Skip to main content

funder_partner: Food and Agriculture Organization of the United Nations (FAO)

México se consolida como el tercer productor agropecuario de América Latina

During the presentation of Mexico’s 2021 Agri-Food Expectations, Bram Govaerts, Director General of CIMMYT, flagged a number of initiatives aimed at supporting the country’s food self-sufficiency and safeguarding the cultural heritage of its agricultural sector.

Read more: https://www.elsoldemexico.com.mx/mexico/sociedad/mexico-se-consolida-como-el-tercer-productor-agropecuario-de-america-latina-6658152.html

 

The beginning of a beautiful partnership

In most developing countries, smallholder farmers are the main source of food production, relying heavily on animal and human power. Women play a significant role in this process — from the early days of land preparation to harvesting. However, the sector not only lacks appropriate technologies — such as storage that could reduce postharvest loss and ultimately maximize both the quality and quantity of the farm produce — but fails to include women in the design and validation of these technologies from the beginning.

“Agricultural outputs can be increased if policy makers and other stakeholders consider mechanization beyond simply more power and tractorization in the field,” says Rabe Yahaya, an agricultural mechanization expert at CIMMYT. “Increases in productivity start from planting all the way to storage and processing, and when women are empowered and included at all levels of the value chain.”

In recent years, mechanization has become a hot topic, strongly supported by the German Federal Ministry for Economic Cooperation and Development (BMZ). Under the commission of BMZ, the German development agency GIZ set up the Green Innovation Centers (GIC) program, under which the International Maize and Wheat Improvement Center (CIMMYT) supports mechanization projects in 16 countries — 14 in Africa and two in Asia.

As part of the GIC program, a cross-country working group on agricultural mechanization is striving to improve knowledge on mechanization, exchange best practices among country projects and programs, and foster links between members and other mechanization experts. In this context, CIMMYT has facilitated the development of a matchmaking and south-south learning matrix where each country can indicate what experience they need and what they can offer to the others in the working group. CIMMYT has also developed an expert database for GIC so country teams can reach external consultants to get the support they need.

“The Green Innovation Centers have the resources and mandate to really have an impact at scale, and it is great that CIMMYT was asked to bring the latest thinking around sustainable scaling,” says CIMMYT scaling advisor Lennart Woltering. “This is a beautiful partnership where the added value of each partner is very clear, and we hope to forge more of these partnerships with other development organizations so that CIMMYT can do the research in and for development.”

This approach strongly supports organizational capacity development and improves cooperation between the country projects, explains Joachim Stahl, a capacity development expert at CIMMYT. “This is a fantastic opportunity to support GIZ in working with a strategic approach.” Like Woltering and Yahaya, Stahl is a GIZ-CIM integrated expert, whose position at CIMMYT is directly supported through GIZ.

A catalyst for South-South learning and cooperation

Earlier this year, CIMMYT and GIZ jointly organized the mechanization working group’s annual meeting, which focused on finding storage technologies and mechanization solutions that benefit and include women. Held from July 7–10 July, the virtual event brought together around 60 experts and professionals from 20 countries, who shared their experiences and presented the most successful storage solutions that have been accepted by farmers in Africa for their adaptability, innovativeness and cost and that fit best with local realities.

CIMMYT postharvest specialist Sylvanus Odjo outlined how to reduce postharvest losses and improve food security in smallholder farming systems using inert dusts such as silica, detailing how these can be applied to large-scale agriculture and what viable business models could look like. Alongside this and the presentation of Purdue University’s improved crop storage bags, participants had the opportunity to discuss new technologies in detail, asking questions about profitability analysis and the many variables that may slow uptake in the regions where they work.

Harvested maize cobs are exposed to the elements in an open-air storage unit in Ethiopia. (Photo: Simret Yasabu/CIMMYT)
Harvested maize cobs are exposed to the elements in an open-air storage unit in Ethiopia. (Photo: Simret Yasabu/CIMMYT)

Discussions at the meeting also focused heavily on gender and mechanization – specifically, how women can benefit from mechanized farming and the frameworks available to increase their access to relevant technologies. Modernizing the agricultural sector in developing countries in ways that would benefit both men and women has remained a challenge for many professionals. Many argue that the existing technologies are not gender-sensitive or affordable for women, and in many cases, women are not well informed about the available technologies.

However, gender-sensitive and affordable technologies will support smallholder farmers produce more while saving time and energy. Speaking at a panel discussion, representatives from AfricaRice and the Food and Agriculture Organization of the United Nations (FAO) highlighted the importance of involving women during the design, creation and validation of agricultural solutions to ensure that they are gender-sensitive, inclusive and can be used easily by women. Increasing their engagement with existing business models and developing tailored digital services and trainings will help foster technology adaptation and adoption, releasing women farmers from labor drudgery and postharvest losses while improving livelihoods in rural communities and supporting economic transformation in Africa.

Fostering solutions

By the end of the meeting, participants had identified and developed key work packages both for storage technologies and solutions for engaging women in mechanization. For the former, the new work packages proposed the promotion of national and regional dialogues on postharvest, cross-country testing of various postharvest packages, promotion of renewable energies for power supply in storing systems and cross-country scaling of hermetically sealed bags.

To foster solutions for women in mechanization, participants suggested the promotion and scaling of existing business models such as ‘Woman mechanized agro-service provider cooperative’, piloting and scaling gender-inclusive and climate-smart postharvest technologies for smallholder rice value chain actors in Africa, and the identification and testing of gender-sensitive mechanization technologies aimed at finding appropriate tools or approaches.

Cover image: A member of Dellet – an agricultural mechanization youth association in Ethiopia’s Tigray region – fills a two-wheel tractor with water before irrigation. (Photo: Simret Yasabu/CIMMYT)

Critical reflections on COVID-19

The COVID-19 global health crisis has disrupted food and agricultural systems around the world, affecting food production, supply chains, trade and markets, as well as people’s livelihoods and nutrition. Following an initial assessment in May 2020, the Food and Agriculture Organization of the United Nations (FAO) joined the International Fund for Agricultural Development (IFAD), the International Maize and Wheat Improvement Center (CIMMYT) and other CGIAR centers to conduct a comprehensive assessment of the impacts of the COVID-19 pandemic on Bangladesh’s agri-food system.

The report shares critical reflections and lessons learned, as well as providing detailed quantitative and qualitative information on all disruption pathways and possible recovery strategies.

According to the research team, the major visible impact was the decline of food demand due to the disruption of value chain actors in the food market and income shortages, especially among low- and daily wage-earning populations. This reduced demand lead in turn to reduced prices for agricultural goods, particularly perishable food items like vegetables, livestock and fish products.

Additionally, constraints on the movement of labor led to a disruption in agricultural services, including machinery and extension services, while domestic and international trade disruptions created input shortages and lead to price volatilities which increased production costs. This increase, coupled with reductions in production and output prices, essentially wiped farmer profits.

A farmer takes maize grain to a local reserve in Bangladesh. (Photo: Fahad Kaizer/FAO)
A farmer takes maize grain to a local reserve in Bangladesh. (Photo: Fahad Kaizer/FAO)

Building back a better food system

The latest report was launched at the same time as the CGIAR COVID-19 Hub in Bangladesh, which aims to build local resilience to the effects of the pandemic and support government-led recovery initiatives. At a panel discussion presenting the results of the assessment, researchers emphasized the importance of social safety net mechanisms and food demand creation, as well as the need for strong monitoring of food systems to ensure continued availability and affordability, and early detection of any critical issues.

The discussion centered on the need for public access to trustworthy information in order to raise awareness and instill confidence in the food they consume. One key recommendation which emerged is facilitating the digitalization of farming, which looks to re-connect farmers and consumers and build the food system back better. The accelerated development of digital platforms connecting farmers to markets with contactless delivery systems can ensure the safer flow of inputs and outputs while generating a higher share of consumer money for farmers. There is also a need to explore green growth strategies for reducing food waste — the creation and distribution of improved food storage systems, for instance — and circular nutrient initiatives to better utilize food waste as feed and bio manure.

Read the full report “Second rapid assessment of food and nutrition security in the context of COVID-19 in Bangladesh, May – July 2020”

CIMMYT and IITA collaborate to increase adoption of conservation agriculture in southern Africa

Farmers going home for breakfast in Motoko district, Zimbabwe. (Photo: Peter Lowe/CIMMYT)
Farmers going home for breakfast in Motoko district, Zimbabwe. (Photo: Peter Lowe/CIMMYT)

The International Institute of Tropical Agriculture (IITA) and the International Maize and Wheat Improvement Center (CIMMYT) recently launched a project that aims to research the drivers and barriers to adoption of conservation agriculture in southern Africa, and to develop strategies for achieving adoption and impact at scale.

The project, Understanding and Enhancing Adoption of Conservation Agriculture in Smallholder Farming Systems of Southern Africa (ACASA), will apply social and scaling science to understand the biophysical, socioeconomic, institutional, and policy drivers and barriers to the adoption of conservation agriculture technologies and practices.

The ACASA project is supported by the Norwegian Agency for Development Cooperation (Norad) and will be implemented in Malawi, Zambia, and Zimbabwe in collaboration with partners and farmers in the region.

The project was officially launched online on September 16, 2020. Zambia’s Minister of Agriculture, Michael Katambo, noted that it is a timely intervention, as the livelihoods and food security of smallholder farmers in southern Africa are increasingly being threatened by climate change and variability, which have led to a steady decline in the production of food staples and an increase in the number of food and nutrition-insecure people.

“It is now clear that current productivity and production levels cannot be expected to meet our requirements for food and nutrition security,” Katambo said in a speech read on his behalf by Moses Mwale, Director of the Department of Agriculture. “Conservation agriculture has a proven potential to increase and stabilize crop yields, and to support sustainable and resilient production systems and rural livelihoods.”

Proven benefits

Conservation agriculture — a farming system that promotes minimum soil disturbance, permanent soil cover and diversification of plant species — can efficiently increase agricultural productivity while reducing land degradation and improving soil health for more productive, profitable, and sustainable farming.

Substantial on-farm evidence has been generated on the agronomic and economic benefits of conservation agriculture, first introduced in the 1970s in South Africa. Consequently, donors and governments have made a lot of investments to promote and scale conservation agriculture technologies and practices among smallholder farmers in the region. Despite all these efforts, however, the adoption rate among smallholder farmers remains low.

“We should not let the low adoption of conservation agriculture discourage us. Let us use this opportunity to reflect and identify the missing link and come up with more sustainable solutions to the problem,” said the IITA Director for Southern Africa, David Chikoye.

“Although adoption of improved practices by most resource-poor farmers is primarily determined by the potential immediate benefits on crop yields, profits, risk, and livelihoods, there are a number of biophysical, socioeconomic, institutional, and policy factors that promote or hinder adoption of conservation agriculture. The project, therefore, aims to identify the adoption drivers and barriers, and to develop pathways and strategies for inclusive scaling of conservation agriculture practices,” said  Arega Alene, Agricultural Economist at IITA and leader of the ACASA project.

Christian Thierfelder, Principal  Cropping Systems Agronomist at CIMMYT, highlighted some of the bottlenecks for conservation agriculture adoption, noting they were linked more to socioeconomic and cultural factors rather than biophysical. “Conservation agriculture is a viable and proven climate-smart farming system. Future research efforts should go towards understanding farmers’ decision-making and behavioral change, as well as profitability,” Thierfelder said.

Other key partners include the Food and Agriculture Organization of the United Nations (FAO), the African Conservation Tillage Network (ACT) and Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA).

The project launch was attended by policymakers, donors, members of national and regional conservation agriculture taskforces, national and international research institutions, universities, international development institutions, private seed companies, non-governmental organizations, and farmer organizations.


Interview opportunities:

Arega Alene, Agricultural Economist, IITA.

Christian Thierfelder, Principal  Cropping Systems Agronomist, CIMMYT

For more information, or to arrange interviews, contact the media team:

Genevieve Renard, Director of Communications, CIMMYT. g.renard@cgiar.org

Katherine Lopez, Head of Communication, IITA. k.lopez@cgiar.org

About CIMMYT:

The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org.

About IITA:

The International Institute of Tropical Agriculture (IITA) is a not-for-profit institution that generates agricultural innovations to meet Africa’s most pressing challenges of hunger, malnutrition, poverty, and natural resource degradation. Working with various partners across sub-Saharan Africa, we improve livelihoods, enhance food and nutrition security, increase employment, and preserve natural resource integrity. IITA is a member of CGIAR, a global agriculture research partnership for a food-secure future.

100Q: Boosting household survey data usability with 100 core questions

A set of core survey questions has been developed in a bid to improve the collection and use of rural farm household data from low and middle-income countries.

Leading agricultural socioeconomists developed the 100Q report, which outlines 100 core questions to identify key indicators around agricultural activities and off-farm income, as well as key welfare indicators focusing on poverty, food security, dietary diversity, and gender equity.

The aim is to forge an international standard approach to ensure socioeconomic data sets are comparable over time and space, said Mark Van Wijk, the lead author of the recent report published through CGIAR Platform for Big Data in Agriculture.

Agricultural researchers interview hundreds of thousands of farmers across the world every year. Each survey is developed with a unique approach for a specific research question. These varied approaches to household surveys limit the impact data can have when researchers aim to reuse results to gain deeper insights.

“A standard set of questions across all farm household surveys means researchers can compare different data points to identify common drivers of poverty and food insecurity among different populations to more efficiently inform development strategies and improve livelihoods,” said Van Wijk, a senior scientist at the International Livestock Research Institute (ILRI).

Finding common ground among data collection efforts is essential for optimizing the impact of socioeconomic data. Instead of reinventing the wheel each time researchers develop surveys, researchers in the CGIAR’s Community of Practice on Socio-Economic Data (CoP SED) formed core questions they believe should become the base of all farm household surveys to improve the ability for global analysis.

CoP SED is promoting the use of the 100Q report as building blocks in survey development through webinars with international agricultural researchers. The community is also doing further research into tagging existing survey data with ontology terms from the 100Q to improve reusability.

Harmonization key to the fair use of data

Bengamisa, DRC. (Photo: Axel Fassio / CIFOR)
Bengamisa, DRC. (Photo: Axel Fassio / CIFOR)

Managing shared data is becoming increasingly important as we move towards an open data world, said Gideon Kruseman, leader of the CoP SED and author of the report.

“For shareable data to be actionable, it needs to be FAIR: findable, accessible, interoperable and reusable. This is the heart of the Community of Practice on Socio-Economic Data’s work.”

At the moment, international agricultural household survey data is disorganized; the proliferation of survey tools and indicators lead to datasets which are often poorly documented and have limited interoperability, explained Kruseman.

It’s estimated that CGIAR—the world’s largest network of agricultural researchers—conducts interviews with around 180,000 farmers per year. However, these interviews have lacked standardization in the socioeconomic domain for decades, leading to holes in our understanding of the agriculture, poverty, nutrition, and gender characteristics of these households.

The 100Q tool has been systematically designed to enable the quantification of interactions between different components and outcomes of agricultural systems, including productivity and human welfare at the farm and household level, said Kruseman, a Foresight and Ex-Ante Research Leader at the International Maize and Wheat Improvement Center (CIMMYT).

Streamlining survey data through the world’s largest agricultural research network

Aerial view of the landscape around Halimun Salak National Park, West Java, Indonesia. (Photo: Kate Evans/CIFOR)
Aerial view of the landscape around Halimun Salak National Park, West Java, Indonesia. (Photo: Kate Evans/CIFOR)

Using these building blocks should become standard practice across CGIAR. The researchers hope standardization across all CGIAR institutes will allow for easier application of big data methods for analyzing the household level data themselves, as well as for linking these data to other larger scale information sources like spatial crop yield data, climate data, market access data, and roadmap data.

Researchers from several CGIAR research organizations, the Food and Agriculture Organization of the United Nations, and agricultural nonprofits worked to create the common layout for household surveys and the sets of ontologies underpinning the information to be collected.

“Being able to reuse data is extremely valuable. If household survey data is readily reusable, existing data sets can be used as baselines. It allows us to easily assess how welfare indicators vary across populations and different agro-ecological and socioeconomic conditions, as well as how they may change over time,” Kruseman said.

“It also improves the effectiveness of interventions and the trade-offs between outcomes, which may be shaped by household structure, farm management, and the wider social-environmental.”

CoP SED researchers work in three groups towards improving socioeconomic data interoperability. The 100Q working group focuses on identifying key indicators and related questions that are commonly used and could be used as a standard approach to ensure data sets are comparable over time and space. The working group SEONT focuses on the development of a socioeconomic ontology with accepted standardized terms to be used in controlled vocabularies linked to socioeconomic data sets. The working group OIMS focuses on the development of a flexible and extensible, ontology-agnostic, human-intelligible, and machine-readable metadata schema to accompany socioeconomic data sets.

For more information, visit the CoP SED webpage.

Cover photo: A paddy in front of a house in Tri Budi Syukur village, West Lampung regency, Lampung province, Indonesia. (Photo: Ulet Ifansasti/CIFOR)

Out of the classroom and into the field

When farmers in rural Kasungu, Malawi, are asked to list some of the challenges they face, much of what they say is to be expected. Crop pests, climate change, low soil fertility, and lack of improved seed and purchasing power — these are faced by smallholders across districts and the country as a whole.

But there is one surprising response. “Sometimes it’s difficult to get feedback from research centers on what does and doesn’t work,” says Maxwell Phiri.

Capacity building and knowledge transfer are key elements of agricultural development work, but there is often a gap between research, outreach and extension to farmers. New techniques and crop varieties tested at experimental stations can take a while to reach rural communities, who want solutions to the challenges they are facing in real time.

“But now it’s easier for us because the research is being done here.” Phiri points to the farmer field school in Msambafumu, a few hectares of communal land where 23 smallholders from the surrounding area meet regularly to learn about new technologies and farming techniques.

At the school they have been able to learn first-hand about improved and new agricultural practices and technologies. Following an introduction to climate-smart agriculture practices, they have moved on to agroforestry, learning about the benefits of intercropping drought-tolerant maize with pigeon peas and fruit trees. “We’ve even started practicing climate-smart agriculture in our own fields and planting agroforestry trees,” says Ntendeleza Mwale, a member of the field school in Msambafumu and chair of a network of 17 schools in the district. “Now everybody is growing fruit trees at home.”

“We didn’t know that potatoes, millet and sorghum could grow here, because we thought the soil wasn’t suitable, but the school has showed us what is possible,” explains Maxwell Phiri (first from left). “You learn a lot of things in a group that you might not learn on your own.” (Photo: Emma Orchardson/CIMMYT)
“We didn’t know that potatoes, millet and sorghum could grow here, because we thought the soil wasn’t suitable, but the school has showed us what is possible,” explains Maxwell Phiri (first from left). “You learn a lot of things in a group that you might not learn on your own.” (Photo: Emma Orchardson/CIMMYT)

Back to school

A farmer field school is a group of 25-30 farmers, led by a master trainer, who come together to solve common challenges faced in their local area, such as soil degradation or poor water availability. Since 2014, the Government of Malawi has been using this innovative approach to help farmers learn about and improve their production systems through the KULIMA project. With support from a CGIAR consortium led by the International Potato Center (CIP), 15 schools have been established across the districts of Kasungu, Mulanje and Mzuzu, including master training hubs and outreach centers run by NGOs.

The overall objective is to increase agricultural productivity and diversification by upscaling climate-smart technologies,” explains Mathinda Sopo, a monitoring and evaluation specialist and project manager at the International Maize and Wheat Improvement Center (CIMMYT). “Master trainer candidates are selected in each district and then invited to sit down with researchers and identify their core production challenges. The plans are then developed collaboratively and based on agroecological zone.”

In February 2020, a new cohort of trainees arrived at the Lisasadizi Regional Training Center in Kasungu, where the Ministry of Agriculture coordinates trainings on four key topics — soil health, climate change, pests and diseases and nutrition — in collaboration with the UN Food and Agriculture Organization (FAO) and the CGIAR consortium, supported by the German development agency GIZ.

The 13-week residential course is mostly practical but does include some classroom-based study and a community outreach component. Guided by a facilitator — usually a researcher or extension worker — participants are encouraged to learn from their experiences as they conduct experiments in their own fields, make observations and evaluate results throughout the cropping season. Outside of the core curriculum, they are free to investigate additional topics of their own choice.

After completing the course, master trainers move back to their respective areas to help train facilitators, who are ultimately responsible for running the field schools with support from NGO extension staff.

“The CGIAR centers bring in technologies they want to promote like improved crop varieties, but there are ongoing evaluations throughout the process to respond to newly emerging challenges such as fall armyworm,” says Sopo. “There’s also a review at the end of each season to discuss lessons learned and knowledge gaps.”

CIMMYT, for example, is focusing on promoting drought-tolerant, quality protein maize (QPM), and provitamin A maize, as well as climate-smart agriculture practices. At Msambafumu, the group have been comparing five improved maize varieties with local ones. “So far we’ve seen that the new varieties have bigger yields and cob sizes,” says Mwale. “Varieties like Chitedze 2 QPM and MH43A are also early maturing and are more nutritious.”

Farmers at the field schools in Msambafumu and Tiyese, in Malawi, have been surprised to find that banana trees can be grown in their area. (Photo: Emma Orchardson/CIMMYT)
At the field school in Tiyese, Malawi, farmers are using two adjacent maize plots to compare the effects of leaving crop residue on their field. (Photo: Emma Orchardson/CIMMYT)
At the field school in Tiyese, Malawi, farmers are using two adjacent maize plots to compare the effects of leaving crop residue on their field. (Photo: Emma Orchardson/CIMMYT)

Learning by doing

A few kilometers down the road, in Galika village, members of the Tiyese field school have been learning how to control a variety of pests and diseases. So far, they have been taught about different pesticides and the benefits of using inoculant on soya beans and ground nuts to improve soil fertility, and how to identify and mitigate disease in susceptible potato varieties. They have also been learning how to apply Aflasafe while crops are still in the field to reduce aflatoxins in maize and groundnuts.

But the most pressing challenge is fall armyworm, says Matolino Zimba, a member of the Tiyese field school. “We’ve been trying new methods for controlling it,” he explains. “Last year we planted mucuna beans in our banana orchard as a cover crop. Later we soaked mucuna leaves in water and poured the solution on the infested maize and noticed that the worms were dying.”

Zimba is satisfied with the learning methods at the field school. “This approach is better for us because we get to see the process, rather than just receiving an explanation.”

Emily Kaponda agrees. She first joined the group after noticing that participating farmers were getting higher yields by using new planting methods. “The school has a smaller plot of land than I do, but their bundles of maize were much larger,” she explains.

Since joining the field school, she has learned how to increase her yields, how to conserve moisture in the soil using zero-tillage farming and the importance of diversifying her family’s diets. “We’re learning how we can use cassava or sweet potato as a starch, instead of only using maize.”

Zimba and Kaponda are both excited to be trying out QPM and provitamin A maize varieties, as well as new varieties of cassava, orange-fleshed sweet potato, improved groundnuts, biofortified beans and bananas. Much like their peers at Msambafumu, they had not known that many of these could be grown in the area, and the group has already started planning to multiply planting materials to use in their own fields next year.

“These groups are really inspirational,” says Sopo. “Most members are already practicing things they’ve learned at their school and are getting positive results.”

Sopo is already seeing success stories from schools established one year ago, but collaboration will need to be sustained to ensure lasting progress. A new research initiative, Development-Smart Innovations through Research in Agriculture (DeSIRA), will help to maintain the positive feedback loop by investigating emerging issues raised during on-farm experiments. “We can take farmer observations from the study plots to DeSIRA for further research, and the outputs from that will complement KULIMA.”

Farmers at the field school in Msambafumu, Malawi, begin preparing the soil for their next set of experiments. (Photo: Emma Orchardson/CIMMYT)
Farmers at the field school in Msambafumu, Malawi, begin preparing the soil for their next set of experiments. (Photo: Emma Orchardson/CIMMYT)
Matolino Zimba checks on the emerging maize crop, which has been covered in crop residue to conserve moisture, at the field school in Tiyese, Malawi. (Photo: Emma Orchardson/CIMMYT)
Matolino Zimba checks on the emerging maize crop, which has been covered in crop residue to conserve moisture, at the field school in Tiyese, Malawi. (Photo: Emma Orchardson/CIMMYT)

Fall Armyworm R4D and Management

The fall armyworm (Spodoptera frugiperda; FAW), an insect-pest native to the Americas, has been a persistent and serious pest of maize for over a century. Public and private sector scientists in the Americas – particularly in Brazil and the United States – have developed and deployed effective strategies to control the pest.

Incidence of fall armyworm was first reported in Nigeria in January 2016, and subsequently in over 40 countries across Africa. In Asia, the pest was first reported in India in mid-2018, and has since emerged in several countries in the Asia-Pacific. Strategies for fall armyworm management in both Africa and the Asia-Pacific can benefit immensely from those already fine-tuned in the Americas, with necessary customization to fit local agroecologies and farming systems. There is also a need to intensively work on various aspects of integrated pest management (IPM) for effective and sustainable fall armyworm management. This includes Research-for-Development (R4D) for discovering, validating and piloting best-bet technological interventions or management practices.

This project brings together the expertise of key institutions with long-standing experience in effectively dealing with transboundary insect-pests to strengthen the capacities of Africa- and Asia-based institutions in fall armyworm management. The goal is to develop and disseminate comprehensive, expert approved, IPM-based fall armyworm pest management practices that will enable various stakeholders – especially farmers, extension agents, and pest control advisors – to effectively scout, determine the need for, and appropriately apply specific interventions to control the fall armyworm in maize and other crops in Africa and Asia.

Objectives

  • Develop, publish and disseminate comprehensive, expert-approved, IPM-based information resources for various stakeholder groups
  • Integrate traits for fall armyworm resistance into the CIMMYT breeding pipeline
  • Establish a fall armyworm Research-for-Development (R4D) Consortium

CIMMYT research at the forefront of the digital revolution in African agriculture

At the African Green Revolution Forum 2019, global and African leaders come together to develop actionable plans that will move African agriculture forward. This year, the forum is taking place in Ghana on the week of September 3, 2019, under the theme “Grow digital: Leveraging digital transformation to drive sustainable food systems in Africa.” Participants will explore the practical application of the emerging elements of the digital era such as big data, blockchain, digital IDs, drones, machine learning, robotics, and sensors.

CIMMYT’s work in this area is showcased in a new leaflet entitled “Data-driven solutions for Africa: Using smart tools to combat climate change.” The leaflet highlights innovations such as crowdsourced crop disease tracking and response systems in Ethiopia, low-cost imaging tools to speed up the development of hardier varieties, and combining geospatial data with crop models to predict climate change and deliver personalized recommendations to farmers.

A new publication highlights the diverse ways in which CIMMYT's research is propelling the digital transformation of agriculture in Africa.
A new publication highlights the diverse ways in which CIMMYT’s research is propelling the digital transformation of agriculture in Africa.

Speaking at the conference attended by 2,000 delegates and high-level dignitaries, CIMMYT Director General Martin Kropff will give the keynote remarks during the session “Digital innovations to strengthen resilience for smallholders in African food systems” on September 3. This panel discussion will focus on how the data revolution can support African smallholder farmers to adapt quickly challenges like recurrent droughts or emerging pests, including the invasive fall armyworm. The Global Resilience Partnership (GRP), the Food and Agriculture Organization of the United Nations (FAO), CABI, and the Minister of Agriculture of Burkina Faso will be among the other panelists in the session.

The same day, CIMMYT will also participate to an important “Agronomy at scale through data for good” panel discussion with speakers from the Bill & Melinda Gates Foundation, research organizations and private companies. The session will highlight how digital agriculture could help deliver better targeted, site-specific agronomic advice to small farmers.

During the forum, the CIMMYT delegation will seek collaborations in other important drivers of change like gender transformation of food systems and smallholder mechanization.

They will join public sector leaders, researchers, agri-preneurs, business leaders and farmers in outlining how to leverage the growth in digital technologies to transform food systems and agricultural livelihoods in Africa.

African leaders rely on science and technology to improve food security

Rural areas in Africa are facing unprecedented challenges. From high levels of rural-urban migration to the need to maintain crop production and food security under the added stress of climate change, rural areas need investment and support. The recent Africa Food Security Leadership Dialogue brought together key regional actors to discuss the current situation as well as ways to catalyze actions and financing to help address Africa’s worsening food security crisis under climate change.

Heads of state, ministers of agriculture and finance, heads of international institutions and regional economic commissions, Nobel laureates, and eminent scientists took part in the dialogue in Kigali, Rwanda, on August 5 and 6, 2019.

This high-level meeting was convened by core partners including the African Union Commission (AUC), the African Development Bank (AfDB), the Food and Agriculture Organization of the United Nations (FAO), the International Fund for Agricultural Development (IFAD), and the World Bank.

The Director General of the International Maize and Wheat Improvement Center (CIMMYT), Martin Kropff, participated in a session entitled “Leveraging science to end hunger by 2025”, where he discussed the challenges to adapt Africa’s wheat sector to climate change, and what CIMMYT is doing to help. Demand for wheat is growing faster than any other commodity, and sub-Saharan Africa has tremendous potential to increase wheat production. People in Africa consume nearly 47 million tons of wheat a year. However, more than 80% of that — 39 million tons— is imported and used for human consumption, costing the countries billions of dollars. Kropff discussed the great strides CIMMYT has made in supporting wheat production on the continent despite biological challenges such as Ug99, a dangerous strain of wheat rust native to east Africa.

“The potential for wheat production in Africa is tremendous; existing varieties already realize very high yields but poor agronomic practices often result in low yields,” Kropff said. “The challenges we have to tackle together are as much in reshaping policies in favor of wheat and develop the wheat market and surrounding infrastructure. Africa’s environment is friendly for wheat production, but it needs the right supporting policies to develop a sustainable wheat market.”

Kropff highlighted Ethiopia’s case. “Ethiopia has decided to become self-sufficient in wheat by 2025. CIMMYT is already talking to the government and working with the national system to assure the best varieties and technologies will be used. We are ready to do this with every single African nation that is interested in producing quality wheat.”

Farmer Galana Mulatu harvests a wheat research plot in Ethiopia. (Photo: P.Lowe/CIMMYT)
Farmer Galana Mulatu harvests a wheat research plot in Ethiopia. (Photo: P.Lowe/CIMMYT)

Climate change is also posing dire threats to maize, a key staple crop in sub-Saharan Africa.

We talked to Cosmos Magorokosho, CIMMYT researcher and project leader of the Stress Tolerant Maize for Africa (STMA) project, who attended the dialogue, on what CIMMYT can do to better support farmers in Africa’s rural communities.

How can projects such as Stress Tolerant Maize for Africa contribute to protecting food security in Africa in the face of climate change?

Stress-tolerant maize varieties can contribute by cushioning farmers against total crop failures in case of drought and heat stress, among other stresses during the growing season. In addition, stress-tolerant varieties can also yield well under good growing conditions, therefore benefiting farmers both during difficult growing seasons as well as those seasons when conditions are favorable for maize growth.

What can be done to support rural areas and smallholder farmers in Africa to improve food security?

Rural areas and smallholder farmers need support with climate resilient crop varieties, supporting agronomic practices, environment conserving farming practices, labor and drudgery- reducing farm operations, access to affordable finance, and rewarding markets for their produce.

What role can international research organizations such as CIMMYT play in this?

International agricultural research can unlock the potential of small holder farmers through the generation of new appropriate technologies, testing and helping farmers adopt those technologies, refining and fine tuning of new technologies, as well as scaling up and out of farmer-demanded technologies. International agriculture research can influence policy across and within borders, political divide, religion, ecologies, and diversity of farmers.

What would it take for CIMMYT to effectively move science from the lab and package it into solutions that can be disseminated and adopted by majority of small family farms in Africa?

CIMMYT should keep and broaden its engagement with farmers, policy makers, and continue with capacity enhancement of partners to reach scale and bring new cutting-edge smallholder-farmer appropriate technologies to farmers’ fields in the shortest possible timeframe.

Scientists use DNA fingerprinting to gauge the spread of modern wheat in Afghanistan

Wheat is Afghanistan’s number-one staple crop, but the country doesn’t grow enough and must import millions of tons of grain each year to satisfy domestic demand.
Wheat is Afghanistan’s number-one staple crop, but the country does not grow enough and must import millions of tons of grain each year to satisfy domestic demand.

Despite the severe social and political unrest that constrain agriculture in Afghanistan, many farmers are growing high-yielding, disease resistant varieties developed through international, science-based breeding and made available to farmers as part of partnerships with national wheat experts and seed producers.

These and other findings have emerged from the first-ever large-scale use of DNA fingerprinting to assess Afghanistan farmers’ adoption of improved wheat varieties, which are replacing less productive local varieties and landraces, according to a paper published yesterday in the science journal BMC Genomics.

The study is part of an activity supported between 2003 and 2018 by the Australian Department of Foreign Affairs and Trade, through which the Agricultural Research Institute of Afghanistan and the International Maize and Wheat Improvement Center (CIMMYT) introduced, tested, and released improved wheat varieties.

“As part of our study, we established an extensive ‘reference library’ of released varieties, elite breeding lines, and Afghan wheat landraces,” said Susanne Dreisigacker, wheat molecular breeder at CIMMYT and lead author of the new paper.

“We then compared wheat collected on farmers’ fields with the reference library. Of the 560 wheat samples collected in 4 provinces during 2015-16, farmers misidentified more than 40%, saying they were of a different variety from that which our DNA analyses later identified.”

Wheat is the most important staple crop in Afghanistan — more than 20 million of the country’s rural inhabitants depend on it — but wheat production is unstable and Afghanistan has been importing between 2 and 3 million tons of grain each year to meet demand.

Over half of the population lives below the poverty line, with high rates of malnutrition. A key development aim in Afghanistan is to foster improved agronomic practices and the use of high quality seed of improved wheat varieties, which together can raise yields by over 50%.

“Fungal diseases, particularly yellow rust and stem rust, pose grave threats to wheat in the country,” said Eric Huttner, research program manager for crops at the Australian Centre for International Agricultural Research (ACIAR) and co-author of the present paper. “It’s crucial to know which wheat varieties are being grown where, in order to replace the susceptible ones with high-performing, disease resistant varieties.”

Varietal adoption studies typically rely on questionnaires completed by breeders, extension services, seed producers, seed suppliers, and farmers, but such surveys are complicated, expensive, and often inaccurate.

“DNA fingerprinting resolves uncertainties regarding adoption and improves related socioeconomic research and farm policies,” Huttner explained, adding that for plant breeding this technology has been used mostly to protect intellectual property, such as registered breeding lines and varieties in more developed economies.

This new study was commissioned by ACIAR as a response to a request from the Government of Afghanistan for assistance in characterizing the Afghan wheat gene bank, according to Huttner.

“This provided the reference library against which farmers’ samples could be compared,” he explained. “Accurately identifying the varieties that farmers grow is key evidence on the impact of introducing improved varieties and will shape our future research

Joint research and development efforts involving CIMMYT, ACIAR, the Food and Agriculture Organization (FAO) of the United Nations, the International Centre of Agricultural Research in Dry Areas (ICARDA), French Cooperation, and Afghanistan’s Ministry of Agriculture, Irrigation and Livestock (MAIL) and Agricultural Research Institute (ARIA) have introduced more than 400 modern, disease-resistant wheat varieties over the last two decades. Nearly 75% of the wheat grown in the areas surveyed for this study comes from these improved varieties.

“New sequencing technologies are increasingly affordable and their cost will continue to fall,” said Dreisigacker. “Expanded use of DNA fingerprinting can easily and accurately identify the wheat cultivars in farmers’ fields, thus helping to target breeding, agronomy, and development efforts for better food security and farmer livelihoods.”


For more information, or to arrange interviews with the researchers, please contact:

Marcia MacNeil, Wheat Communications Officer, CIMMYT
M.MacNeil@cgiar.org, +52 (55) 5804 2004, ext. 2070

Rodrigo Ordóñez, Communications Manager, CIMMYT
r.ordonez@cgiar.org, +52 (55) 5804 2004, ext. 1167

About CIMMYT
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of CGIAR and leads the CGIAR Research Programs on Maize and Wheat, and the Excellence in Breeding Platform. The center receives support from national governments, foundations, development banks and other public and private agencies.

About ACIAR
As Australia’s specialist international agricultural research for development agency, the Australian Centre for International Agricultural Research (ACIAR) brokers and funds research partnerships between Australian scientists and their counterparts in developing countries. Since 1982, ACIAR has supported research projects in eastern and southern Africa, East Asia, South and West Asia and the Pacific, focusing on crops, agribusiness, horticulture, forestry, livestock, fisheries, water and climate, social sciences, and soil and land management. ACIAR has commissioned and managed more than 1,500 research projects in 36 countries, partnering with 150 institutions along with more than 50 Australian research organizations.

About Afghanistan’s Ministry of Agriculture, Irrigation and Livestock
The Ministry of Agriculture, Irrigation and Livestock (MAIL) of the Islamic Republic of Afghanistan works on the development and modernization of agriculture, livestock and horticulture. The ministry launches programs to support the farmers, manage natural resources, and strengthen agricultural economics. Its programs include the promotion and introduction of higher-value economic crops, strengthening traditional products, identifying and publishing farm-tailored land technologies, boosting cooperative programs, agricultural economics, and export with marketing.

Research, innovation, partnerships, impact

On May 15, 2019, as part of the CGIAR System Council meeting held at the ILRI campus in Addis Ababa, Ethiopia, around 200 Ethiopian and international research and development stakeholders convened for the CGIAR Agriculture Research for Development Knowledge Share Fair. This exhibition offered a rare opportunity to bring the country’s major development investors together to learn and exchange about how CGIAR investments in Ethiopia help farmers and food systems be more productive, sustainable, climate resilient, nutritious, and inclusive.

Under the title One CGIAR — greater than the sum of its parts — the event offered the opportunity to highlight close partnerships between CGIAR centers, the Ethiopian government and key partners including private companies, civil society organizations and funding partners. The fair was organized around the five global challenges from CGIAR’s business plan: planetary boundaries, sustaining food availability, promoting equality of opportunity, securing public health, and creating jobs and growth. CGIAR and its partners exhibited collaborative work documenting the successes and lessons in working through an integrated approach.

There were 36 displays in total, 5 of which were presented by CIMMYT team members. Below are the five posters presented.

How can the data revolution help deliver better agronomy to African smallholder farmers?

This sustainability display showed scalable approaches and tools to generate site-specific agronomic advice, developed through the Taking Maize Agronomy to Scale in Africa (TAMASA) project in Nigeria, Tanzania and Ethiopia.

Maize and wheat: Strategic crops to fill Ethiopia’s food basket

This poster describes how CGIAR works with Ethiopia’s research & development sector to support national food security priorities.

Addressing gender norms in Ethiopia’s wheat sector

Research shows that restrictive gender norms prevent women’s ability to innovate and become productive. This significantly impacts Ethiopia’s economy (over 1% GDP) and family welfare and food security.

Quality Protein Maize (QPM) for better nutrition in Ethiopia

With the financial support of the government of Canada, CIMMYT together with national partners tested and validated Quality Protein Maize as an alternative to protein intake among poor consumers.

Appropriate small-scale mechanization

The introduction of small-scale mechanization into the Ethiopian agriculture sector has the potential to create thousands of jobs in machinery service provision along the farming value chain.

About the CGIAR System Council

The CGIAR System Council is the strategic decision-making body of the CGIAR System that keeps under review the strategy, mission, impact and continued relevancy of the System as a whole. The Council meets face-to-face not less than twice per year and conducts business electronically between sessions. Additional meetings can be held if necessary.

Related outputs from the Share Fair 2019

Candidate for FAO leadership Qu Dongyu visits CIMMYT’s headquarters to sign MoU and strengthen collaboration

Vice minister Qu (center) and his delegation stand for a group photo with CIMMYT's leadership and Chinese students and scientists. (Photo: Gerardo Mejía/CIMMYT)
Vice minister Qu (center) and his delegation stand for a group photo with CIMMYT’s leadership and Chinese students and scientists. (Photo: Gerardo Mejía/CIMMYT)

Qu Dongyu, China’s Vice Minister of Agriculture and Rural Affairs, and candidate for the position of Director-General of the Food and Agriculture Organization of the United Nations (FAO), visited the global headquarters of the International Maize and Wheat Improvement Center (CIMMYT) in Mexico on March 16, 2019. He had already visited CIMMYT in 2006.

Vice minister Qu was greeted by students and CIMMYT scientists from China, the director general, the deputy director general and members of the management team. Qu and his delegation learned about CIMMYT’s latest initiatives and toured the campus.

CIMMYT’s director general Martin Kropff explained the organization’s strategic focus on agri-food systems: “Our mandate is on maize and wheat but we think broadly. Our researchers use a systems approach and work on using these two crops to improve peoples’ livelihoods, which is our ultimate goal.”

Qu expressed his career-long efforts for integrating multi-disciplinary approaches to tackle global challenges and said that he was “happy to see CIMMYT combining breeding — for which CIMMYT is famous — with value-added approaches to bring together science, farmers and industry.”

With innovation and the end user playing key roles in the vice minister’s agenda, Qu enjoyed learning about the Excellence in Breeding Platform’s target product profiles work and two-way communication channels from innovation hubs in Mexico.

The director of CIMMYT’s Genetic Resources program, Kevin Pixley (third from left), shows one of the 28,000 unique maize seed varieties housed at CIMMYT’s genebank, the Wellhausen-Anderson Plant Genetic Resources Center. (Photo: Gerardo Mejía/CIMMYT)
The director of CIMMYT’s Genetic Resources program, Kevin Pixley (third from left), shows one of the 28,000 unique maize seed varieties housed at CIMMYT’s genebank, the Wellhausen-Anderson Plant Genetic Resources Center. (Photo: Gerardo Mejía/CIMMYT)

During the visit, Qu was also introduced to CIMMYT’s small-scale machinery, which is used around the world to sustainably intensify production. CIMMYT often sources machines, such as seed planters and harvesters, from China to provide effective and efficient solutions that add tangible value for smallholders at an appropriate price point.

Bringing together advanced technology and inexpensive tools, CIMMYT pioneered the GreenSeeker, a handheld tool to advise farmers on the appropriate amount of nitrogen fertilizer to add to their crops. This tool gives farmers the double benefit of increased profitability and reduced negative environmental impacts. The director of CIMMYT’s Sustainable Intensification program, Bruno Gérard, showed a machine-mountable version of this tool, which could connect to a two-wheel tractor and automatically add the appropriate amount of fertilizer.

Gérard also explained CIMMYT’s efforts to develop mechanization as a service, pointing to the manual on developing mechanization service providers, jointly developed by CIMMYT and FAO: “Mechanization has the potential to improve environmental sustainability, farm productivity and reduce labor drudgery. If mechanization is to be adopted at scale and sustainably, in most cases it has to be provided through service provision to smallholder farmers.”

At the end of the visit, to underline the shared commitment to collaboration that began in the 1970s, Kropff and Qu signed a memorandum of understanding for the establishment of a China-CIMMYT joint laboratory for maize and wheat improvement.

CIMMYT's director general Martin Kropff (left) and vice minister Qu Dongyu sign a memorandum of understanding for the establishment of a joint laboratory for maize and wheat improvement. (Photo: Gerardo Mejía/CIMMYT)
CIMMYT’s director general Martin Kropff (left) and vice minister Qu Dongyu sign a memorandum of understanding for the establishment of a joint laboratory for maize and wheat improvement. (Photo: Gerardo Mejía/CIMMYT)

CIMMYT drought tolerant maize: A key innovation for millions of farmers, says FAO

As climate experts forecast another climate-warming El Nino in early 2019, maize varieties developed under the Drought Tolerant Maize for Africa (DTMA) initiative represent low-cost innovations that could improve the crop’s climate resilience and the livelihoods of millions family farmers across Africa, according to the UN Food and Agriculture Organization (FAO).

Drought tolerant (DT) maize was among 20 success stories featured at the Innovation Fair of the International Symposium on Agricultural Innovation for Family Farmers, organized and hosted by FAO in Rome from 21 to 23 November, 2018. Drawing more than 500 participants from farmer associations, international organizations, United Nations agencies, governments, research institutions and the private sector, the Fair aimed to devise and recommend actions that unlock the potential of agricultural innovation.

Drought-tolerant seeds: An affordable and effective way to cope with dry weather

‘’Since early 1990s, farmers in Zimbabwe face erratic rains and maize crops often fail due to frequent droughts,’’ said Cosmos Magorokosho, maize breeder based at the Harare, Zimbabwe, office of the International Maize and Wheat Improvement Center (CIMMYT).

Led by CIMMYT, funded by the Bill & Melinda Gates Foundation and the Howard Buffett Foundation, and involving 13 national maize breeding programs and various seed companies across Africa, DTMA is responsible for more than 160 new maize varieties, including 15 in Zimbabwe that yield 25 to 30 percent more than conventional varieties under dry conditions and perform as well as those varieties under normal rainfall. The latter was crucial for convincing seed companies to take up and market DT maize, according to Magorokosho.

In one study in drought-prone southern Zimbabwe, farmers using the DT varieties in dry years were able to harvest up to 600 kilograms more maize per hectare — worth $240 and enough maize for 9 months for an average family of 6 people — than farmers who sowed conventional varieties. The added food security comes at no additional cost and, if farmers choose to sell the grain, it brings extra income for other household needs.

Under the Stress Tolerant Maize for Africa initiative, CIMMYT and partners are continuing to develop maize varieties that cope not only with drought but with common constraints such as insect pests, diseases including Maize Lethal Necrosis and infertile soils.

Public-private partnerships enable demand-driven innovation

Adopting new technology or practices can represent unacceptable risks for resource-poor farming families, who live without the official safety nets enjoyed by peers in prosperous economies and will simply starve if their crops fail. Involving farmers, seed companies and other end users in development is essential for agricultural innovations to be widely adopted and sustainable, according to Bram Govaerts, global director of innovative business strategies at CIMMYT.

“Dialogue with global food processing companies can create market opportunities for smallholder farmers through approaches like local, responsible sourcing,’’ said Govaerts, speaking during the fair’s panel ‘Engaging the private sector to accelerate agricultural innovation.’

“More than 3,300 Mexican farmers on more than 35,000 hectares in 5 states will benefit from responsible sourcing arrangements, whereby the companies pay them to grow the grain using sustainable farming practices,” Govaerts explained, adding that the farmers will supply an estimated 400,000 tons of grain to participating companies in the next 3 to 5 years.

Mexico’s Agriculture Department (SAGARPA) supports these and other public-private partnerships through its investments in MasAgro, which studies, develops and transfers innovative farming practices and technologies to the field, with emphasis on family farmers.

In September, the FAO’s Regional Office for Latin America and the Caribbean acknowledged MasAgro as a replicable and scalable initiative that could contribute significantly to sustainable rural development in that region.

These two impactful examples show that agricultural innovation can only succeed through well-thought research and development partnerships, and building such collaborations is a science in itself.