Skip to main content

funder_partner: Food and Agriculture Organization of the United Nations (FAO)

Training manual greases the wheels for mechanization entrepreneurs

ROME — A new training manual is set to provide practical guidance for agricultural mechanization entrepreneurs in rural areas, where family farmers commonly lack capital to invest in the farm power required to increase food production.

The five-module training manual targeted at farm mechanization hire service providers, including youth and women, was developed by researchers at the International Maize and Wheat Improvement Center (CIMMYT) and the UN Food and Agriculture Organization (FAO) and official launched July 13 at FAO’s Rome headquarters.

Bedilu Desta, an agricultural mechanization service provider, demonstrates a two-wheel tractor. (Photo: Frédéric Baudron/CIMMYT)
Bedilu Desta, an agricultural mechanization service provider, demonstrates a two-wheel tractor. (Photo: Frédéric Baudron/CIMMYT)

It sets out a syllabus which trainers can tailor to local environments to equip entrepreneurs with essential business skills and knowledge to promote appropriate mechanization farmers need to sustainably intensify production, said Josef Kienzle, an agricultural engineer at FAO.

The manual will initially be rolled out in sub-Saharan African rural communities where improved access to agricultural mechanization is crucial, he said.

Small-scale mechanization, such as two-wheel tractor based technologies including direct seed planters, represent a shift away from destructively intensive agriculture. However, the decline of hire tractor schemes means resource-poor farmers often lack the financial means to obtain them, said Bruno Gerard, director of CIMMYT’s sustainable intensification program.

“To increase the productivity, profitability, and sustainability of their farms, family farmers need greater access to affordable yield-enhancing inputs. Hire service providers can improve access to mechanization that reduces labor drudgery and promotes sustainable intensification practices,” he said.

Sustainable intensification seeks to produce more food, improve nutrition and livelihoods, and boost rural incomes without an increase in inputs – such as land and water – thus reducing environmental impacts.

Sub-Saharan Africa needs sustainable intensification of agriculture. With 224 million people currently undernourished and a population tipped to almost double by 2050, bringing it to over 2 billion people, increasing food production is of the utmost importance.

Despite the need, African crop yields are stagnant with more than 95 percent of farmed land in sub-Saharan Africa rain-fed. Over half of soils are degraded following years of farming without replacing nutrients and low fertilizer use, as most farmers can’t afford it.

“Inclusive mechanization strategies create an enabling environment and provide a framework for making decisions on how to allocate resources, how to address current challenges, how to take advantage of opportunities that arise while in the meantime emphasize the concept of sustainable crop intensification and the roles of the private and public sectors,” said Kienzle. Farm machinery enables farmers to adopt sustainable crop production intensification practices – such as conservation agriculture – that benefit from greater farm power and precision.

The manual will be initially distributed and courses organized through FAO and CIMMYT field projects in sub-Saharan Africa utilizing local trainers and experts in machinery and agribusiness, he said. The manual is expected to be rolled out to other subregional offices and hubs in the future.

Mechanization fuels rural employment opportunity

Increased adoption of agricultural mechanization is stimulating jobs and entrepreneurial opportunities in Africa where youth and women increasingly face severe job insecurity, said Gerard.

Clara Chikuni has gained a reliable income since becoming a mechanization service provider and offering maize shelling in her local area. (Photo: Matthew O’Leary/CIMMYT)
Clara Chikuni has gained a reliable income since becoming a mechanization service provider and offering maize shelling in her local area. (Photo: Matthew O’Leary/CIMMYT)

Clara Chikuni, a mother from rural Zimbabwe, has secured a stable income after starting her own mechanized shelling business two years ago. Servicing maize farmers in a 5 kilometer radius of her home, Chikuni has more customers than she says she can handle and has developed reliable employment compared to her previous job buying and selling shoes.

“There is a lot of demand for mechanized maize shelling services. I am happy I can provide a service to the community and make money to support my family,” she said. “I hope with the profits I can move into the two wheel tractor business in the future.”

Chikuni was trained as an agricultural mechanization service provider through CIMMYT’s Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project supported by the Australian Government.

“The training and support gave me the know-how and confidence to start my business,” said the mother. “Other women now ask me how I did it and I encourage them to also get involved.”

There is a market for farming mechanization services that can make a big difference for a smallholder farm and help it transition from subsistence farming to a more market-oriented farming enterprise, said FAO’s Kienzle.

Apart from hire services, mechanization creates additional opportunities for new business with repair and maintenance of equipment, sales and dealership of related businesses including transport and agro-processing along the value chain.

The knowledge and expertise of both CIMMYT and FAO combined has made this manual unique and very praxis oriented, focused on smallholder mechanization businesses, he said.

Download the training manual: Hire services as a business enterprise: a training manual for small-scale mechanization service providers

Further information:

Q+A: Agricultural mechanization fuels opportunity for youth in rural Africa

Mechanization fuels rural opportunities around the globe

Rural21 features CIMMYT mechanization experts

Mechanization for smallholder farmers fact sheet

New Publications: Using prediction models to keep up with growing demand for wheat

Wheat harvest near Iztaccíhuatl volcano in Juchitepec, Estado de México. (Photo: P. Lowe/CIMMYT)
Wheat harvest near Iztaccíhuatl volcano in Juchitepec, Estado de México. (Photo: P. Lowe/CIMMYT)

With increasing global demand for wheat and increasing constraints (high temperatures, diseases) to wheat’s productivity, wheat breeders are looking for new methodologies to make breeding more efficient. A new study looks at refinements of genomic prediction models to help achieve this.

The authors write that genomic selection is becoming a standard approach to achieving genetic progress in plants, as it gets around the need to field-test the offspring at every cycle, but that the models commonly used in plant breeding are based on datasets of only a few hundred genotyped individual plants.

This study used pedigree and genomic data from nearly 59,000 wheat lines evaluated in different environments, as well as genomic and pedigree information in a model that incorporated genotype X environment interactions to predict the performance of wheat lines in Mexican and South Asian environments.

They found that models using markers (and pedigree) had higher prediction accuracies than models using only phenotypic data. Models that included genomic x environment had higher prediction accuracies than models that do not include interaction.

Read the full study “Single-Step Genomic and Pedigree Genotype × Environment Interaction Models for Predicting Wheat Lines in International Environments” and check out other publications by CIMMYT staff below:

  • Association mapping reveals loci associated with multiple traits that affect grain yield and adaptation in soft winter wheat. 2017. Lozada, D. N., Mason, E.R., Md Ali Babar, Carver, B. F., Guedira, G. B., Merrill, K., Arguello, M. N., Acuna, A., Vieira, L., Holder, A., Addison, C., Moon, D. E., Miller, R. G., Dreisigacker, S. In: Euphytica v. 213 : 222.
  • Effect of trait heritability, training population size and marker density on genomic prediction accuracy estimation in 22 bi-parental tropical maize populations. 2017. Ao Zhang, Hongwu Wang, Beyene, Y., Fentaye Kassa Semagn, Yubo Liu, Shiliang Cao, Zhenhai Cui, Yanye Ruan, Burgueño, J., San Vicente, F.M., Olsen, M., Prasanna, B.M., Crossa, J., Haiqiu Yu, Zhang, X. In: Frontiers in Plant Science v. 8 : 1916.
  • Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. 2017. Hickey, J.M., Tinashe Chiurugwi, Mackay, I., Powell, W., Eggen, A., Kilian, A., Jones, C., Canales, C., Grattapaglia, D., Bassi, F., Atlin, G.N., Gorjanc, G., Dawson, I., Rabbi, I.,  Ribaut, J.M., Rutkoski, J., Benzie, J., Lightner, J., Mwacharo, J., Parmentier, J., Robbins, K., Skot, L., Wolfe, M., Rouard, M., Clark, M., Amer, P., Gardiner, P., Hendre, P., Mrode, R., Sivasankar, S., Rasmussen, S., Groh, S., Jackson, V., Thomas, W., Beyene, Y. In: Nature Genetics v. 49, no. 9, p. 1297–1303.
  • Genomic selection in plant breeding : methods, models and perspectives. 2017. Crossa, J., PĂ©rez-RodrĂ­guez, P., Cuevas, J., Montesinos-Lopez, O.A., JarquĂ­n, D., De los Campos, G., Burgueño, J., Camacho-GonzĂĄlez, J. M., Perez-Elizalde, S., Beyene, Y., Dreisigacker, S., Singh, R.P., Zhang, X., Gowda, M., Rutkoski, J., Varshney, R. K. In: Trends in Plant Science v. 22, no. 11, p. 961-975.
  • Single-step genomic and pedigree genotype x environment interaction models for predicting wheat lines in international environments. 2017. PĂ©rez-RodrĂ­guez, P., Crossa, J., Rutkoski, J.,  Singh, R.P., Legarra, A., Autrique, E., De los Campos, G., Burgueño, J., Dreisigacker, S. In: The Plant Genome v. 10, no. 2.

Innovation leads South Asia’s new Green Revolution

Agricultural leaders from across South Asia recently gathered in Dhaka, Bangladesh to create a roadmap on how to best help farmers cope with climate change while meeting future food demand. Photo: Photo credit: CIMMYT/ M. DeFreese
Agricultural leaders from across South Asia recently meet to discuss how to best tackle climate change while meeting future food demand. Photo: CIMMYT/ M. DeFreese

Fifty years ago, economists and population experts predicted millions were about to die from famine.

India and other Asian countries were expected by scholars like Paul Ehrlich in The Population Bomb to be especially hard hit in the 1970s and 1980s, given the region’s high population growth rates.

South Asia braced for mass starvation as hunger and malnutrition spread while multiple droughts plagued India and neighboring countries – but it never happened.

Instead, rice and wheat yields more than doubled in Asia from the 1960s to 1990s, grain prices fell, people consumed nearly a third more calories and the poverty rate was cut in half – despite the population growing 60 percent.

Improved rice and wheat varieties combined with the expanded use of fertilizers, irrigation and supportive public policies for agriculture led to this dramatic growth in food production and human development that would become known as the Green Revolution.

Today, South Asia faces new, but equally daunting challenges. By 2050, the United Nations predicts the world’s population will grow by more than two billion people, 30 percent of which will be in South and Southeast Asia. These regions are also where the effects of climate change, like variable rainfall and extreme flooding, are most dire.

Wheat, maize and rice yields in South Asia could decrease by as much as 30 percent over this century unless farmers adopt innovations to mitigate rising temperatures and changing rainfall patterns.

Agricultural leaders from across South Asia recently gathered in Dhaka, Bangladesh to create a roadmap on how to best help farmers cope with climate change while meeting future food demand.

“South Asian agriculture needs to be transformed as it was during the Green Revolution,”  according to ML Jat, principal scientist at the International Maize and Wheat Improvement Center (CIMMYT) and co-author of a recent policy brief detailing the policy dialogue in Bangladesh. “Holistic management and more efficient use of resources to protect soil, water and air quality is necessary to improve both agricultural and human health.”

Public policies across the region currently subsidize agrochemicals, irrigation and unsustainable tilling, making it an uphill battle for many who promote sustainable intensification – a set of practices that adapt farming systems to climate change and sustainably manage land, soil, nutrient and water resources – as an alternative to these environmentally destructive practices.

Sustainable intensification advocates in South Asia have found that conservation agriculture – a sustainable management paradigm based on the principles of minimal soil disturbance, permanent soil cover and the use of crop rotation to simultaneously maintain and boost yields, increase profits and protect the environment – could be greatly expanded to benefit farmers across the region.

Conservation agriculture was first adopted in South Asia in the mid-1990s for no-till wheat farming and has since spread to cover more than 5 million hectares of farmland, mostly in India. Precision land levelers, machines equipped with laser-guided drag buckets to level fields so water flows evenly into soil — rather than running off or collecting in uneven land — were also adopted during this time, which significantly boosted conservation agriculture’s impact.

“When these technologies are combined with improved seed, like HD-2967, Munal, HDCSW 18, the benefits for farmers are even greater,” said Jat.

Despite this growth, conservation agriculture is practiced on just two percent of South Asia’s arable land, and very limited farmers end up adopting the complete set of sustainable intensification practices necessary to fully boost production while conserving the environment.

“While some practices like zero-till wheat have become very popular, growing rice in submerged fields remains a common practice which is one of the major obstacle in the adoption of full conservation agriculture in irrigated intensive rice-wheat systems of South Asia,” said Jat.

Policies that support farmers with few resources to take chances to experiment with conservation agriculture, such as guaranteeing a cash payout if crops fail or free access to zero-till machinery, can give people the incentive and protection they need to permanently shift the way they farm.

In addition to on-the-ground policy commitments, delegates in Bangladesh declared conservation agriculture and sustainable intensification should be at the heart of South Asia’s development agenda not only to improve national food security but to meet international obligations.

“If we don’t make South Asia’s farming sustainable, we will fail to meet international commitments on climate change, poverty and the environment, including the Sustainable Development Goals,” said Raj Paroda, Chairman of the Trust for Advancement of Agricultural Science (TAAS).

Delegates at the meeting called for a significant boost in funding towards conservation agriculture for sustainable intensification efforts, as well as the need to incorporate sustainable intensification practices in existing publicly-funded agricultural development initiatives.

Finally, the delegates created a platform where regional leaders, national agricultural research centers, donors and international research organizations can share knowledge, success stories, new technologies and expertise.

 

Read the full policy brief of the Scaling Conservation Agriculture for Sustainable Intensification in South Asia meeting here.

CIMMYTNEWSlayer1

Local businesses boost farmer access to quality seed in Nepal

NSAF field research technician showing a demonstration variety of maize to farmers in Kailali, Nepal. Photo: D. Joshi/CIMMYT
NSAF field research technician showing a demonstration variety of maize to farmers in Kailali, Nepal. Photo: D. Joshi/CIMMYT

KHATMANDHU, Nepal (CIMMYT) — In Nepal, nearly 20 local seed companies are involved in producing and marketing seed, contributing to about 50 percent of the country’s formal seed supply system.

Maximizing crop yields requires quality seed production and the development of new varieties locally. Adopting improved quality seed alone has shown to increase crop production up to 30 percent.

However, seed production practices are currently not standardized in Nepal and seeds of inconsistent quality are produced by various sources. To ensure farmers adopt new varieties, the Nepal Seed and Fertilizer project (NSAF) is working with seed companies to build their capacity for both seed production and distribution by providing technical guidance and resources to strengthen local seed production, seed producers’ network and market linkages by adopting new technology and business approaches.

NSAF also helps seed companies hold seed production demonstrations for newly released crop varieties to test, analyze and promote the best agronomic practices for achieving high yield. As a result, several farmers have shown interest in adopting improved practices in seed production.

A NSAF seed partner company was recently presented an award from Nepal’s Ministry of Agricultural Development and the Food and Agriculture Organization of the United Nations for World Food Day 2017. Global Agri-Tech Nepal Private Limited (GATE Nepal), the awardee, was recognized for their excellent contribution in seed production and distribution network for seed supply.

“Over the span of seven years, the company’s yearly portfolio of seed trading has increased from 40 tons to 800 tons by 2017,” said Tikaram Rijal, Managing Director of GATE Nepal.

GATE Nepal has been engaged in the production, processing and marketing of government-registered high quality improved cereal, legume, oil and vegetable seeds. NSAF is supporting the company by training and providing newly released seed varieties to growers, which have resulted in 20 percent production growth by participating farmers.

Learn more about the Nepal Seed and Fertilizer project (NSAF) through this infographic and fact sheet from the U.S. government’s Feed the Future initiative.

New systems analysis tools help boost the sustainable intensification of agriculture in Bangladesh

Group photo at ESAP workshop in Bangladesh. Photo: CSISA.
Group photo at ESAP workshop in Bangladesh. Photo: CSISA.

DHAKA, Bangladesh (CIMMYT) – In South Asia, the population is growing and land area for agricultural expansion is extremely limited. Increasing the productivity of already farmed land is the best way to attain food security.

In the northwestern Indo-Gangetic Plains, farmers use groundwater to irrigate their fields. This allows them to grow two or three crops on the same piece of land each year, generating a reliable source of food and income for farming families. But in the food-insecure lower Eastern Indo-Gangetic Plains in Bangladesh, farmers have lower investment capacities and are highly risk averse. Combined with environmental difficulties including ground water scarcity and soil and water salinity, cropping is often much less productive.

Could the use of available surface water for irrigation provide part of the solution to these problems? The government of Bangladesh has recently promoted  the use of surface water irrigation for crop intensification. The concept is simple: by utilizing the country’s network of largely underutilized natural canals, farmers can theoretically establish at least two well-irrigated and higher-yielding crops per year. The potential for this approach to intensifying agriculture however has various limitations.  High soil and water salinity, poor drainage and waterlogging threaten crop productivity. In addition, weakly developed markets, rural to urban out-migration, low tenancy issues and overall production risk limit farmers’ productivity. The systematic nature of these problems calls for new approaches to study how development investments can best be leveraged to overcome these complex challenges to increase cropping intensity.

Policy makers, development practitioners and agricultural scientists recently gathered to respond to these challenges at a workshop in Dhaka. They reviewed research results and discussed potential solutions to common limitations. Representatives from more than ten national research, extension, development and policy institutes participated. The CSISA-supported workshop however differed from conventional approaches to research for development in agriculture, in that it explicitly focused on interdisciplinary and systems analysis approaches to addressing these complex problems.

Systems analysis is the process of studying the individual parts and their integration into complex systems to identify ways in which more effective and efficient outcomes can be attained. This workshop focused on these approaches and highlighted new advances in mathematical modeling, geospatial systems analysis, and the use of systems approaches to farmer behavioral science.

Timothy J. Krupnik, Systems Agronomist at CIMMYT and CSISA Bangladesh country coordinator, gave an overview of a geospatial assessment of landscape-scale irrigated production potential in coastal Bangladesh to start the talks.

For the first time in Bangladesh, research using cognitive mapping, a technique developed in cognitive and behavioral science that can be used to model farmers’ perceptions of their farming systems, and opportunities for development interventions to overcome constraints to intensified cropping, was described. This work was conducted by Jacqueline Halbrendt and presented by Lenora Ditzler, both with the Wageningen University.

“This research and policy dialogue workshop brought new ideas of farming systems and research, and has shown new and valuable tools to analyze complex problems and give insights into how to prioritize development options,” said Executive Director of the Krishi Gobeshona Foundation, Wais Kabir.

Workshop participants also discussed how to prioritize future development interventions, including how to apply a new online tool that can be used to target irrigation scheme planning, which arose from the work presented by Krupnik. Based on the results of these integrated agronomic and socioeconomic systems analyses, participants also learned how canal dredging, drainage, micro-finance, extension and market development must be integrated to achieve increases in cropping intensity in southern Bangladesh.

Mohammad Saidur Rahman, Assistant Professor, Seed Science and Technology department at Bangladesh Agriculture University, also said he appreciated the meeting’s focus on new methods. He indicated that systems analysis can be applied not only to questions on cropping intensification in Bangladesh, but to other crucial problems in agricultural development across South Asia.

The workshop was organized by the Enhancing the Effectiveness of Systems Analysis Tools to Support Learning and Innovation in Multi-stakeholder Platforms (ESAP) project, an initiative funded by the CGIAR Research Program on Maize (MAIZE) through the International Maize and Wheat Improvement Center (CIMMYT) and supported in Bangladesh through the Cereal Systems Initiative for South Asia (CSISA). ESAP is implemented by Wageningen University’s Farming Systems Ecology group and the Royal Tropical Institute (KIT).

CSISA is a CIMMYT-led initiative implemented jointly with the International Food Policy Research Institute (IFPRI) and the International Rice Research Institute (IRRI). CSISA works to increase the adoption of various resource-conserving and climate-resilient technologies by operating in rural “innovation hubs” in Bangladesh, India and Nepal, and seeks to improve farmers’ access to market information and enterprise development.

How smarter financing can boost Nepal’s seed sector

Support from Nepal’s banking sector has the potential to benefit seed companies across the country. Photo: P. Lowe/CIMMYT
Support from Nepal’s banking sector has the potential to benefit seed companies across the country. Photo: P. Lowe/CIMMYT

KATHMANDU, Nepal (CIMMYT) – Nepal’s push to grow its seed sector is expanding to banking, with new financial measures expected to benefit seed companies across the country.

Nepal launched its National Seed Vision 2013-2025 to improve food security by increasing its domestic production of high quality seeds, and make them available and affordable to farmers. The seed replacement rate, or the percentage of area using certified quality seeds rather than the farm saved seed, is set to increase up to 30 percent for cereal crops and over 90 percent for vegetables.

However, there is a lack of financing from formal sources across agricultural value chains, which led the country to mandate that banks allocate 10 percent of their lending – around NPR 1.3 billion ($12.7 million) – to agriculture in 2017.

A value chain is the full set of activities businesses go through to bring a product or service from conception to delivery, in agriculture, this could involve everything from the development of plant genetic material to selling the final crop at market.

Value chain finance refers to financial products and services that flow to or through any point in a value chain that enables investments that increase actors’ returns, as well as the growth and competitiveness of the chain. This could dramatically improve Nepal’s seed sector by giving farmers, seed companies and banks access to more resources to grow.

In fact, if banks financed just 30 percent of seed company working capital, it would give an extra $2 million to invest in research and development activities, such as variety development, quality improvement, maintenance breeding and other vital functions that are currently not carried out by Nepali seed companies. These funds could also be invested in infrastructure development such as storage and seed processing facilities.

Participants concluded at a recent consultative meeting on financing seed business in Nepal that soft loans – loans that have lenient terms like low interest rates or extended grace periods – to seed companies that charge a government-mandated 5 percent interest rate are an ideal way to provide this extra working capital. The commercial banks offering these loans would benefit by reaching more farmers, thereby expanding their customer base and would reach the government-mandated agricultural financing target.

The Nepal Seed and Fertilizer (NSAF) project provided a platform to banks and seed companies to share information and identify business opportunities to support NSAF’s seed system development approach during the meeting. Nearly 40 participants from national banks, seed companies and other governmental and non-governmental organizations participated.

Dyutiman Choudhary, NSAF coordinator, shared the overall seed system development approach of NSAF and the role of finance in seed business. An overview of successful cases and models of bank-seed company partnerships adopted in Asia and Africa was also given.

Banks requested additional information about risks in the seed business and sought guidance to assess and reduce risks associated to their loans. It was agreed that value chain finance through three-party agreements between banks, farmers and seed companies could be a viable approach that could be initiated immediately.

“Through this sort of agreement, seed companies guarantee they will purchase seeds from farmers,” said the Seed Entrepreneurs Association of Nepal Chair. “This guarantees a market for seed, minimizing the risk of market failure for banks.”

Four national banks so far have shown interest in partnering with the NSAF seed companies to finance seed production with soft loans. A proposed working group comprised of banks, seed companies and the Government of Nepal will provide strategic direction to finance seed business. NSAF will lead the working group to guide strategic decisions on financing seed business by sharing evidence based information, providing a common platform and catalyzing innovations to ease access to finance by seed companies.

The Nepal Seed and Fertilizer project (NSAF) is funded by the United States Agency for International Development and led by the International Maize and Wheat Improvement Center in collaboration with Nepal’s Ministry of Agricultural Development and private sector. Learn more about NSAF through this infographic and fact sheet from the U.S. government’s Feed the Future initiative.

Borlaug Dialogue delegates widen net to curb threat from fall armyworm

2002 World Food Prize laureate, Pedro Sanchez, a professor at the University of Florida and Akinwumi Adesina, 2017 World Food Prize laureate and president of the African Development Bank speak about fall armyworm at a press conference on the sidelines of the 2017 Borlaug Dialogue conference in Des Moines, Iowa. Credit: World Food Prize
The 2002 World Food Prize laureate, Pedro Sanchez, a professor at the University of Florida and Akinwumi Adesina, 2017 World Food Prize laureate and president of the African Development Bank speak about the fall armyworm at a press conference on the sidelines of the 2017 Borlaug Dialogue conference in Des Moines, Iowa. Credit: World Food Prize

DES MOINES, Iowa (CIMMYT) – World Food Prize laureates have joined forces with an international alliance battling the fall armyworm (Spodoptera frugiperda), an aggressive pest indigenous to the Americas with a voracious appetite, now widespread throughout Africa.

The 2002 World Food Prize laureate, Pedro Sanchez, currently a research professor at the University of Florida, addressed delegates at the Borlaug Dialogue conference in Des Moines, Iowa, which is timed each year to coincide with annual World Food Prize celebrations.

Sanchez described the severity of the challenge posed by the pest, which has a host range of more than 80 plant species, including maize, a staple food on which millions of people throughout sub-Saharan Africa depend for their food and income security.

Fall armyworm activities not only put food security, livelihoods and national economies at risk, but also threaten to undo recent hard-earned crop production gains on the continent, Sanchez said.

“Hopefully, it will be controlled; it will never be eradicated,” Sanchez said. “I think the fate of African food security really hinges now on this clear and present danger. It threatens to reverse the gains achieved in the last 10 years. It’s the epitome of an invasive species.”

The pest, which has no known natural predators, can cause total crop losses, and at advanced larval development stages can be difficult to control even with synthetic pesticides. The female fall armyworm can lay up to a thousand eggs at a time and can produce multiple generations very quickly without pause in tropical environments. The moth can fly 100 km (62 miles) a night, and some moth populations have even been reported to fly distances of up to 1,600 kilometers in 30 hours, according to experts.

Sanchez said that Akinwumi Adesina, 2017 World Food Prize laureate and president of the African Development Bank, and Rob Fraley, 2013 World Food Prize laureate and chief technology officer at Monsanto, had united with him to urgently “raise the alarm” about the threat from the pest.

By joining forces as laureates, we aim to really bring attention to this issue to avoid a food crisis, Adesina said. Mobile phones should be effectively used in the fight against the pest, he said.

“There’s just no better way in which farmers can detect, recognize and send information very fast to extension agents or universities that can allow them to identify it and get the information they need to deal with it,” he said, adding that the new African Development Bank initiative Technologies for African Agricultural Transformation (TAAT), will play a key role in fighting the fall armyworm.

Projections by the Centre for Agriculture and Biosciences International, (CABI), indicate that if left unchecked, the fall armyworm could lead to maize yield losses of around $2.5 to $6.2 billion a year in just 12 of the 28 African countries where the pest has been confirmed.

Joint force

In April, the International Maize and Wheat Improvement Center (CIMMYT), the Food and Agriculture Organization of the United Nations (FAO) and the Alliance for a Green Revolution in Africa (AGRA) hosted an international joint stakeholders meeting in Nairobi, committing to an integrated pest management strategy to tackle the pest.

CIMMYT, the U.S. Agency for International Development (USAID), and experts from several national and international research organizations, are currently developing a detailed field manual on Fall Armyworm management in Africa, said B.M. Prasanna, director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize, who spoke at a Borlaug Dialogue side event with a panel of scientific experts.

Scientist B.M. Prasanna, director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize, speaks at a Borlaug Dialogue side event about the fall armyworm with a panel of scientific experts. CIMMYT/Julie Mollins
Scientist B.M. Prasanna, director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize, speaks at a Borlaug Dialogue side event about the fall armyworm with a panel of scientific experts. CIMMYT/Julie Mollins

“The manual will offer protocols and best management practices related to fall armyworm scouting, monitoring and surveillance; biological control; pesticides and pesticide risk management; host plant resistance; pheromones and sustainable agro-ecological management of fall armyworm, especially in the African context,” Prasanna said, adding that the pest has so far devastated at least 1.5 million hectares of maize in just six countries.

A Southern Africa Regional Training-of-Trainers and Awareness Raising Workshop on Fall Armyworm management was conducted in Harare, Zimbabwe, from Oct. 30 to Nov. 1, while a similar workshop for Eastern Africa is scheduled for Nov. 13 to 15 in Addis Ababa, Ethiopia, and for West Africa in early 2018.

The workshops are aimed at supporting pest control and extension actors to effectively scout, determine the need for intervention, and apply specific practices to control the pest in maize and other crops, Prasanna said.

Fall armyworm toolbox

Prasanna announced that the CIMMYT team in Africa is intensively evaluating maize germplasm for resistance to fall armyworm. Initial experiments have indicated some promising breeding materials, which need to be validated further and utilized in product development and deployment pipelines, he said.

“The crisis is quickly escalating due to the loss of quality maize seed in production fields, and the extensive and indiscriminate use of low cost highly toxic pesticides,” Prasanna said.

“We need to quickly bring awareness among the farming communities in Africa about environmentally safer approaches of Fall Armyworm management,”  he said, adding that the international community can learn from the experiences of Brazil and the United States, where the pest has been endemic for  several decades.

“Sustainable agro-ecological management at the field and landscape levels is key,” Prasanna said. “We must make our solutions affordable to smallholder farmers.”

Panelist Mark Edge, director of collaborations for developing countries at agrochemical and biotechnology company Monsanto, said that integrated pest management, collaboration and public-private sector partnerships would be key to fighting the pest.

“First and foremost, it really is about an integrated pest management system – we’re not trying to propose that biotechnology is a silver bullet for this,” he said. “We need to continue to use many different technologies and biotechnology is one very powerful tool that we have in the toolbox.”

Over the past 10 years, the Water Efficient Maize for Africa (WEMA) a Monsanto-CIMMYT partnership project funded by the Bill & Melinda Gates Foundation and USAID has led to the development of almost 100 hybrid varieties effective against drought and a Bt – or biological pesticide – trait effective against the maize stem borers (Chilo partellus and Busseola fusca). The varieties will be available royalty-free to smallholder farmers.

“Insect resistance together with drought is our target; we’ve made tremendous progress over the past 10 years,” Edge said. “In the Americas, we still have challenges with fall armyworm, but we’re certainly able to control it to where farmers are actually able to get very good yields and manage the pests very effectively.”

Smallholder farmers need access to these varieties as soon as possible, so the focus should be on getting regulatory approvals in place by encouraging governments to support the technology, Edge said. The Bt trait varieties will need to be managed carefully so they do not develop resistance to the pest, he added.

“Scientists alone are not going to carry the day on this,” Edge said. “We need to bring together the science on this, but we also need the political will to help make that happen.”

Panelist Segenet Kelemu, director general of the International Institute of Insect Physiology and Ecology (ICIPE), said that techniques used to fight the stem borer have proven effective against the fall armyworm, although experiments are ongoing to craft an integrated pest management strategy to control various stages of the pest from egg to moth. The continent will face deepening challenges from insects due to climate change, she said.

“If there were capacity on the ground, fall armyworm would have been identified sooner,” Kelemu said. “We need a more comprehensive way and a global partnership to tackle this.”

Panelist Gregg Nuessly, a pest management researcher and the director of the Everglades Research and Education Center at the University of Florida, said that the fall armyworm could be effectively controlled through an integrated pest management approach.

“Success in control is not only possible, it’s quite common in the Western Hemisphere,” Nuessly said.

Related stories:

Borlaug Dialogue delegates to discuss strategy for tackling fall armyworm in Africa

Multi-pronged approach key for effectively defeating fall armyworm in Africa

Zimbabwe enacts new strategy in fall armyworm fight

Global experts meet to develop fall armyworm emergency plan for Africa

Fall armyworm in Africa: quick and coordinated regional response required

Scientists tackle deadly fall armyworm infestation devastating Africa

CIMMYTNEWSlayer1

 

Campaign against residue burning seeks to make India’s “food bowl” sustainable

Progressive farmer sharing experience of using CSAPs and yielding higher gains. Photo: CIMMYT.
Progressive farmer sharing experience of using CSAPs and yielding higher gains. Photo: CIMMYT.

SAMBALI, India (CIMMYT) – In the 1960s, India became the center of the Green Revolution by adopting high-yielding crop varieties and new technologies and practices that staved off famine for millions.

Today, India needs a new Green Revolution.

The country’s combination of high greenhouse gas emissions, vulnerability to climate change and pressure to feed nearly 2 billion people by 2050 is driving farmers to find ways to grow more food in harsher environments.

Climate-smart agriculture is a new approach to farming that combines adaptation options that sustainably increase productivity, enhance resilience to climatic stresses and reduce greenhouse gas emissions. This option is becoming increasingly popular among smallholder farmers, who make up nearly 80 percent of India’s farmers and produce more than 40 percent of its food.

Harynana is a north-western state in India, and part of the Indo-Gangetic Plain, which covers an area of over 2.5 million square kilometers and feeds 500 million people. The village of Sambali, in Haryana, is one of the first communities in India to officially become “climate-smart” as part of the CGIAR Research Program on Climate Change, Agriculture and Food Security project (CCAFS), which is helping smallholder farmers globally find practical adaptation options to improve food security and resilience to climate change effects like drought, flooding and other extreme weather events.

In Sambali, more than 60 percent of the population depends on agriculture for their livelihoods. For over 50 years, farmers from the village have worked with Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), this long-term knowledge exchange and exposure has resulted in 45 percent of the farming community practicing climate smart farming.

However, residue burning – the burning of excess residue on fields after a crop is harvested, as a means to clear the area to plant the next crop – remains a common practice in highly cultivated regions in India. Sambali becoming a residue-burning free village is setting an example of a model village contributing towards a healthier environment.

Besides triggering costly respiratory ailments in humans and animals in farm regions and urban centers, burning rice residues has negative agricultural implications. For example, residue burning depletes soil nutrients, with estimated yearly losses in Punjab alone of 3.9 million tons of organic carbon, 59,000 tons of nitrogen, 20,000 tons of phosphorus and 34,000 tons of potassium, according to M.L. Jat, a principal scientist at the International Maize and Wheat Improvement Center (CIMMYT), who leads CIMMYT’s contributions to CCAFS’ climate-smart villages in South Asia.

In response, a CIMMYT-CCAFS campaign was recently organized in Sambali to eliminate residue burning and combat its harmful effects to the environment, soil and human health.

It is advisable to have one percent organic matter in soil to assist conservation and increase productivity. According to Sunil Mann, the State Development Officer of the Department of Agriculture in Haryana, there has been a decline in organic matter in this region due to burning from one percent to less than half of one percent, highlighting a significant threat to soil health and productivity. The challenges of burning are exacerbated by the risk of areas turning into ‘dark zones,’ areas where groundwater has been over-exploited, due to the declining water table.

Hanuman Sahay Jat, a Scientist at CIMMYT, expressed concerns about the amount of chemicals released while burning crop residue and emphasized the need to stop this practice and adopt residue and nutrient management strategies. One way to achieve this is by using technologies like the GreenSeeker, a compact sensor that quickly assesses crop vigor and calculates optimal fertilizer dosages, to reduce dependency on chemical fertilizers and improve soil health.

Climate Smart Van launched to widespread knowledge and adoption. Photo: CIMMYT.
Climate Smart Van launched to widespread knowledge and adoption. Photo: CIMMYT.

M.L. Jat also highlighted the need for all stakeholders to do cost-benefit analyses before adopting new technologies. Farmers should ensure that profits will be worth investments in new technologies and researchers should ensure the efficiency and environmental impact of new technologies. For example in Basmati rice growing areas, zero-till machines, which help farmers plant new seeds directly in the residue of their previous crop’s harvest, are half the cost of the traditionally used “turbo happy seeder,” saving farmers money.

A positive result from Sambali will gain political attention and is likely to contribute to the development of new policies favoring climate-smart agriculture and their efficient utilization.

A “Climate Smart Van” was also launched during the campaign, which will drive through villages to spread knowledge, garner support and clarify the aspects of climate smart agriculture.

Sambali and other villages are taking steps towards integrated farming, with stakeholders’ engagement focusing sustainable development and scaling climate-smart agriculture practices while including women in decision making and engaging youth with profit-making opportunities.

Improved wheat helps reduce women’s workload in rural Afghanistan

Afghan women from wheat farming villages in focus-group interviews as part of Gennovate, a global study on gender and agricultural innovation. Photo: CIMMYT archives
Afghan women from wheat farming villages in focus-group interviews as part of Gennovate, a global study on gender and agricultural innovation. Photo: CIMMYT archives

EL BATAN, Mexico (CIMMYT) — New research shows improved wheat raises the quality of life for men and women across rural communities in Afghanistan.

A recent report from Gennovate, a major study about gender and innovation processes in developing country agriculture, found that improved wheat varieties emerged overwhelmingly among the agricultural technologies most favored by both men and women.

In one striking example from Afghanistan, introducing better wheat varieties alone reduced women’s work burden, showing how the uptake of technology – whether seeds or machinery – can improve the quality of life.

“Local varieties are tall and prone to falling, difficult to thresh, and more susceptible to diseases, including smuts and bunts, which requires special cleaning measures, a task normally done by women,” said Rajiv Sharma, a senior wheat scientist at the International Maize and Wheat Improvement Center (CIMMYT) and country liaison officer for CIMMYT in Afghanistan. “Such varieties may comprise mixes of several seed types, including seed of weeds. They also give small harvests for which threshing is typically manual, with wooden rollers and animals, picking up sticks, stones, and even animal excrement that greatly complicates cleaning the grain.”

Both women and men spoke favorably about how improved wheat varieties have eased women’s wheat cleaning work.  “Improved seeds can provide clean wheat,” said an 18-year old woman from one of the study’s youth focus groups in Panali, Afghanistan. “Before, we were washing wheat grains and we exposed it to the sun until it dried. Machineries have [also] eased women’s tasks.”

Finally, Sharma noted that bountiful harvests from improved varieties often lead farmers to use mechanical threshing, which further reduces work and ensures cleaner grain for household foods.

Gennovate: A large-scale, qualitative, comparative snapshot

Conceived as a “bottom-up” idea by a small gender research team of CGIAR in 2013, Gennovate involves 11 past and current CGIAR Research Programs. The project collected data from focus groups and interviews involving more than 7,500 rural men and women in 26 countries during 2014-16.

According to estimates of the Food and Agriculture Organization of the United Nations (FAO), if women farmers had the same access to resources as men, agricultural output in developing countries would rise by an estimated average of as high as 4 percent. Photo: CIMMYT archives
According to estimates of the Food and Agriculture Organization of the United Nations (FAO), if women farmers had the same access to resources as men, agricultural output in developing countries would rise by an estimated average of as high as 4 percent. Photo: CIMMYT archives

Some 2,500 women and men from 43 rural villages in 8 wheat-producing countries of Africa and Asia participated in community case studies, as part of the CGIAR Research Program on Wheat.

“Across wheat farm settings, both men and women reported a sense of gradual progress,” said Lone Badstue, gender specialist at CIMMYT and Gennovate project leader. “But women still face huge challenges to access information and resources or have a voice in decision making, even about their own lives.”

According to estimates of the Food and Agriculture Organization of the United Nations (FAO), if women farmers, who comprise 43 per cent of the farm labor force in developing countries, had the same access to resources as men, agricultural output in 34 developing countries would rise by an estimated average of as high as 4 percent.

“Gender-related restrictions such as limitations on physical mobility or social interactions, as well as reproductive work burden, also constitute key constraints on rural women’s capacity to innovate in agriculture,” Badstue explained.

Gender equity drives innovation

The Gennovate-wheat report identified six “positive outlier communities” where norms are shifting towards more equitable gender relations and helping to foster inclusiveness and agricultural innovation. In those communities, men and women from all economic scales reported significantly higher empowerment and poverty reductions than in the 37 other locations. Greater acceptance of women’s freedom of action, economic activity, and civic and educational participation appears to be a key element.

“In contexts where gender norms are more fluid, new agricultural technologies and practices can become game-changing, increasing economic agency for women and men and rapidly lowering local poverty,” Badstue said.

The contributions and presence of CIMMYT in Afghanistan, which include support for breeding research and training for local scientists, date back several decades. In the last five years, the Agricultural Research Institute of Afghanistan (ARIA) of the country’s Ministry of Agriculture, Irrigation & Livestock (MAIL) has used CIMMYT breeding lines to develop and make available to farmers seed of 15 high-yielding, disease resistant wheat varieties.

Read the full report “Gender and Innovation Processes in Wheat-Based Systems” here.

GENNOVATE has been supported by generous funding from the World Bank; the CGIAR Gender & Agricultural Research Network; the government of Mexico through MasAgro; Germany’s Federal Ministry for Economic Cooperation and Development (BMZ); numerous CGIAR Research Programs; and the Bill & Melinda Gates Foundation.

Scaling sustainable agriculture in South Asia

DAHKA, Bangladesh (CIMMYT) – A two-day regional policy dialogue on scaling conservation agriculture for sustainable intensification in South Asia was held in Dhaka, Bangladesh from September 8-9, 2017.

Delegates and participants of the regional policy dialogue on scaling conservation agriculture for sustainable intensification in South Asia in Dhaka, Bangladesh. Photo: Das, S./CIMMYT Bangladesh.
Delegates and participants of the regional policy dialogue on scaling conservation agriculture for sustainable intensification in South Asia in Dhaka, Bangladesh. Photo: Das, S./CIMMYT Bangladesh.

The event was a supported by the Australian Center for International Agricultural Research (ACIAR), and was organized jointly by the Trust for Advancement of Agricultural Sciences (TAAS) and the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with national agricultural research systems from across South Asia, CGIAR institutes and Australian Organizations. Government officials, researchers, and policymakers actively participated and deliberated challenges and ways forward to scale up sustainable agriculture in South Asia.

High input costs, depleted and degraded natural resources, indiscriminate and imbalanced use of chemical fertilizers and adverse effects from climate change make South Asia – home to about 1.766 billion people (one fourth of the world’s population) – one of the most food insecure regions in the world.

A region-wide shift from conventional agriculture to more sustainable technologies and practices, such as no-till farming or precision land leveling, is critical towards combating these challenges.

Raj Paroda, TAAS chairman, highlighted this need during the dialogue by calling for increased agricultural development assistance from international donors that focuses on mainstreaming sustainable agriculture, a key element in achieving the Sustainable Development Goals (SDGs), a set of 17 global goals spearheaded by the United Nations to end poverty, protect the planet, and ensure prosperity for all.

“The adaptation of conservation agriculture in South Asia, specifically in the Eastern Gangetic Plains, has shown impressive results in terms of saving costs and resources, and boosting income,” said John Dixon, Principal Advisor of ACIAR. “However, the widespread adaptation of conservation agriculture is held back by policy barriers. Institutions and policies have yet to be optimized in a way that facilitates and encourage [its] spread.”

According to Dixon, the regional policy dialogue allowed delegates to share experiences from their own countries and identify which policy changes, institutions and regulations can be adapted in a way that accelerates the widespread adoption of sustainable practices like conservation agriculture.

Paroda closed the dialogue by suggesting that delegates work towards enabling policies to increase funding, coordination and convergence of international private and public funder interest. He suggested the development of an active regional platform that would suggest a roadmap based on the current status, would help share knowledge, initiatives and advocate for policies relating to opportunities for capacity building and regional partnerships. He also identified that the promotion of new innovations through a network of young entrepreneurs and service providers and strong public-private partnerships as key elements to mainstreaming the adoption of sustainable agriculture across the region.

View the regional policy dialogue on scaling conservation agriculture for sustainable intensification here.

receive newsletter

Afghanistan scientists assess achievements of Australia-funded wheat research

Scientists take readings of rust disease incidence on experimental wheat lines at the Shishambagh research station, Nangarhar, of the Agricultural Research Institute of Afghanistan. Photo: Raqib/ CIMMYT
Scientists take readings of rust disease incidence on experimental wheat lines at the Shishambagh research station, Nangarhar, of the Agricultural Research Institute of Afghanistan. Photo: Raqib/ CIMMYT

With generous funding from the Australian Centre for International Agricultural Research (ACIAR) over the last 15 years, Afghanistan research organizations and the International Maize and Wheat Improvement Center (CIMMYT) have helped supply Afghan farmers with improved varieties and farming practices to boost production of maize and wheat.

“As of 2012, the start of the most recent phase of ACIAR-funded work, Afghanistan partners have developed and released 12 high-yielding and disease resistant bread wheat varieties, as well as 3 varieties of durum wheat, 2 of barley and 3 of maize,” said Rajiv Sharma, a senior wheat scientist at CIMMYT and country liaison officer for CIMMYT in Afghanistan.

Sharma spoke at a workshop, which took place on August 28, with partners from the Agricultural Research Institute of Afghanistan (ARIA) of the country’s Ministry of Agriculture, Irrigation & Livestock (MAIL). The event was organized to review accomplishments and facilitate MAIL’s takeover of all activities, when the project ends in October 2018.

“The pedigrees of all new varieties feature contributions from the breeding research of CIMMYT and the International Winter Wheat Improvement Programme based in Turkey, both responsible for introducing more than 9,000 new wheat and maize lines into the country since 2012,” Sharma added. The International Winter Wheat Improvement Programme (IWWIP) is operated by Turkey, CIMMYT, and ICARDA (the International Center for Agricultural Research in the Dry Areas).

Sharma noted that CIMMYT’s presence in Afghanistan, which includes support for breeding research and training for local scientists, dates back several decades and that the latest achievements with ARIA and other partners and ACIAR support include:

  • The delineation of wheat agro-climatic zones.
  • Forecasting climate change impacts on the Afghan wheat crop.
  • Strategizing to raise wheat production.
  • Characterization of Afghanistan’s wheat genetic resource collection.
  • Training abroad for 64 Afghan researchers and in-country for 4,000.
  • Launching research on wheat hybridization.
  • In direct partnership with farmers, more than 1,800 farmer field demonstrations, 80 field days, and introduced machinery like seed drills and mobile seed cleaners.
  • Shared research on and promotion of conservation agriculture, genomic selection, wheat bio-fortification, quality protein maize, climate change, crop insurance and wheat blast resistance and control.

In good years Afghan farmers harvest upwards of 5 million tons of wheat, the country’s number-one food crop, but in some years annual wheat imports exceed 1 million tons to satisfy domestic demand, which exceeds 5.8 million tons.

Multiple partners map avenues to fortify cereal farming

The workshop attracted 45 participants representing ARIA, MAIL, ICARDA, CIMMYT, Michigan State University, ACIAR, the Food and Agriculture Organization of the United Nations (FAO), the Embassy of Australia, and several provincial Directorates of Agriculture, Irrigation & Livestock (DAIL) of Afghanistan.

A group
A group photo of attendees at the workshop held in Afghanistan. Photo: CIMMYT archives

Among other participants, Mahboobullah Nang, Director of Seed Certification, and Akbar Waziri, Director of the Cereal Department, both from MAIL, offered the Ministry’s support for the continuation of CIMMYT’s longstanding efforts in Afghanistan, particularly in breeding and varietal testing and promotion.

Representing ACIAR, Syed Mousawi commended capacity development activities organized by CIMMYT since the 1970s, which have raised the quality of crop research in Afghanistan and provided a vital link to the global science community over the years.

Participants also recommended extending CIMMYT outreach work, offering training in extension, introducing advanced technologies, and support for and training in varietal maintenance, conservation agriculture, experimental designs, research farm management, data analysis and data management.

New Publications: Mitigating greenhouse gas emission from rising food production

Global food production must increase by 70 percent to meet a population of more than 9 billion in 2050. India, with a current population of 1.3 billion and rising, is central to this challenge. Photo: M. DeFreese/CIMMYT
Global food production must increase by 70 percent to meet a population of more than 9 billion in 2050. India, with a current population of 1.3 billion and rising, is central to this challenge. Photo: M. DeFreese/CIMMYT

EL BATAN, Mexico (CIMMYT) – A new study identifies the key ways to keep up with India’s rising food demand while minimizing greenhouse gas emissions.

Global food production must increase by 70 percent to meet a population of more than 9 billion in 2050. India, with a current population of 1.3 billion and rising, is central to this challenge.

As incomes rise in developing countries, many go through ‘nutrition transition’ away from staple crops towards high greenhouse gas-producing foods like meat and dairy. India, however, has a cultural preference for a lacto-ovo-vegetarian diet — dairy, eggs, and plant-based products —  and is likely to differ in this regard from similar developing countries, like China or Brazil.

In India, the majority of greenhouse gas emissions from agriculture are produced from agricultural inputs, farm machinery, soil displacement, residue management and irrigation.

Authors in a recent study from the International Maize and Wheat Improvement Center (CIMMYT) have identified higher emissions from continuously flooded rice, compared to rice which has more frequent periods of water drainage, and a wide range of emissions for other crops due to variation in fertilizer application.

The United Nations Framework Convention on Climate Change has placed emphasis on mitigation of greenhouse gases from agriculture and a number of strategies have been proposed. Measuring emissions from different crops and management systems can help identify the most efficient way to reduce future greenhouse gas emissions while keeping up with food demand.

Read the full study “Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation” and check out other recent publications from CIMMYT staff below.

  • Genomic regions associated with root traits under drought stress in tropical maize (Zea mays L.). Zaidi, P.H., Seetharam, K., Krishna, G., Krishnamurthy, S.L., Gajanan Saykhedkar, Babu, R., Zerka, M., Vinayan, M.T., Vivek, B. In: PLoS One, vol.11, no.10: e0164340.
  • Global challenges and urgency for partnerships to deploy genetic resources. Sukhwinder-Singh, Vikram, P., Sansaloni, C.P., Pixley, K.V. In: Indian Journal of Plant Genetic Resources, vol. 29, issue 3, p. 351-353.
  • High accuracy of predicting hybrid performance of Fusarium head blight resistance by mid‑parent values in wheat. Miedaner, T., Schulthess, A., Gowda, M., Reif, J.C., Longin, F.H. In: Theoretical and Applied Genetics, vol 130, no. 2, p. 461–470.
  • Identification and functional characterization of the AGO1 ortholog in maize. Dongdong Xu, Hailong Yang, Cheng Zou, Wen-Xue Li, Yunbi Xu, Chuanxiao Xie In: Journal of integrative plant biology, vol.58, no.8, p.749-758.
  • Identification of genomic associations for adult plant resistance in the background of popular South Asian wheat cultivar, PBW343. 2016. Huihui Li, Sukhwinder-Singh, Bhavani, S., Singh, R.P., Sehgal, D., Basnet, B.R., Vikram, P., Burgueño, J., Huerta-Espino, J.  In: Frontiers in Plant Science, vol.7, no.1674, p.1-18.
  • Genomic Selection for increased yield in Synthetic-Derived Wheat. 2017. Dunckel, S., Crossa, J., Shuangye Wu, Bonnett, D.G., Poland, J. In: Crop Science, v. 57, p. 713-725.
  • Germinate 3: development of a common platform to support the distribution of experimental data on crop wild relatives. 2017. Shaw, P., Raubach, S. Hearne, S., Dreher, K.A., Glenn Bryan, McKenzie, G., Milne, I., Gordon Stephen, Marshall, D. In: Crop Science, v. 57, p.1-15.
  • Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation. 2017. Vetter, S.H., Sapkota, T.B., Hillier, J., Stirling, C., Macdiarmid, J.I., Aleksandrowicz, L., Green, R., Joy, E.J.M., Dangour, A.D., Smith, P. In: Agriculture, Ecosystems and Environment v. 237, p. 234-241.
  • How climate-smart is conservation agriculture (CA)? its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa. 2017. Thierfelder, C., Chivenge, P., Mupangwa, W., Rosenstock, T., Lamanna, C., Eyre, J.X. In: Food Security, vol. 9, no. 3, p. 537–560.
  • Identification and molecular characterization of novel LMW-m and -s glutenin genes, and a chimeric -m/-i glutenin gene in 1A chromosome of three diploid Triticum species.  2017. Cuesta, S., Alvarez, J.B., Guzman, C. In: Journal of Cereal Science, v. 74, p. 46-55.

New evidence shows forests help reduce malnutrition

Even in areas of high food security, vitamin and mineral deficiencies affect children in Southern Ethiopia. CIFOR Photo/Mokhamad Edliadi
Even in areas of high food security, vitamin and mineral deficiencies affect children in Southern Ethiopia. CIFOR Photo/Mokhamad Edliadi

EL BATAN, Mexico (CIMMYT) — A new study shows that dietary diversity is highest in areas close to forests, even when people don’t collect forest food and don’t generate income from forest products.

Dietary diversity reflects the variety of foods you eat and is strongly associated with adequate nutrition you receive. Increasing dietary diversity is a key element in combatting malnutrition. In areas near forests, people typically have high-producing home gardens, fed by manure from the livestock they let graze in the woods.

Throughout the world, and particularly in the tropics, remaining forests are cut down to make way for farmland in order to feed a growing global population. However, even in areas of high food availability, children may struggle to get enough vitamins and minerals if they only eat calorically dense, nutrient sparse cereal crops, a phenomenon called hidden hunger. The authors state that while cereal crops will no doubt remain crucial to meet the caloric needs of the global population, it is important to maintain – and restore in places – high dietary diversity when facing hidden hunger. They recommend taking a holistic approach to agricultural development that maintains landscape diversity, as opposed to the current trend toward mono-cropping – growing a single crop year after year – and landscape simplification.

Read the full study “Indirect contributions of forests to dietary diversity in Southern Ethiopia” and check out the blog published by the Center for International Forestry Research (CIFOR).

 

receive newsletter

Zimbabwe enacts new strategy in fall armyworm fight

CIMMYT maize breeder Thokozile Ndhlela (left, and farmer Otilia Chirova of Mutoko district in Mashonaland East province, identifying the fall armyworm in Chirova’s field in February. Chirova eventually lost almost half of her entire maize crop. Photo: J. Siamachira/CIMMYT.
CIMMYT maize breeder Thokozile Ndhlela (left, and farmer Otilia Chirova of Mutoko district in Mashonaland East province, identifying the fall armyworm in Chirova’s field in February. Chirova eventually lost almost half of her entire maize crop. Photo: J. Siamachira/CIMMYT.

HARARE, Zimbabwe (CIMMYT) — Smallholder farmers in Zimbabwe’s rural areas have grown maize for years both as a staple and as a resource to boost their economy.

However, Zimbabwean farmers rely predominately on rain-fed maize farming, making each planting season a gamble with nature as poor rainfall, pests and diseases constantly threaten this staple crop and farmer livelihoods.

As most smallholders tried to recover from the El Niño-induced drought in southern Africa, affecting 40 million people during the 2015-2016 farming season, according to the Food and Agriculture Organization (FAO) of the United Nations, nothing could have prepared them for the sudden invasion of the fall armyworm in September 2016 that caused irreversible damage on their maize crop.

“We first noticed it in December 2016,” said Elizabeth Chikono, a smallholder farmer from Mashonaland Central Province, whose maize crop was heavily infested by the fall armyworm. “We tried to control it through spraying with different pesticides, but to no avail. I had hoped to harvest 10 tons per hectare of maize, but only managed to harvest three tons.”

The fall armyworm has since caused significant damage on over 280,000 hectares of maize in Malawi, Namibia, South Africa, Zambia and Zimbabwe, and can cause up to 70 percent crop loss, or total loss in some cases if unmanaged, says FAO. The level of damage witnessed in the fields is likely to affect maize harvests across the region, which is expected to create more than 200 million food-insecure people who depend on maize for food, said Chimimba Phiri, head of FAO southern Africa sub-regional office.

It has so far been impossible to eradicate the pest, which is known to migrate quickly and breed quite fast, with an entire life cycle between 35 and 61 days.

Zimbabwe established a fall armyworm working group in July this year to bring all stakeholders together and find solutions to manage the impacts of the pest in the country.

Forty-five people representing government ministries, non-governmental organizations, private seed and chemical companies, agricultural research institutions, donors and academic institutions, recently resolved at a meeting to advocate a countrywide response as part of a regional program of integrated management of the fall armyworm. The group recommended strengthening awareness campaigns, building stakeholders’ capacity in the fight against the fall armyworm, raising funds, strengthening research and development as well as screening of germplasm.

Smallholder farmer Perkins Chimuriwo of Mashonaland East province inspects the fall army worm damage to his maize crop in March. “I had expected to harvest 14 tons of maize on my two-hectare plot, but due to the fall armyworm, I’ve only harvested eight tons,” said Chimuriwo. Photo: J. Siamachira/CIMMYT.
Smallholder farmer Perkins Chimuriwo of Mashonaland East province inspects the fall army worm damage to his maize crop in March. “I had expected to harvest 14 tons of maize on my two-hectare plot, but due to the fall armyworm, I’ve only harvested eight tons,” said Chimuriwo. Photo: J. Siamachira/CIMMYT.

These recommendations have culminated in a new strategy to undertake national assessments to determine the impact of the pest on crop yields and how to manage it.

The FAO is also working to equip southern African countries with the tools to asses and improve understanding of the fall armyworm’s threat to the region.

“The International Maize and Wheat Improvement Center (CIMMYT) will pull its germplasm resources as well as modern breeding platforms to produce maize varieties that are tolerant to fall armyworm,” said Cosmos Magorokosho, CIMMYT country representative for Zimbabwe. Similar efforts have been used by CIMMYT in the past to tackle the effects of Maize Lethal Necrosis in eastern Africa.

However, breeding for fall armyworm resistant elite maize hybrids adapted to sub-Saharan Africa is a lengthy process and would require intensive germplasm screening, working with public and private sector institutions.

To reduce the numbers of fall armyworms and their impact on agricultural production in Zimbabwe, a multi-pronged approach is required that ensures fast registration of appropriate chemicals, strategies to avoid chemical resistance, surveillance and early warning, monitoring, cultural management and breeding.

Acting head of plant protection at the government of Zimbabwe’s Department of Research and Specialist Services, Shingirayi Nyamutukwa, said the government had started training field extension staff on proper selection and handling of chemicals as well as raising awareness among the staff and smallholder farmers. Experiments were also underway to determine the best fall armyworm control methods. Nyamutukwa said all of Zimbabwe’s 10 provinces had been affected by the caterpillar. He said that no single method or product has been found to completely eradicate the fall armyworm.

Breeding for fall armyworm resistant elite maize hybrids adapted to sub-Saharan Africa was cited as an option but would require intensive germplasm screening, working with public and private sector institutions. Brazil, for example, spends an estimated US$600 million annually to control the fall armyworm.

Entrepreneurship increases youth employment in Nepal

Dahit Traders founder Chullu Ram Chaudhary at his workshop in Bardiya district, Nepal. Photo: CIMMYT/CSISA/A.Khadka
Dahit Traders founder Chullu Ram Chaudhary at his workshop in Bardiya district, Nepal. Photo: CIMMYT/CSISA/A.Khadka

KATHMANDU, Nepal (CIMMYT) – In 2015 Chullu Ram Chaudhary started Dahit Traders, which sells small-scale agricultural machinery in the Bardiya district of mid-western Nepal.

Dahit provides year-round employment to 20 local youths as mechanics and machine operators, and hires an additional 35 mechanics during rice and wheat planting and harvesting seasons. Chaudhary was motivated to found his company in 2014 while attending a machinery training organized by the Cereal Systems Initiative for South Asia (CSISA).

Chaudhary began by focusing on two-wheel tractors and has since expanded his business to several nearby towns, now also providing machine repair services to surrounding districts. His core business has broadened to include a variety of attachments for power tillers, including seed drills, reapers and threshers, all of which are relevant and useful for small-scale farmers of Bardiya and surrounding districts.

Each expansion allows him to provide employment for local youth by creating sales, mechanic and support staff jobs, which has the added benefit of slowing migration from Nepal’s key agricultural production areas. About 1,500 Nepalese youth migrate for foreign employment daily due a lack of employment opportunity and capital constraints in their own communities, a phenomena that directly contributes to agricultural yield loss in Nepal, according to the Food and Agriculture Organization of the United Nations.

This absence of farm labor along with a lack of agricultural knowledge, irrigation and mechanization along with the inability to invest in new technology due to lack of capital also limits Nepal’s yield potential, despite having fertile soil and access to year-round farming. Many plots in Nepal are also very small, due to the traditional inheritance practice of splitting land between sons, further limiting production. Cereal and pulse yields are well below regional averages and present rates of increase won’t meet the long-term requirements.

Success for entrepreneurs like Chaudhary allows farming households to access innovative, scale-appropriate technology, increase employment for youth and boost cropping system productivity, all of which are needed to sufficiently and sustainably increase food production for future generations. In addition to providing training on machinery, CSISA linked Chaudhary with SKT Traders – a national-level importer of small-scale machinery – and provided technical support to Dahit Trader’s mechanics on machinery operation, repair and maintenance.

To increase awareness of scale-appropriate machinery, CSISA and Dahit Traders conducted joint demonstrations of equipment in farmers’ fields in order to help farmers see the potential for these machines to reduce drudgery, increase efficiency and enable them to establish micro enterprises based on custom-hired services.

The Cereal Systems Initiative for South Asia project is led by the International Maize and Wheat Improvement Center with partners the International Rice Research Institute and the International Food Policy Research Institute and funded by the U.S. Agency for International Development and the Bill & Melinda Gates Foundation.