Skip to main content

funder_partner: Food and Agriculture Organization of the United Nations (FAO)

Is the next food crisis coming? Are we ready to respond?

A farmer in his barren field in Sewena, Ethiopia. (Photo: Kyle Degraw/Save the Children)
A farmer in his barren field in Sewena, Ethiopia. (Photo: Kyle Degraw/Save the Children)

One of the strongest El Niños on record is underway, threatening millions of agricultural livelihoods – and lives.

At least ten million people in the developing world are facing hunger due to droughts and erratic rainfall as global temperatures reach new records coupled with the onset of a powerful El Niño – the climate phenomenon that develops in the tropical Pacific and brings extreme weather across the world. Warmer than usual waters in the Pacific have made this year’s El Niño a contender for the strongest on record, currently held by the 1997 El Niño, which caused over $35 billion in global economic losses and claimed an estimated 23,000 lives. These extreme El Niños are twice as likely to occur due to climate change, according to a letter published in Nature magazine by researchers at McGill University, Montreal, Canada, and the University of Sussex, Brighton, UK.

Who is most at risk?

Watch this video to learn more about El Niño's impact on weather globally. (Source: World Meteorological Organization)
Watch this video to learn more about El Niño’s impact on weather globally. (Source: World Meteorological Organization)

Nearly 40 million people will be in need of emergency food assistance this year – a 30 percent increase over previous estimates – due in large part to added stress from El Niño, according to the Integrated Food Security Phase Classification (IPC).

This El Niño has resulted in severe drought throughout Central America, the Caribbean and Ethiopia, and is predicted to lead to flooding in the Horn of Africa and drought in southern Africa in the coming months. It has also disrupted the Indian monsoon and led to drier conditions in Southeast Asia and Indonesia, which has resulted in devastating wildfires across the country.

The El Niño phenomenon is often followed by a transition to La Niña, another driver of global weather patterns. If this were to happen again, it would mean more severe drought in the eastern Horn of Africa, and hurt crops like sugar, palm oil, and rice in Asia.

Responding to and mitigating El Niño’s effects

A shop attendant displays drought-tolerant seed at the Dryland Seed Company shop in Machakos, Kenya. (Photo: CIMMYT)
A shop attendant displays drought-tolerant seed at the Dryland Seed Company shop in Machakos, Kenya. (Photo: CIMMYT)

Ensuring farmers are equipped with climate resilient varieties that can withstand extreme stresses such as drought or waterlogging is an essential measure to counteract the side effects of El Niño. For example, after planting a drought tolerant maize variety developed by CIMMYT, farmers in Tanzania produced nearly 50 percent more grain than they normally would under the same conditions using other commercial varieties. In South Asia, CIMMYT has developed maize varieties that are tolerant to waterlogging and provide a safety net in years with heavy rains or flooding.

Equipping farmers with good agronomic practices and tools to reap the benefits of these crops is equally important. Ensuring farmers adjust planting times is critical for crops to adapt to changing weather patterns, while smart water management practices such as no-till farming can help raise wheat yields while reducing water and fuel costs. Precision land levelers – machines that level fields so water flows evenly into soil, rather than running off or collecting in uneven land – have enabled farmers in South Asia to save up to 30 percent more water, use less fertilizer and produce more grain yield.

Crop-index insurance is another tool that can serve as both a preventive and responsive measure to support smallholders during natural disasters. It allows farmers to purchase coverage based on an index that is correlated with those losses, such as average yield losses over a larger area or a well-defined climate risk – like drought – that significantly influences crop yields. If implemented correctly, index insurance can build resilience for smallholder farmers not only by ensuring a payout in the event of climate shocks like those caused by El Niño, but also by giving farmers the incentive to invest in new technology and inputs, such as seed.

So – are we prepared for this storm? Since 2003, nearly one-quarter of all damage and losses from climate-related disasters have occurred in the agricultural sector in developing countries. While global food security will likely not suffer another shock like that of 2007-08, primarily because global stocks of maize, wheat and rice are so large, natural disasters resulting from El Niño combined with climate change are playing out into unchartered territory, posing a real threat to people’s lives and livelihoods.

This isn’t the time to be complacent. We need to take preventive measures, and long-term investments in agricultural research will help us be prepared for future shocks and ensure crops and livelihoods can withstand more frequent natural disasters.

CIMMYT team wins CCAFS recognition

On 29 April, CIMMYT had a double reason to celebrate, picking up the award for “Best gender paper” and “Best science paper” (along with Bioversity), at the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) Science Conference in Copenhagen. The conference was part of a series of CCAFS meetings held from 29 April – 02 May, and was attended by various CIMMYT staff.

The best gender paper, titled ‘Adoption of Agricultural Technologies in Kenya: How Does Gender Matter?’ and co-authored by Simon Wagura Ndiritu, Menale Kassie and Bekele Shiferaw, highlighted the differences between technologies adopted on female- and male-managed farm plots in Kenya. They found that whilst there were gender differences in the adoption of technologies such as the use of animal manure, soil and water conservation, other differences in the use of chemical fertilizers and improved seed may stem from the varying levels of access to resources for men and women, rather than gender itself. “This recognition inspires me to put more effort to produce more quality research that will bring excellent distinction to CIMMYT and myself,” said Kassie, while Ndiritu said “it is an encouragement to a young scientist,” adding that he is looking forward to having the paper published.

The winning science paper, ‘Assessing the vulnerability of traditional maize seed systems in Mexico to climate change’, was authored by David Hodson (FAO), and Mauricio Bellon (Bioversity) and Jonathan Hellin from CIMMYT. With climate change models predicting significant impacts in Mexico and Central America, particularly during the maize growing season (May – October), the paper assessed the capacity of traditional maize seed systems to provide farmers with appropriate genetic material, under the anticipated agro-ecological conditions. Their results indicated that whilst most farmers will have easy access to appropriate seed in the future, those in the highlands will be more vulnerable to climate change and are likely to have to source seed from outside their traditional supplies, entailing significant additional costs and changes to the traditional supply chain.

To share the good news, the Socioeconomics program hosted a get-together with the team in Nairobi, Kenya. During the cake cutting ceremony, the best gender paper award was dedicated to women farmers from Embu and Kakamega in Kenya’s Eastern and Western Provinces, where the data was collected. The Nairobi team also took the opportunity to initiate monthly seminars in order to share research findings hosted by the Global Maize Program and the Socioeconomics program and promote regular interaction among the team. The program directors, Bekele Shiferaw and B. M. Prasanna nominated Dan Makumbi, Hugo De Groote, Sika Gbegbelegbe, Fred Kanampiu, and Sarah Kibera, to form the organizing committee for the seminars.

African maize farmers get support to mitigate impact of poor soils

8291994814_d75e7ce9ca_o_d53b26d3743a026b6dc969f7e5efbc7d

NAIROBI, Kenya (CIMMYT) – As the global community marks World Soil Day, African smallholder farmers are contending with low yields due to low-fertility soils prevalent in most parts of sub-Saharan Africa. This situation has affected the food security of over 300 million people in the region who depend on maize as their staple food.

For the majority of these smallholder farmers, access to inputs like fertilizers to boost soil productivity has been restricted due to their high cost. The reality is that in Africa fertilizers cost up to six times more than in any other continent.

As a result, nearly three quarters (about 70 percent) of eastern and southern Africa’s maize is grown without fertilizers. As the International Maize and Wheat Improvement Center (CIMMYT) and partners work to give farmers a partial solution to this enor

mous challenge, efforts must be intensified to protect and maintain soil resources for sustainable development in Africa and the globe.

The Improved Maize for African Soils (IMAS) Project addresses the problem of low nitrogen in soils. Smallholder farmers can expect to harvest up to 25 percent more from new maize varieties developed by the IMAS project.

These varieties are nitrogen use efficient (NUE), which means they utilize more efficiently the small amount of fertilizer that farmers can afford to apply (typically less than 20 kilograms per hectare) compared to varieties currently on the market. The IMAS project is a public-private partnership involving CIMMYT, the Kenya Agricultural and Livestock Research Organization, South Africa’s Agricultural Research Council and DuPont Pioneer.

In two years – between 2014 and 2015 – 21 NUE hybrids were successfully released in Tanzania, Malawi, Mozambique, South Africa, Uganda and Zimbabwe. In addition, IMAS helped to increase seed production and distribution of three existing NUE varieties. According to Michael Olsen, IMAS Project Leader, these varieties are expected to reach approximately 84,000 farmers.

“Giving smallholder farmers practical solutions within their environmental conditions is a sustainable means to not only preserve soil resources but address key challenges in maize farming, which is a major livelihood for millions in Africa,” Olsen said.

Many of the released NUE hybrids carry additional traits that are important in the region, such as tolerance to drought and maize lethal necrosis, a devastating viral disease that is new in the region. Donasiana Limo, a farmer from Olkalili village in northern Tanzania, attests to the good performance of HB513, a drought-tolerant and NUE variety he planted during the main cropping season between January and March 2015.

“I did not do much to prepare my land because the rains came very late and ended early. With no fertilizer and failed rains, I did not expect to harvest the seven bags of 50 kilograms from eight kilograms of HB513 seed,” Donasiana said.

“If I had time to prepare my land and added fertilizer, the harvest would have been so much more.”

Many more farmers from this remote village have benefited immensely from HB513, including Valeria Pantaleo.

Sustainable solutions for African farmers need to be addressed during World Soil Day deliberations. Efforts to facilitate smallholders’ access to inputs like fertilizers are critical. In addition, to help arrest further soil deterioration emphasis must be placed on adopting correct agronomic practices and appropriate crop varieties available on the market that are well suited to different soil management systems.

Policymakers must formulate strategies for adopting universal practices that maintain soil resources and are adapted to farming environments across Africa. Kenya has already set the pace for maize breeding in Africa by including performance in low-nitrogen soils as a special prerequisite for maize variety release, a step that will help enhance healthy soils in Africa if adopted by other regulatory agencies.

Links for more information

For information, please contact: Michael Olsen: IMAS Project Leader| Brenda Wawa: Media Contact

Agriculture ministers support policies to achieve Africa’s growth potential

Participants in the SIMLESA high level policy forum in Entebbe, Uganda. Photo: Johnson Siamachira/CIMMYT
Participants in the SIMLESA high level policy forum in Entebbe, Uganda.
Photo: Johnson Siamachira/CIMMYT

East and Southern African countries need to formulate and implement appropriate policies to help smallholder farmers access technologies that will enable them to increase farm yields and improve crop resilience and nutrition to address poverty, food security, and economic growth, renowned Zimbabwean agricultural economist and academic Mandivamba Rukuni told a high-level policy forum.

Delivering the keynote address at the SIMLESA policy forum co-organized by CIMMYT and the Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA) in Entebbe, Uganda, on 27–28 October, Rukuni said this can only be achieved through a dramatic shift to help smallholder farmers produce sufficient food for themselves, plus generate income. “Such technologies include improved seed varieties and fertilizers, and better infrastructure, such as roads and small-scale irrigation,’’ said Rukuni. SIMLESA is funded by the Australian Centre for International Agricultural Research (ACIAR) and implemented by CIMMYT.

Continue reading

Paula Kantor Award nominees must show gender research success in India

A farmer at work weeding in a maize field close to the Pusa site of the Borlaug Institute for South Asia (BISA), in the Indian state of Bihar. CIMMYT/M. DeFreese
A farmer at work weeding in a maize field close to the Pusa site of the Borlaug Institute for South Asia (BISA), in the Indian state of Bihar. CIMMYT/M. DeFreese

EL BATAN, Mexico (CIMMYT) — A new award recognizes contributions to the livelihoods and economic empowerment of women made by a former giant in the field of international gender research.

The inaugural Paula Kantor Award for Excellence in Field Research, to be given to a young female researcher of Indian origin, aims to recognize outstanding achievements in the field of gender and empowerment of women and girls in India.

Kantor, a gender and development specialist working with the International Maize and Wheat Improvement Center (CIMMYT), died tragically on May 13 at age 46, in the aftermath of a Taliban attack on a hotel in Kabul, Afghanistan.

She formerly worked as senior rural development specialist at the International Center for Research on Women (ICRW). The non-profit organization initiated the award to acknowledge Kantor’s 20 years of experience in executing policy research and programmatic work related to integrating gender into agriculture and rural development.

“Dr Kantor’s work was largely driven by her desire and passion to improve lives in the global south, especially those of women and girls,” ICRW said in a statement issued to solicit nominations.

“She was a prolific researcher who participated in and worked with several initiatives to better the lives and improve livelihoods for women in conflict-prone and terrorist-affected areas.”

The award will be presented to the winner at the ICRW’s 40th anniversary celebrations in New Delhi, India in January. In subsequent years, the award will be open to researchers of all origins and honor research throughout the developing world, the statement said, adding that nominations must be received by December 7.

At the time of her death, she was working on a new CIMMYT research project focused on understanding the role of gender in the livelihoods of people in major wheat-growing areas of Afghanistan, Ethiopia and Pakistan.

“Paula’s death was a massive blow to the entire development community,” said Martin Kropff, director general at CIMMYT. “Through her work she was helping to lift up a segment of the global population facing major threats to food security and gender equality. This award serves to recognize the major role she was playing to help empower men and women to determine their own future.”

Although women play a crucial role in farming and food production, they often face greater constraints in agricultural production than men. Rural women are less likely than men to own land or livestock, adopt new technologies, access credit, financial services, or receive education or extension advice, according to the U.N. Food and Agriculture Organization (FAO).

Globally, if women had the same access to agricultural production resources as men, they could increase crop yields by up to 30 percent, which would raise total agricultural output in developing countries by as much as 4 percent, reducing the number of hungry people by up to 150 million or 17 percent, FAO statistics show.

For more information on how to nominate candidates for the award, please visit the ICRW website

Kenyan delegation visits CIMMYT for collaboration on nixtamalization

Sicily Kariuki presses a perfect tortilla. Photo: Sam Storr/CIMMYT
Sicily Kariuki presses a perfect tortilla. Photo: Sam Storr/CIMMYT

On Thursday, 5 November, a delegation of Kenyan scientists and government officials visited CIMMYT, concluding a fact-finding mission to see if Mexico can help Kenya to find new, and safer, ways to eat maize.

Leading the delegation was Sicily Kariuki, principal secretary of Kenya’s Ministry of Agriculture, Livestock, and Fisheries. “Our objective is to meet with experts who face common challenges in the area of agriculture, in particular, maize, safety, and specifically nixtamalization,” she said.

CIMMYT and INIFAP have been developing a project to improve the traditional process of maize nixtamalization and show that it can dramatically reduce contamination by harmful aflatoxins. At the invitation of Mexico’s Ambassador to Kenya, Erasmo R. Martínez, CIMMYT and Kenya are now exploring the potential for Mexican technologies to improve food security in Kenya.

Maize is the main staple food in Kenya, but the supply chain remains vulnerable to aflatoxin contamination caused by fungal infections. The United Nations Food and Agriculture Organization (FAO) estimates that 25% of global food production is affected by mycotoxins (aflatoxin is a type of mycotoxin), and this contamination is thought to cost Africa US $670 million in lost exports to the European Union alone.

From L-R: Yabesh Monari, Natalia Palacios, Peter Mwangi Njugana, Kevin Pixley, Johnson Irungu, Charles Bett, Martin Kropff, Hans Braun, Sicily Kariuki and Ana Laura Ayala. Photo: CIMMYT
From L-R: Yabesh Monari, Natalia Palacios, Peter Mwangi Njugana, Kevin Pixley, Johnson Irungu, Charles Bett, Martin Kropff, Hans Braun, Sicily Kariuki and Ana Laura Ayala. Photo: CIMMYT

Sicily Kariuki was joined by CIMMYT’s Natalia Palacios and representatives from the Unga Ltd & Chairman Millers Association in Kenya, the Kenya Agriculture and Livestock Research Organization (KALRO), Mexico’s National Institute of Forestry, Agriculture, and Livestock Research (INIFAP), and the Mexican Agency for Development Cooperation (AMEXCID).

The visiting delegation observed the process of nixtamalization at an INIFAP experiment station, visited a tortilla maker, and even tried their hands at making tortillas themselves.

Charles Bett, senior research officer at KALRO Katumani, believes that Mexican methods of eating maize could soon catch on in Kenya. “Right now wheat chapattis are very popular, but as they are expensive they are only for celebrations,” he explained. The next big thing could well be a Mexican taco.

Yield gap analysis key to meeting future crop demand

Major crop yields are currently not increasing fast enough to meet demand on existing farmland. Ensuring food security while protecting rainforests, wetlands, and grasslands depends on achieving the highest possible yields with limited land, if we hope to feed a population of more than 9 billion people by 2050.

Crop productivity varies across the globe, depending on environment, inputs, and practices (Sadras et al., 2015). Calculating an area’s yield gap––the difference between irrigated or rainfed crops and actual yields––will allow us to estimate future yield increase and productivity gaps of crops and cropping systems.

The Global Yield Gap Atlas (GYGA) seeks to provide the best available estimates of yield gaps globally using current average farm yields and yield potential (Yp) for irrigated environments, or water-limited yield potential (Yw) for rainfed environments (Van Ittersum et al., 2013). GYGA has calculated yield gaps for major food crops in participating countries across agroecological zones.

Continue reading

Global yield gaps for maize and wheat

Global-Yield-Gaps-for-Maize-and-Wheat1A yield gap refers to the difference between how much food a farm actually produces and how much food it would be capable of producing if appropriate practices, inputs, technologies and knowledge were applied.

The Global Yield Gap and Water Productivity Atlas seeks to provide the best available estimate of the world’s exploitable yield gap to better inform major crop-producing countries in creating solutions and investing in technologies to close these gaps.

Access atlas data here or click the poster to the right to view relative yield gaps for maize and wheat globally.

5th International Cereal Nematode Initiative Workshop

Photo: Participants signing in at the registration desk. Photo: Deliang Peng
Photo: Participants signing in at the registration desk. Photo: Deliang Peng

The 5th International Cereal Nematode Initiative (ICNI) Workshop was held in Ankara, Turkey, on 12-16 September 2015. During the opening ceremony, 70 representatives from 21 countries were welcomed by Ali Osman Sari, Deputy Director General, Directorate of Agricultural Research and Policies, Turkish Ministry of Food Agriculture and Livestock (MFAL), Birol Akbas, Plant Health Department Head, MFAL, and Alexey Morgounov, Head, International Winter Wheat Improvement Program and CIMMYT-Turkey CLO.

During his opening speech, Sari gave a general presentation on MFAL and expressed his full support for workshop participants who tackle problems caused by cereal nematodes. Morgounov welcomed the participants and thanked donors for supporting the workshop. An invited speaker, Hafiz Muminjanov from FAO, gave a talk on FAO’s plant production and protection activities in Central Asia. Beverley Gogel, another invited speaker, presented the statistical analyses used in Australia to understand genotype by environment interaction in field and glasshouse experiments and determine the resistance of varieties to Pratylenchus. The next day, the third invited speaker, Hakan Ozkan, gave a presentation on using DNA molecular markers for disease resistance in plant breeding.

Workshop proceedings edited by Abdelfattah A. Dababat, Hafiz Muminjanov, and Richard Smiley were designed and printed by FAO and cover such subjects as biological management of nematodes, molecular techniques for nematode identification, cereal nematode biology and development, gene expression, and resistance. The quality of the scientific program and the participation of nematologists from various countries made for a highly successful meeting.

Cereal-Nematode-Initiative-Workshop2
Photo: Participants in the 5th International Cereal Nematode Initiative Workshop, Ankara, Turkey. Photo: CIMMYT–Turkey.

The conference was coordinated and organized by Abdelfattah Dababat, CIMMYT-Turkey nematologist, as part of the ICARDA CIMMYT Wheat Improvement Program (ICWIP), and funded by CIMMYT, MFAL, DuPont, Bisab, Dikmenfide, GRDC and Syngenta as the main donor.

The 6th International Cereal Nematode Symposium will be held in Morocco in 2017. The date and place will be posted on CIMMYT’s home page in the coming months. For more information, please contact Abdelfattah A. Dababat (a.dababat@cgiar.org) or Fouad Mokrini (fouad_iav@yahoo.fr.), local organizer of the 6th Symposium in Morocco.

Un libro que rinde homenaje a las “científicas anónimas” con motivo del Día Internacional de las Mujeres Rurales

WWMM-Cover-for-Web-smaller-1Jennifer Johnson

EL BATÁN, México, 12 de octubre (CIMMYT) – Las mujeres rurales desempeñan un papel fundamental en aumentar el desarrollo agrícola y rural, mejorar la seguridad alimentaria y erradicar la pobreza rural.

Aportan innumerables beneficios a los sistemas agrícolas en todo el mundo, en todos los niveles de la cadena de valor y, sin embargo, sus contribuciones no suelen ser reconocidas. Este año, con motivo del Día Internacional de las Mujeres Rurales (IDRW) que se celebra el 15 de octubre, el Programa MAÍZ del CGIAR (MAIZE) quiere rendir homenaje a las significativas contribuciones que las mujeres hacen a la agricultura en todo el mundo, compartiendo, en nuestros canales de medios sociales, fotos e historias tomados de nuestro libro titulado “Portraits of Women Working with Maize in Mexico”.

El libro pretende resaltar las aportaciones, a menudo desapercibidas, que hacen las mujeres al bienestar de sus familias, comunidades, países y del mundo por medio de la agricultura.

“Como parte de su énfasis en contribuir a la igualdad y equidad de género en la investigación para el desarrollo, MAÍZ aumentó su inversión para expandir la base de la evidencia en torno a cómo las normas y las relaciones de género se interrelacionan con las prácticas y la innovación agrícolas, y las implicaciones de esto en la investigación y el desarrollo agrícolas”, opina Lone Badstue, líder estratégica de investigación sobre género del CIMMYT, quien trabaja también con el CRP MAÍZ, administrado por el Consorcio de Investigación Agrícola del CGIAR.

“Este documental expande estos esfuerzos al describir el lado a menudo olvidado de la subsistencia basada en el maíz en México, por medio de imágenes y de los testimonios de diferentes mujeres que, en sus propias palabras, narran su vida como agricultoras, amas de casa, artesanas y vendedoras”.

Garantizar la seguridad alimentaria y el sustento de las mujeres rurales es la meta central de muchos de los proyectos y actividades de MAÍZ.

El estudio de género del CRP MAÍZ denominado GENNOVATE, puesto en marcha en 2014, tiene como objetivo integrar diferentes aspectos del género en las actividades de MAÍZ con el fin de servir mejor a las mujeres rurales a medida que vayan adoptando las tecnologías agrícolas.

En 2014, MAÍZ implementó también el proyecto “Gender Matters in Farm Power” (El género sí importa en la mecanización agrícola), que es coordinado por el Instituto Real Tropical (KIT) y que explora las oportunidades para empoderar a hombres y mujeres por medio de mecanización a la escala apropiada. Hay otras actividades que incluyen iniciativas para integrar el género en la selección participativa de variedades, la elaboración de una estrategia para crear sistemas de producción de semilla de maíz e iniciativas para integrar el género en los servicios de asesoría y en el establecimiento de pequeñas empresas(CIMMYT).

La participación de las mujeres rurales es crucial para el éxito del CRP MAÍZ.

Su fe al sembrar nuestras nuevas variedades y aplicar las prácticas agronómicas recomendadas por MAÍZ las convierten en modelos a seguir en sus comunidades, ya que trabajan como “científicas anónimas”. Son ellas las que, con su participación activa, concretan la investigación de MAÍZ en el campo, ensayando sus productos y prácticas agronómicas y determinando si son viables para sus vecinos; son ellas las que preparan el camino para que los pequeños agricultores del mundo utilicen esos productos y prácticas correctamente y se beneficien de ellos.

Su retroalimentación es esencial, ya que no podemos lograr nuestra meta de aumentar de manera sostenible la producción de alimentos para los 900 millones de consumidores de bajos recursos para quienes el maíz es un alimento básico, sin primero cerrar la brecha del género en la agricultura.

Según datos de la FAO, si las mujeres agricultoras tuvieran los mismos derechos y las mismas oportunidades que los hombres, la producción de sus parcelas aumentaría en alrededor de 20 a 30% y sería posible alimentar a 150 millones de personas más en el mundo. Esto hace que las mujeres rurales se encuentren entre nuestros más grandes colaboradores en la lucha por erradicar el hambre y la pobreza.

Les invitamos a que esta semana compartan con nosotros sus propias fotos e historias de mujeres rurales utilizando la etiqueta #IDRW y contribuyan de esta manera al diálogo mundial sobre las “científicas anónimas”. Es una manera de reconocer a nuestras colaboradoras “tras bambalinas”, cuya labor es crucial para el éxito de nuestra investigación y nuestros proyectos, y quienes trabajan todos los días para proteger y promover la seguridad alimentaria mundial: las mujeres rurales.

LIBRO: Portraits of Women Working with Maize in Mexico
http://repository.cimmyt.org/xmlui/bitstream/handle/10883/4478/57042.pdf?sequence=1

Video: https://www.youtube.com/watch?v=Nc0opvkPoh4

 

Book celebrates maize “secret scientists” on International Day of Rural Women

SScientistsEL BATAN, Mexico (CIMMYT) – Rural women play a critical role in enhancing agricultural and rural development, improving food security and eradicating rural poverty.

Women provide innumerable benefits to agricultural systems around the world at all levels of the value chain, but their contributions often go unrecognized. This year, for the U.N. International Day of Rural Women (IDRW) on October 15, the CGIAR Research Program on Maize (MAIZE) would like to honor the significant contributions that women make to agriculture around the world by sharing photos and stories via our social media channels from our new book: “Portraits of Women Working with Maize in Mexico.”

The book seeks to shine light on the often unseen contributions that rural women make to their families, communities, countries and the world through agriculture.

“As part of its emphasis on contributing to gender equality and equity in agricultural research for development, MAIZE has increased investments to expand the evidence base on how gender norms and relations intertwine with agricultural practices and innovation and the implications of this for agricultural research and development,” said Lone Badstue, CIMMYT strategic leader for gender research, who also works on the MAIZE CRP, which is administered by the CGIAR consortium of agricultural research.

“This documentary initiative expands these efforts, portraying an often overlooked side of maize-based livelihoods in Mexico, through images and testimonies of different women, who describe in their own words, their lives as farmers, food makers, artisans and vendors.”

The goal of assuring the food security and livelihoods of rural women is at the heart of many of MAIZE’s projects and activities.

The cross-CRP gender study “GENNOVATE” launchedin 2014 promises to integrate gender-sensitive approaches across MAIZE work in order to better serve rural women as theyadopt agricultural technology.

In 2014, MAIZE also implemented the “Gender Matters in Farm Power” project, led by the Royal Tropical Institute (KIT), which is investigating opportunities to empower men and women through scale-appropriate mechanization. Other activities included efforts to integrate gender into participatory varietal section, the creation of a gender strategy for maize seed system development and initiatives to integrate gender into advisory services and small-scale entrepreneurship.

The participation of rural women is crucial to the success of the MAIZE CRP.

Their faith in using our new varieties and implementing the agricultural practices recommended by MAIZE makes them beacons in their communities, operating as “secret scientists.” They complete hands-on, on-the-ground research for MAIZE, experimenting to determine the viability of products and practices to their neighbors and paving the way for smallholder farmers worldwide to successfully use and benefit from them.

Their feedback is essential, as we cannot achieve our goal of sustainably increasing production for the 900 million poor consumers for whom maize is a staple food without first closing the gender gap in agriculture.

According to the U.N Food and Agriculture Organization, if women in agriculture were afforded the same rights and opportunities as men, they could increase their farm yields by an estimated 20 to 30 percent and feed up to 150 million more people worldwide. This makes rural women some of our greatest partners in the fight to eradicate hunger and poverty.

We invite you to share your own photos and stories of rural women with us this week using the hashtag #IDRW, to contribute to a global conversation on the world’s “secret scientists”—recognizing our “behind the scenes” partners who are so crucial to the success of our research and projects and work every day to protect and promote global food security—rural women.

BOOK: Portraits of Women Working with Maize in Mexico

http://repository.cimmyt.org/xmlui/bitstream/handle/10883/4478/57042.pdf?sequence=1

Video link: https://www.youtube.com/watch?v=Nc0opvkPoh4

Green manure crop cover reduces need for mineral fertilizer in Africa

Velvet bean planted in rotation with maize increases soil fertility, provides biomass for feed and suppresses weeds in Chipata, Zambia. Photo: Christian Thierfelder/CIMMYT.
Velvet bean planted in rotation with maize increases soil fertility, provides biomass for feed and suppresses weeds in Chipata, Zambia. Photo: Christian Thierfelder/CIMMYT.

It is widely accepted that improved maize germplasm will only express its yield potential under optimum agronomic management such as timely planting, optimal plant/space arrangements, and timely weed and pest control. But perhaps the most important agronomic intervention is adequate fertilization. Although farmers in Europe and America have used mineral fertilizers for generations, these have become available in Africa only relatively recently. However, the excessive use of mineral fertilizer in Europe and America has led to water pollution and eutrophication, and has increased the energy requirements of the fertilizer production process.

In Africa, mineral fertilizer remains a scarce, expensive and risky resource for most smallholder farmers. On average, farmers use less than 10 kg/ha of NPK fertilizer, and many do not apply it at all. The price of fertilizer is 3-5 times higher in Africa than in Europe due to the lack of infrastructure and production facilities, often making it unaffordable for farmers. Fertilizer is primarily applied to higher value and horticulture crops that, unlike maize, give farmers greater return on their investment.

Many farmers in southern Africa plant maize extensively on large areas, harvest less than 1 t/ha on average and mine already depleted nutrients from the soil while trying to become food secure and escape from poverty – an impossible task! But farmers are now being offered a range of solutions that provide a way out of the poverty trap, such as improved drought and stress tolerant maize germplasm, conservation agriculture (CA), improved rotation systems with legumes and green manure cover crops.

The use of CA principles (minimum soil disturbance, crop residue retention and diversification through rotation and intercropping) hinges on the ability of farmers to retain sufficient surface crop residues to protect the soil from heavy rain, evaporation and sunlight. However, farmers in mixed crop/livestock systems face competing demands for these residues because they also feed them to their animals.

It is against this background that the Food and Agriculture Organization of the United Nations (FAO) involved CIMMYT in a small project aimed at introducing green manures to smallholder farmers in eastern Zambia and central and southern Malawi. Green manures are grown primarily to improve the soil, generate biomass for ground cover and provide fodder; some also produce grain for feed and food.

In Lilongwe District, Malawi, farmer Bikoni Yohane and wife Esnart proudly present their maize-cowpea intercropped field, which will produce grain and leaves for home consumption and im-prove soil fertility. Photo: Christian Thierfelder/CIMMYT.

A range of varieties have been tested by the Global Conservation Agriculture Program over the past five years. Crops such as velvet bean, lablab, cowpea, sunnhemp, jackbean, pigeonpea and groundnuts have been identified as viable options with great potential for smallholders. They provide 5-50 t/ha of extra biomass for groundcover and/or fodder, leave 50-350 kg/ha of residual nitrogen in the soil and do not need extra fertilizer to grow. The new project is testing these species in full rotation or intercropped with maize on farmers’ fields in the three project regions. To increase adoption, the project is using an intensive participatory process to adapt the green manures to smallholder conditions.

This initiative is not the only one where CIMMYT has been involved with green manure cover crops: in northern Mozambique, a collaboration with CARE International reports that yield increased from 4 t/ha to 13 t/ha by only using lab-lab and improved germplasm in cassava-based CA systems. The ACIAR-funded ZimCLIFFS project in Zimbabwe was also very successful in growing lablab and velvet beans to generate supplementary fodder for livestock during the dry winter period.

Through innovative approaches, CIMMYT will further explore new ways of integrating green manures into smallholder farming systems so they become the status quo, not just an option!

Tackling wheat rust diseases requires $108 million a year, study shows

PhilipPardey
Economist Philip Pardey on the sidelines of the International Wheat Yield Conference in Sydney, Australia. CIMMYT/Julie Mollins

SYDNEY, Australia (CIMMYT) – When storybook character Alice stepped through the looking glass, the Red Queen encouraged her to run as fast as she could. Alice did, but despite her efforts she remained stuck in one place:

“Now, here, you see, it takes all the running you can do, to keep in the same place. If you want to get somewhere else, you must run at least twice as fast as that!” said the Red Queen.

Philip Pardey, a professor in the Department of Applied Economics at the University of Minnesota, referred to the Red Queen character in Lewis Carroll’s 19th century novel “Through the Looking Glass” at the International Wheat Conference in Sydney, Australia to illustrate a conundrum about wheat rust disease research.

Despite efforts to develop wheat that is resistant to damaging stem, stripe and leaf rusts, the diseases, which have existed for 10,000 years, will continue to thwart scientists, Pardey said, adding that the annual global investment in wheat rust research should be $108 million a year in perpetuity.

Currently, major projects such as the Borlaug Global Rust Initiative, which is directed at completely wiping out Ug99 stem rust, are funded for set periods of time and target specific strains of rust. It is unfeasible to expect a cure to be found, Pardey argued.

“It’s fallacious to think that we can ‘solve the stem rust problem’ through funding because the actual solution sows the seeds of its own destruction,” Pardey said, explaining that the fight against rusts is ongoing and must be funded continuously.

RED QUEEN EFFECT

Just as Alice and the Red Queen ran in one spot as hard as they could but got nowhere, rust sexual reproduction and genetic re-combinations fight to survive, allowing wheat rusts to co-evolve and adapt to changes in their environment.

In his study, Pardey determined that global losses from all three rusts average at least 15.04 million tons (552.8 million bushels) per year, equivalent to an average annual loss of about $2.9 billion a year.

He calculated that the economically justifiable investment in wheat rust research and development should be $108 million a year, equivalent to an annual investment of $0.51 per hectare per year across the current 212 million hectares (524 acres) of wheat worldwide.

“The nature of the intervention is that the very seeds of success of wheat breeders sows their own destruction,” Pardey said. “A co-evolutionary pressure is developed where rust has every incentive to survive, so when fungicides are used or the biology of the plants is altered to resist those fungi, it forces evolutionary pressure on the fungi to evolve around that resistance.”

Almost the entire global wheat crop is at risk of infection from wheat rusts, Pardey said. Globally, only 3.2 percent of the crop is grown in areas not susceptible to 
infection, while 62.7 percent of the crop is in areas that are vulnerable to all three rusts.

“I’m hopeful Pardey’s research findings illustrate the importance of ongoing funding for wheat rust research,” said Hans Braun, head of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT) and the Wheat Research Program overseen by the CGIAR consortium of agricultural researchers.

“Pardey’s research is critical in highlighting the severity of the threat from all three types of rust, showing that continuous funding in perpetuity is the best way to keep them in check. Consistent funding will make it easier to help farmers and protect food security by controlling the disease.”

GLOBAL RISKS

Through modeling for both seasonal vulnerability and system vulnerability, Pardey determined that losses at any particular location or point in time do not represent the average annual global losses over the longer term.

“In 1935, the United States lost a fifth of the crop to rust, last year they lost less than half a percent,” Pardey said. “So, I wouldn’t want to take last year’s loss as being representative of the losses of this disease, nor would I want to take the 1935 loss. It’s not representative.”

Pardey developed a framework to characterize the probabilistic nature of losses over the century, then conducted a Monte Carlo simulation – which assesses risk impact under all possible outcomes of a given scenario – to determine a loss average estimate.

“If wheat breeders are successful in getting modern varieties onto all the wheat areas around the world, there is additional value because they’re at a higher yield level when the disease pulls the yields down,” Pardey said.

“High-yield varieties make the value of the rust avoidance go up as the yield goes up. You’ve got a virtuous cycle. The rust resistance becomes more valuable the more extensive the higher yielding varieties are spread. An investment of $108 million a year just allows us to keep up with it – we’re running fast to stand still.”

Empowering women in agriculture through SIMLESA

CIMMYT’s project on Sustainable Intensification of Maize-Legume-based Cropping Systems for Eastern and Southern Africa (SIMLESA) and the Agricultural Research Council (ARC) of South Africa hosted a five-day gender training workshop on 24-29 August in Pretoria, South Africa.

Called “Situating Gender in SIMLESA”, the workshop aimed at increasing awareness of gender issues in agricultural research and development, and identifying practical solutions to integrate gender into SIMLESA. It brought together a core team comprised of SIMLESA’s project leader, project manager, gender focal points, monitoring and evaluation specialist, communications specialist, and country coordinators. In his opening remarks, Litha Magingxa, ARC Group Chief Executive (Agri-Economics and Capacity Development), commended SIMLESA for the gender training.

Working closely with the ARC, CIMMYT gender specialist Vongai Kandiwa provided technical training to 14 participants on gender analysis tools, leadership skills, and competencies. Given the coordination role that SIMLESA gender focal points play within countries, it is essential that they have solid interpersonal and leadership skills, in addition to their gender expertise.

“This is a particularly exciting workshop because it demonstrates a strong commitment by CIMMYT and SIMLESA to actively invest in building skills and finding practical ways of integrating gender into ongoing activities,” said Mulugetta Mekuria, SIMLESA Project Leader. “The workshop has highlighted some of the gender-based constraints that women and men face when they try to adopt, adapt, and benefit from sustainable intensification options. This is a critical first step to improving gender awareness and equality in the rural smallholder agriculture sector where SIMLESA operates.”

Of the poor who depend on maize for their livelihoods and food security in East and Southern Africa, more than half are women and girls. Although women play a crucial role in farming and food production, they often face greater constraints in agricultural production than men. Rural women in East and Southern Africa are also less likely than men to own land or livestock, adopt new technologies, access credit and financial services, and receive education or extension advice, according to the Food and Agriculture Organization of the United Nations.

Participants discussed challenges and opportunities to embed gender within the relevant SIMLESA work sub-objectives. They collectively identified gender entry points, specified monitoring and evaluation indicators, and agreed on an effective accountability framework. They also agreed on what should be done across all SIMLESA countries in diverse areas such as socioeconomic research, strategic gender research, participatory selection of alternative sustainable intensification options, and seed systems.

As Kandiwa told the participants, “Careful integration of a gender perspective into the research process ensures that maize and legume research for development leads to positive and substantive outcomes.”

The participants were expected to return to their respective workplaces and apply the knowledge and skills they gained at the workshop. Almost immediately, country coordinators will work closely with objective coordinators and gender focal points to ensure gender relevant activities are budgeted for during SIMLESA’s annual planning meetings, effectively implemented, and accurately reported. The ARC undertook to develop a gender capacity building strategy for SIMLESA.

In SIMLESA II (2014-2018), the aim of gender integration is to consolidate the gains made during SIMLESA I (2010-2014). Through the Association for Strengthening Agricultural Research in Eastern and Southern Africa (ASARECA), SIMLESA I strengthened the capacity of more than 1000 individuals by providing gender-sensitive training at times and places that were convenient for both men and women, to ensure equal access to the skills and knowledge needed to succeed in agriculture.

Additionally, ASARECA documented in-depth case studies to improve SIMLESA’s understanding of the best practices for gender analysis and development. SIMLESA II is poised to build on this foundation and integrate gender effectively.

Sustainable intensification in China: doing more with less

Transplanting rice seedlings into ZT wheat stubble in Litong, China. Photo: Yuan Hanmin

As part of CIMMYT’s ongoing collaboration with the Ningxia Academy of Agriculture and Forestry Sciences and the building of an innovation platform there, we have refurbished our site and undertaken a number of trials that reflect the concepts of sustainable intensification, which increases food production from existing farmland while minimizing pressure on the environment.

The site at Litong just outside the city of Wuzhong in Ningxia Province has been modified and now boasts a paved parking area, all-weather access roads and field paths, and an array of signage that explains CIMMYT’s activities and the history of conservation agriculture undertaken by CIMMYT-China in this part of the country.

Zero-till rice transplanting

On the left, an irrigated ZT field; on the right, a conventionally prepared field (yet to be irrigated), 35 days after transplanting. Photo: Jack McHugh/CIMMYT
On the left, an irrigated ZT field; on the right, a conventionally prepared field (yet to be irrigated), 35 days after transplanting.
Photo: Jack McHugh/CIMMYT

CIMMYT recently tested a zero-tillage (ZT) rice transplanting operation with a 9 row transplanter from Jiangsu province. The idea came from viewing a short video taken some years ago of a conventional transplanter being used under ZT conditions in Bangladesh. In Ningxia, recently harvested wheat fields were irrigated and rice seedlings were planted into standing wheat stubble without any further modification to the planter. In contrast, rice was conventionally transplanted in an adjacent field, which required two days of field preparation including inversion plowing, leveling and puddling at an extra cost of USD $375 per hectare.

Zero-till rice transplanting not only saves time, labor and fuel, but also minimizes soil disturbance, maximizes residue retention, and mitigates moisture and nutrient loss. Results from these trials will demonstrate the effectiveness of transplanting rice into ZT winter wheat standing stubble.

Relay and intercropping

Monocropping farming systems are predominant in Ningxia, with the same crop planted year after year. The region has very cold winters and short summers, but with the use of short season varieties and relay cropping, double-cropping and crop rotations can be realized in the region. Double-cropping is a form of sequential cropping in which two crops are grown in sequence within a year on a piece of land by seeding or transplanting one before or after harvesting the other.

Winter wheat and peanut intercropping followed by relay-cropping maize into immature winter wheat. Photo: Jack McHugh/CIMMYT
Winter wheat and peanut intercropping followed by relay-cropping maize into immature winter wheat.
Photo: Jack McHugh/CIMMYT

To that end, five maize cultivars were relay-planted into winter wheat on 17 June, around two weeks before harvest; the plot was previously intercropped with 24 peanut varieties. The advanced winter wheat lines were harvested in late June and yielded quite well for the region. We expect to harvest the maize from late September to early October 2015.

Zero-till and early maturing grain crops are key to double-cropping in the region; however, the current wheat variety – Ningdong 11 – is late in maturing. Next year, the earlier maturing Ningdong 10 will be used, with emphasis on residue retention and increased stubble height during harvest, before seeding maize directly and/or transplanting rice. However, the current Chinese-made Turbo Happy Seeders will need to be modified to cope with the rougher soil surfaces encountered under ZT to ensure better seeding depth control.