTs) and the Distinctness, Uniformity and Stability (DUS) tests to ascertain their qualities and suitability for use by farmers.

Varieties that pack a punch
In Kenya, these new WEMA varieties boast significantly better yields when compared to varieties currently on the market as well as to farmer varieties in drought-prone areas of upper and lower eastern, coastal, central and western Kenya.

And that is not all: across them, the new hybrids also have resistance to rampant leaf diseases like maize streak virus, turcicum leaf spot and gray leaf spot.

Dr. Murenga Mwimali of the Kenya Agricultural and Livestock Research Organization, who is also WEMA’s Country Coordinator in Kenya, explains: “These hybrids are expected to give farmers an average yield of three tonnes per hectare in moderate drought and eight tonnes in good seasons. These are better seeds that will help Kenyans fight hunger through increased productivity.” According to the UN Food and Agricultural Organization, Kenya’s national average productivity in 2013 was a meager 1.6 tonnes per hectare. This compares poorly with South Africa’s 6 tonnes, Egypt’s 9 tonnes and USA’s 9–12 tonnes, as generally reported in other statistics.

Where to find them
The seed of these new varieties should be available in the market once selected seed companies in Uganda and Tanzania produce certified seeds by end of August 2015.

Dr. Allois Kullaya, WEMA Country Coordinator in Tanzania, applauded this achievement and the partnership that has made it possible. “Through the WEMA partnership, we have been able to access improved seed and breeding techniques. The hybrids so far released were bred by our partner CIMMYT and evaluated across different locations. Without this collaboration, it would not have been possible to see these achievements.” said Dr. Kullaya.

In South Africa, close to 10,000 half-kilo seed packs of WE3127 were distributed to smallholder farmers to create awareness and product demand through demonstrations to farmers and seed companies.

This seed-pack distribution was through local extension services in the provinces of Eastern Cape, Free State, KwaZulu–Natal, Limpopo, Mpumalanga and North-West.

Three seed companies also received the hybrid seed to plant and increase certified seed for the market.

Where it all begins – the CIMMYT ‘cradle’, crucible and seal for quality assurance
“In the WEMA partnership, CIMMYT’s role as the breeding partner has been to develop, test and identify the best hybrids for yield, drought tolerance, disease resistance and adaptability to local conditions,” says Dr. Yoseph Beyene, a maize breeder at CIMMYT and WEMA Product Development Co-leader.

To do this, more than 10, 000 new hybrids combinations are evaluated each year to identify new hybrids that will perform most consistently in various conditions. Hybrids that look promising are subjected to a rigorous WEMA-wide area testing. Only those that pass the test get the CIMMYT nod and ‘seal of approval’. But the tests do not end there: for independent and objevhe verfication, the final test  is that these select few advance to  – and are submitted for – country NPTs.

Dr. Beyene explains: “Because of these rigorous testing, hybrids that are adapted in two or three countries have been identified and released for commercial production to be done by regional and multinational seed companies which market hybrids in different countries. This eases the logistics for seed production, distribution and marketing.”

How to recognize the new varieties – distinctive shield against drought
All the hybrids released under the WEMA project will be sold to farmers under the trade-name DroughtTEGOℱ. ‘Tego’ is Latin for cover, protect or defend. The African Agricultural Technology Foundation (AATF), which coordinates the WEMA Project, has sub-licensed 22 seed companies from the four countries to produce DroughtTEGOℱ seeds for farmers to buy.

WEMA’s achievements are premised on a powerful partnership of scientists from CIMMYT, national agricultural research institutes from the five WEMA target countries (Kenya, Tanzania, Uganda, Mozambique and South Africa), AATF and Monsanto.

WEMA is funded by the Bill & Melinda Gates Foundation, the United States Agency for International Development and the Howard G. Buffet Foundation.

Links: More on WEMA | WEMA 2015 annual meeting in Mozambique | Insect Resistant Maize in Africa Project (completed in 2014)

WEMA 3 w

Continue reading

CIMMYT-CCAFS initiative develops 500 new climate-smart villages in Haryana, India

A climate-smart farmer in Ludhiana, Punjab, India. Photo: P. Casier/CGIAR
A climate-smart farmer in Ludhiana, Punjab, India. Photo: P. Casier/CGIAR

The Department of Agriculture (DoA) of the Indian state of Haryana, in collaboration with CIMMYT-CCAFS, developed an action plan to mainstream climate-smart agriculture (CSA) in the state and develop 500 new climate-smart villages (CSVs), at a workshop held on 8 June 2015. Over the past three years, Haryana has successfully adopted CSA technologies and practices through a CSV initiative of CIMMYT and the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Demand-driven policies and engagement by local governments are essential to ensure CSVs continue to expand throughout the country.

CSVs identify, adapt and evaluate demand-driven CSA interventions aimed at improving the capacity of local farmers to adapt to climate change. Northwest India, which is crucial to the country’s food security, faces diverse challenges to meet current and future food demands. Problems such as groundwater scarcity, soil health deterioration, heat stress, erratic rainfall due to climate change and high input costs are taking a toll on farmers.

In response, India has promoted a portfolio of successful CSA interventions, particularly in Haryana, and has developed over two dozen CSVs in the last three years. Rice-wheat systems in these CSVs have proven more resilient than other areas to tough climatic challenges, such as extremely high rainfall during the 2014-2015 winter season. While many farmers experienced yield losses of 30-50%, those in CSVs only lost 5-10%.

The success of 28 CSVs in Haryana’s Karnal district over the last three years has raised the confidence level of stakeholders, particularly the state’s DoA, which are now involved in developing more CSVs in the state in close collaboration with CIMMYT-CCAFS and partners.

According to an official letter issued by the DoA piloting the new 500 CSVs, “The farmers of our state are facing challenges of natural resource degradation, high input costs and frequent weather abrasions due to climate change. The adoption of climate-smart agriculture technologies [and] new innovative practices in agriculture is essential.”

CIMMYT-CCAFS climate-smart village site in Haryana, India. Photo: CIMMYT/CCAF
CIMMYT-CCAFS climate-smart village site in Haryana, India. Photo: CIMMYT/CCAF

Farmer-friendly policies that prioritize CSA have been implemented by the government of Haryana, but more has to be done to ensure further adoption of CSA throughout the state and the country. During the workshop, a roadmap was designed for implementing the 500 CSVs, that includes devising strategies to attract rural youth and women to agribusinesses across the state. Suresh Gehlawat, Additional Director Agriculture, government of Haryana, called this approach a “win-win for all stakeholders.” Knowledge sharing and capacity building to promote CSAs contribute to the continuous expansion of CSVs across state and country.

Looking towards the future: Govaerts examines food security and nutrition in a changing world

Bram Govaerts shares a quote from Dr. Norman Borlaug with the audience: “I personally cannot live comfortably in the midst of abject hunger and poverty and human misery, if I have the possibilities of—even in a modest way, with the help of my many scientific colleagues—of doing something about improving the lives of these many young children.” Photo: Jennifer Johnson

Bram Govaerts, associate director of the Global Conservation Agriculture Program (GCAP) and leader of the Sustainable Modernization of Traditional Agriculture (MasAgro) program, made a presentation on the future prognosis of food security and the actions that must be taken to achieve it at the Prospectiva del Mundo (World Prospective) Mexico 2015 conference on 25 June. The conference, organized by the National Autonomous University of Mexico (UNAM) and the Mexican chapter of the World Future Society, brought together national and international experts in fields such as development, education, finance and agriculture.

These experts were gathered in order to draft a “charter of human duties,” an initiative proposed by the late Nobel Laureate Jos Saramago, who believed that there was a global need for a charter that would define the responsibilities, not just the rights, that each human being has to the development of their surroundings. The charter will later be presented to the United Nations.

Govaerts co-presided over a panel on nutrition and food production alongside Fernando Soto Baquero, FAO representative in Mexico. The panelists were tasked to propose duties for the charter and to answer the question: “How can we improve food distribution in a way that does not harm consumers while maintaining a profitable industry?”

In his presentation, Govaerts highlighted the challenges facing food security in the coming years. “It is not just a question of producing more food, but of producing food that is more nutritious and affordable, with less impact on the environment,” said the recipient of the 2014 Borlaug Award for Field Research and Application. “We must end hidden hunger.”

He emphasized the necessity of using the genetic materials stored in CIMMYT’s gene banks to develop improved varieties, and to ensure that these varieties can be productively used by farmers. “CIMMYT is the home of one of the greatest jewels in the world: 130 thousand wheat accessions and 35 thousand maize accessions that represent the global biodiversity of these grains. However, if we don’t take advantage of our stored genetic material to create better varieties, our collection is nothing more than a refrigerator full of boxes.”

Govaerts proposed five duties for the charter of human obligations: investing  in research for sustainable rural development; giving priority to family farming and small and medium producers; more equal opportunity for farmers, especially women; sustainable intensification; and further developing market opportunities for producers. He ended his presentation with a call to action, urging the audience to take the world’s duty to agriculture to heart.

“We have a great challenge before us, and a great decision to make: we will need to feed 9 billion people in 2050, and we can either do it unsustainably or sustainably. There is a lot of potential in this room, but we cannot feed 9 billion people on potential alone. We need everyone’s help and actions, and I invite you to join us.”

Farmers bring a direct seeder/fertilizer to a field in Oaxaca, Mexico. Photo: Jelle Van Loon
Farmers bring a direct seeder/fertilizer to a field in Oaxaca, Mexico. Photo: Jelle Van Loon

Azerbaijan and Georgia showcase progress in wheat breeding during IWWIP Traveling Seminar

The International Winter Wheat Improvement Program (IWWIP) held its 2015 International Winter Wheat Traveling Seminar in Azerbaijan and Georgia on 24 May. More than 40 participants from 18 countries attended the seminar, which covered more than 1,000 kilometers in four days.

Beyhan Akin, CIMMYT Wheat Breeder, and Mustafa Kan, IWWIP Turkey Coordinator, taste bread baked from new varieties during the welcome ceremony.
Beyhan Akin, CIMMYT Wheat Breeder, and Mustafa Kan, IWWIP Turkey Coordinator, taste bread baked from new varieties during the welcome ceremony.

Winter wheat is a major food crop in Central and West Asia, where it covers 14 million hectares. IWWIP, a cooperative program between CIMMYT, Turkey’s Food, Agriculture and Livestock Ministry and the International Center for Agricultural Research in the Dry Areas (ICARDA), develops germplasm for Central and West Asia and serves as a mechanism for global winter wheat germplasm and knowledge exchange.

Every two years, IWWIP conducts international traveling seminars to assess progress in the development, adoption and impact of new varieties and gather feedback from partners. Previous seminars have been conducted in Turkey, Ukraine, Uzbekistan, Bulgaria and Romania. This year’s seminar was funded by Turkey’s Food, Agriculture and Livestock Ministry and by FAO’s Central Asia Office, which also provided technical support and supported three participants.

IWWIP winter wheat varieties and spring wheat varieties from international centers occupy more than 70% of Azerbaijan’s total wheat area and contribute substantially to food security through their high yields and resistance to stripe rust, a disease prevalent in the region.

Participants gathered in Baku then went on to visit Azeri Research Institute of Farming, the Genetic Resources Institute, and Gobustan and Terter Experiment Stations. “Participants were very impressed by the experimental and breeding work at all sites visited,” said Alexey Morgounov, Head of IWWIP. “There is an established system of wheat germplasm screening, selection of superior germplasm, official testing and release, multiplication and promotion.”

Alexei Morgounov, CIMMYT Wheat Breeder, discusses germplasm performance with scientists from Kazakhstan, Kyrgyzstan and Uzbekistan. Photos: H.Mammadova, Azeri Research Institute of Farming.
Alexei Morgounov, CIMMYT Wheat Breeder, discusses germplasm performance with scientists from Kazakhstan, Kyrgyzstan and Uzbekistan. Photos: H.Mammadova, Azeri Research Institute of Farming.

In Georgia, the group participated in a field day at Lomtagora Farm, where new winter wheat varieties were identified and promoted.  The group also visited the Georgian National Research Center experiment station and reviewed the crop research being conducted there. Lomtagora Farm hosted a summary meeting featuring several key presentations on food security, application of new genomic tools and fast multiplication and promotion of new varieties. Recommendations for future IWWIP activities discussed at the meeting included expanding and improving current breeding and germplasm exchange activities and focusing on training young wheat breeders in Turkey.

“An important outcome of the seminar was the establishment of personal connections between participants, as well as building formal ties,” said Morgounov. “The group was highly impressed by the new generation of young, intelligent and driven wheat breeders and researchers in Azerbaijan and Georgia, and we look forward to a successful seminar in 2017.”

Farmers in India embrace high-zinc wheat for its nutritional benefits

Under-nourishment affects some 795 million people worldwide. According to the U.N. Food and Agriculture Organization (FAO), more than one out of every nine people do not eat enough to lead healthy, active lives. Almost 780 million undernourished people live in developing countries, with about 94% in Asia and Africa, FAO reports.

Biohappiness: A happy farmer grows ZincShakti wheat on his farm in Uttar Pradesh, India. Photos: Nirmal Seeds, India
Biohappiness: A happy farmer grows ZincShakti wheat on his farm in Uttar Pradesh, India. Photos: Nirmal Seeds, India

But these statistics tell only part of the story. Two billion people around the world also suffer from micronutrient deficiency, according to the World Health Organization (WHO). Also known as “hidden hunger,” micronutrient deficiency occurs when the food consumed by people does not provide enough vitamins and minerals. People in South Asia and sub-Saharan Africa are hardest hit by hidden hunger, which is characterized by iron-deficiency anemia, and vitamin A and zinc deficiency.

Zinc is important for cellular growth, cellular differentiation and metabolism. Zinc deficiency, which affects about one-third of the global population, limits childhood growth and decreases resistance to infection. According to WHO, zinc supplements may help to improve linear growth of children under five years of age.

Tackling hidden hunger is the major focus of the HarvestPlus-led wheat biofortification breeding program at CIMMYT and its national program partners in South Asia. The main objective of the program is to develop and disseminate competitive wheat varieties with high grain zinc content and other essential agronomic features.

The biofortification breeding program introduces high zinc levels derived from the best sources (wild species and landraces) into adapted wheat backgrounds. The result is widely adapted, high yielding, high zinc varieties with durable disease resistance. These new varieties are 20-40% superior in grain zinc concentration and are agronomically on a par or superior to other wheat cultivars popular in South Asia. Research is also underway to transfer genomic regions into adapted backgrounds in a more precise and targeted manner, thus accelerating breeding efficiency, as well as to identify biofortified varieties for specific growing conditions in target countries.

Women farmers in field.
Women farmers involved in seed production and dissemination of high zinc varieties, along with Banaras Hindu University (BHU) and CIMMYT researchers.

Competitive high zinc wheat varieties have already been distributed to national program partners in South Asia to reach resource-poor smallholder farmers. In 2012, HarvestPlus devised a strategy with Banaras Hindu University and CIMMYT to reach thousands of wheat farmers with zinc-biofortified, disease resistant wheat in eastern Uttar Pradesh, India. Wheat productivity in this region is low compared to other parts of the country, which is why it was chosen to serve as a platform for testing and promoting high zinc wheat varieties.

After various demonstrations in 18 villages, many of the farmers became interested in adopting high zinc wheat. In 2013, seed mini-kits were distributed to farmers in the region and by 2014, more than 10,000 farmers had adopted high zinc wheat.

Public-private partnerships are contributing to fast-track commercialization. As a result, more than 50,000 farmers adopted zinc-biofortified wheat varieties during the 2015-2016 crop cycle. Farmers are happy with the “Zinc Shakthi” variety for its good performance, including a yield advantage of about 5-10% under both full and limited irrigation, as well as its grain size, cooking quality, grain color and overall appearance.

For development expert Paula Kantor, gender equality was crucial

1400EL BATAN, Mexico (CIMMYT) – Paula Kantor had an exceptionally sharp, analytical mind and a deep understanding of how change can empower men and women to give them greater control over their own lives, helping them shape their future direction, said a former colleague.

Kantor, a gender and development specialist working with the International Maize and Wheat Improvement Center (CIMMYT), died tragically on May 13 at age 46, in the aftermath of a Taliban attack on the hotel where she was staying in Kabul, Afghanistan.

At the time, she was working on a new CIMMYT research project focused on understanding the role of gender in the livelihoods of people in major wheat-growing areas of Afghanistan, Ethiopia and Pakistan.

The aim of the three-year project, supported by Germany’s Federal Ministry for Economic Cooperation and Development (BMZ), is to find out how wheat research-and-development can contribute to gender equality in conservative contexts so that, in turn, gender equality can contribute more to overall development.

“Paula’s research was targeting a very large populace facing serious threats to both food security and gender equality,” said Lone Badstue, gender specialist at CIMMYT, an international research organization, which works to sustainably increase the productivity of maize and wheat to ensure global food security, improve livelihoods and reduce poverty.

“Paula had vast experience – she spent most of her working life in these contexts – in very patriarchal societies – and had a great love for the people living in these regions. She also had a deep understanding of what she felt needed to change so that both men and women could have a better chance to influence their own lives and choose their own path.”

Kantor, a U.S. citizen, was no stranger to Afghanistan. Several years before joining CIMMYT, she had been based in Kabul where she worked as director and manager of the gender and livelihoods research portfolios at the Afghanistan Research and Evaluation Unit (AREU), an independent research agency, from 2008 to 2010.

The project Kantor was working on at the time of her death builds on the idea that research and development interventions should be informed by a socio-cultural understanding of context and local experience, Badstue said.

Ultimately, this approach lays the groundwork for a more effective, equitable development process with positive benefits for all, she added.

WHEAT AND GENDER

Globally, wheat is vital to food security, providing 20 percent of calories and protein consumed, research shows. In Afghanistan, wheat provides more than half of the food supply, based on a daily caloric intake of 2,500 calories, while in Pakistan wheat provides more than a third of food supply, and in Ethiopia it provides about 13 percent of calories, according to the U.N. Food and Agriculture Organization (FAO) and the Global Food Security Index. These data do not reflect gender disparity with regard to food access.

In Afghanistan, Ethiopia and Pakistan, the central role of wheat in providing food security makes it an important part of political stability. Overall, gender inequality and social disparities have a negative impact on general economic growth, development, food security and nutrition in much of the developing world, but particularly in these three countries, Badstue said.

Women make up between 32 to 45 percent of economically active people in agriculture in the three countries, which are classified by the U.N. Development Programme’s Gender Inequality Index in the “low human development” category.

Although women play a crucial role in farming and food production, they often face greater constraints in agricultural production than men, Badstue added.

Additionally, rural women are less likely than men to own land or livestock, adopt new technologies, access credit, financial services, or receive education or extension advice, according to the FAO.

Globally, if women had the same access to agricultural production resources as men, they could increase crop yields by up to 30 percent, which would raise total agricultural output in developing countries by as much as 4 percent, reducing the number of hungry people by up to 150 million or 17 percent, FAO statistics show.

“Addressing gender disparities between women and men farmers in the developing world offers significant development potential,” Badstue said.

“Improvements in gender equality often lead to enhanced economic efficiency and such other beneficial development outcomes as improved access to food, nutrition, and education in families.”

METICULOUS RESEARCHER

Paula was brilliant,” Badstue said. “She had a clear edge. She was someone who insisted on excellence methodologically and analytically. She was very well equipped to research issues in this context because of her extensive experience in Afghanistan, as well as her considerate and respectful manner.”

Kantor’s involvement in “Gennovate,” a collaborative, comparative research initiative by gender researchers from a series of international agricultural research centers, was also critical, Badstue said.

The group focuses on understanding gender norms and how they influence the ability of people to access, try out, adopt or adapt new agricultural technology. Kantor provided key analytical and theoretical guidance, inspiring the group to take action and ensure that Gennovate took hold.

Kantor’s work went beyond a focus on solving practical problems to explore underlying power differences within the family or at a local level.

“Agricultural technology that makes day-to-day work in the field easier is crucial, but if it doesn’t change your overall position, if it doesn’t give you a voice, then it changes an aspect of your life without addressing underlying power dynamics,” Badstue said.

“Paula was trying to facilitate lasting change – she wasn’t banging a particular agenda, trying to force people into a particular mind-set. She was really interested in finding the space for manoeuver and the agency of every individual to decide what direction to take in their own life. She was a humanist and highly respected throughout the gender-research community.”

Before joining CIMMYT, Kantor served as a senior gender scientist with the CGIAR’s WorldFish organization for three years from 2012. She also worked at the International Center for Research on Women (ICRW) in Washington, D.C., developing intervention research programs in the area of gender and rural livelihoods, including a focus on gender and agricultural value chains.

A funeral mass will be held for Paula Kantor at 11 a.m. on June 11, 2015 at St Leo the Great Catholic Church in Winston Salem, North Carolina. 

CIMMYT will hold a memorial service for Paula Kantor on Friday, June 12, 2015 at 12:30 p.m. at its El Batan headquarters near Mexico City. 

SUPER WOMAN: Julie Miller Jones dispels myths that wheat protein is unhealthy

El BATAN, Mexico (CIMMYT) — A nutritionist who is outspoken about the negative consequences of gluten-free diets said in an interview that she wants to dispel myths generated by claims that the protein found in wheat is unhealthy.

“Wheat has recently been under attack by people who’ve made claims about it that simply can’t be verified by science,” said Julie Miller Jones, professor emeritus of nutrition at St. Catherine University in St. Paul, Minnesota.

“Gluten-free” has become a big money maker for the food industry. Sales have soared 63 percent since 2012, with almost 4,600 products introduced last year, according to the January 2015 issue of Consumer Reports magazine.

Retail sales of gluten-free foods in the United States were estimated at $12.2 billion in 2014, and by 2020 the market is projected to be valued at $23.9 billion, Statistica reports.

The popularity of gluten- and wheat-free diets has grown in part due to claims published in such books as “Wheat Belly” by William Davis and “Brain Grain” by David Perlmutter. These publications say that wheat products are the cause of most health problems, views rebutted by Miller Jones.

Such claims counter current medical and nutritional advice in international dietary guidelines established in conjunction with the U.N. Food and Agriculture Organization and the World Health Organization (WHO).

“Apart from the approximately 1 percent of people who suffer from celiac disease, the fewer than 1 percent of people who suffer from wheat allergies and the few who suffer from non-celiac gluten sensitivity, prominent celiac experts and health professionals discount the many supposed benefits of going gluten-free, urging those who do not have these conditions not to adopt such a diet,” Miller Jones said.

As a food staple, wheat plays a vital role in global food security, providing 20 percent of the overall total amount of calories and protein consumed worldwide.

Miller Jones, who delivered a talk at the International Maize and Wheat Improvement Center (CIMMYT) in Mexico, shared her views on the controversy surrounding fad diets that urge the elimination of wheat and its protein complex, gluten, in the following interview.

Q: What worries you about negative attacks on wheat consumption?

I’m very concerned about it. One of the attacks is based on the fact that wheat has been bred by people – that this breeding somehow has done something very evil to the grain. I really want to dispel the myth that wheat is somehow bad for you and that modern wheat is somehow different from the wheat that existed years ago. It’s different because we can grow more of it, it’s higher yielding, but it’s not different in terms of the nutrition that it delivers. In fact, we get more nutrition per acre, which I think is a good thing rather than a bad thing.

Q: Critics have suggested that scientists are creating new proteins in wheat. Is this true?

You can’t create a new protein without creating a mutation, and plant breeding doesn’t normally create new mutations. There are hundreds of varieties of wheat that exist in the world – what Norman Borlaug (the late CIMMYT wheat breeder and Nobel Peace Prize winner, known as the father of the Green Revolution) did was cross these wheats to develop grains that would grow under a variety of conditions. The glutenins and gliadins that were there have been there ever since wheat has been grown as a crop. He claims that new, modern wheat has more gluten than it did before. A lot of research is showing that the level has not changed. In fact, in his book, Dr. Davis suggests that gliadin is a new toxic protein. That is patently false because you can go back into the early chemical literature – that mentions gliadin early in the 1800’s.

Q: Critics have also said that gluten-free fad diets are marketed towards a more western, wealthy culture. If so, what are the implications for the developing world?

Obviously, these doctors are trying to sell books in affluent countries where obesity is a big problem. We would all love to find a solution to obesity. All the simplistic solutions like eliminate a particular food or food group or eat in the ancient way – all of those solutions are really quite simplistic. There are a number of things that we need to do in order to address obesity – It’s aimed at an obese population concerned about chronic disease and diseases that are associated with obesity. The tragedy in that is that if, as we’ve seen with other issues, when developed nations say that they are not going to eat something because of a particular issue with that food then that food has been rejected as food aid in some developing countries. So this has some really amazingly potentially harmful results that no one really initially intended – these unintended consequences are really problematic. It could also mean that people switch their diets to foods that are less sustainable. We’re really facing a problem with feeding the additional two-and-a-half billion people that will exist on this planet in 2050. Clearly, it’s not a viable or sustainable strategy for feeding the world. I’m very concerned about it and these sort of second-order consequences.

Q: How credible are reports that wheat consumption is bad?

Dr. Davis suggests that if we didn’t eat wheat we would cure diabetes. Well, the data simply say completely the opposite. We have studies of large populations from all over the world where people who ate about three servings of whole-grain cereals and bread a day had a 25 percent reduced risk of diabetes. They have a 25 percent reduced risk of coronary heart disease. A study just published out of Harvard University in January of this year showed that the people who ate whole grains had reduced mortality for age. So the idea that taking wheat and grains out of the diet makes you healthier simply flies in the face of the scientific literature.

Q: Is there a simple goal you want to achieve?

I think that what we do know about healthy diets is that healthy diets are ones that are balanced. If we look at those diets, which support brain health, heart health, help prevent diabetes – they’re the ones such as the Mediterranean diet, which has breads and cereals as a base. It includes meat, poultry, fish but relatively small amounts of meat. It asks you to eat some legumes. The dietary approach to stop hypertension called the DASH diet has been studied on a large cohort of men and women who initially had high blood pressure. What they showed was that when people ate this diet, which has lots of fruits and vegetables, servings of whole grain, low-fat dairy – this mix that we need – those people had a lower risk of cancer and coronary disease. We actually have data on brain health, and diets such as the Mediterranean and the DASH diet showed the least loss of cognitive functioning in the elderly.

Q: In general, should people avoid specific food groups?

Instead of eliminating a food group, what we ought to do is eat it in the right amounts. That does not give you the excuse to eat large numbers of servings of what I call doodles, dingdongs and doughnuts. What we need to think about is those kinds of staple foods that have nourished the Aztecs in the past, nourished the pioneers coming across to the New World and that will nourish us today – eat those in the right amount. I’d also like to say exercise would be a good idea, too.

 

SUPER WOMAN: Diane Holdorf promotes sustainability to support smallholders

SUPPORTING THE CONNECTIVITY OF RESEARCH, EDUCATION AND OPPORTUNITIES

Diane-HoldorfInternational Women’s Day on March 8, offers an opportunity to recognize the achievements of women worldwide. This year, CIMMYT asked readers to submit stories about women they admire for their selfless dedication to either maize or wheat. In the following story, Amy Braun writes about her Super Woman of maize and wheat, Kellogg Company’s Diane Holdorf.

Diane Holdorf is a super woman and an inspiration to all of us at Kellogg Company. As Chief Sustainability Officer and Vice President of Environmental Stewardship, Health and Safety at Kellogg, Diane has been the inspiration and force behind the expansion of the company’s global sustainability commitments to include specific goals supporting smallholders around the world as part of new public commitments for 2020.

She has also been an ambassador for responsible sourcing and sustainable agriculture within the company, and has done a tremendous job raising awareness with Kellogg employees and leaders on the important role that smallholders, and women in particular, play in food security within their communities.

Under her leadership, Kellogg also commissioned a study in 2014 to assess how the company’s supply chain could improve the productivity and livelihoods of some smallholders around the globe. Soon afterwards, she traveled with Kellogg’s CEO, to attend the U.N. Secretary General’s Climate Summit in New York City to make a public statement committing to support 15,000 smallholders adopt climate-smart agriculture practices by 2020.

Climate-smart agriculture can help improve livelihoods and boost climate resiliency.

Kellogg currently supports 65,000 smallholder farmer livelihoods across their 10 priority ingredients through the market. Statistics show that women represent an average of 41 percent of workers on smallholder farms and 11 percent of farm managers or owners, according to a 2015 report.

Diane is a passionate leader for sustainability. With her muddy boots, she spreads her passion to inspire an entire company. Her drive, communication skills and leadership has caused Kellogg not only to meet overall objectives, but she has also infected leaders and employees with a clear understanding that sustainability matters.

Diane has gone beyond the call of duty, demonstrating that a sound sustainability strategy is a tool that adds value to the company and consumers. Specifically, Diane has broadened Kellogg Company’s engagement on agricultural supply chains, with exceptional leadership related to wheat, maize and rice smallholders.

She has brought cross-functional teams to Thailand, Ghana, India and Mexico to learn about how these growers work – and to inspire us to find ways to work with research teams like the International Maize and Wheat Improvement Center (CIMMYT), the International Rice Research Institute (IRRI) and others to share our knowledge and technologies.

In fact, she led the team that brought quinoa growers from Bolivia to the United States to represent the only indigenous voice at the International Year of Quinoa Research Symposium.

As a member of the University of Michigan Graham Sustainability Institute‘s advisory board, she supports the connectivity of sustainability research, education and real-world opportunities.

Through various partnerships with CIMMYT, IRRI, Field to Market and industry associations, as well as with the United Nations, she fosters the collaboration needed to bring agriculture to the forefront of science and policy.

Well-respected by her peers in industry and non-governmental organizations, she is and will continue to be a super woman due to her dedication to sustainability and food.

Without her leadership, we would not be able to do the work we do with the thousands and thousands of smallholders around the world.

Any views expressed in this article are those of the author and not of the International Maize and Wheat Improvement Center.