Skip to main content

funder_partner: Food and Agriculture Organization of the United Nations (FAO)

Solar powered dryers boost peanut production in Togo

Solar powered peanut dryers in Togo are helping women-run cooperatives reduce their workload and increase their profits.

A number of West African countries have climate and soil well-suited to groundnut cultivation. In the second half of the twentieth century, the region became a world leader in peanut production. In Togo, peanuts do well, but problems with postharvest processing have kept this crop performing well below its potential.

However, the introduction of the solar powered dryers has had a significant positive impact on the production and preservation of a vital crop for the local population.

From peanut stews and sauces that are staples of national cuisine to overseas export of peanut products, there is no shortage of uses for this groundnut in Togo. However, smallholding farmers struggle to preserve their entire crop in large part because of aflatoxins, which thrive when conditions are too moist and ruin peanuts.

“Peanuts are a very perishable commodity and they can spoil if not stored properly for processing,” said AĂŻssetou Koura, president of the peanut farmer cooperative in Koumonde.

This is particularly true for smallholding peanut farmers, which in Togo includes many women. The established method for drying peanuts is to lay them out in the open air, which is a labor-intensive process that leaves the crop exposed to unexpected rains and contamination by pests. “In the past, we suffered huge losses,” Aïssetou explained.

Aicha Gaba from the N’kani N’kana cooperative works with a solar dryer in Koumonde, Togo. (Photo: LarĂ© B. Penn/University of Lome)

A better way to dry

In 2021, the introduction of solar dryers began to change things dramatically for peanut farmers in cooperatives from Tovegan to Dapaong. In collaboration with the United Nations Food and Agriculture Organization (FAO), the Green Innovation Centers for the Agriculture and Food Sector (GIC) in Togo helped a local manufacturer, Guema Concept, develop solar dryer technology for local peanut farmers from plans made by the University of Hohenheim.

Launched in 2014 by Germany’s Federal Ministry for Economic Cooperation and Development’s special initiative One World No Hunger, GIC collaborates with the International Maize and Wheat Improvement Center (CIMMYT) to increase agricultural mechanization in 14 countries in Africa and two in Asia.

The dryers are equipped with a ventilation system and a power kit that includes solar panels and a battery so they can operate during periods of reduced sunlight. They have a capacity of 12 kilograms and can complete a drying cycle in as little as two hours, which is about one quarter of the time a manual drying cycle takes. Depending on the solar exposure, cooperatives like the one in Koumonde can perform three or four cycles in a day.

“We have found a solution by preserving our products with the solar dryer,” AĂŻssetou said.

GIC has helped five smallholding farmer cooperatives procure solar dyers across Togo, and more than 50 women farmers are members of these groups whose work is benefitting from this technology.

Farmers like Aicha Gaba are also increasing their profit because the solar dryers allow them to do more work with fewer laborers.

“Our cooperative dries peanuts with only two people via the solar dryer, unlike conventional open drying, which requires five people to spread, turn, monitor and collect the peanuts,” Gaba said.

“This process reduces the workers’ wages and then saves us the money of three workers, which is a good thing for us.”

The new technology is producing better peanuts thanks to consistent moisture and temperature levels and faster processing speeds, said Djéri Bossa, a member of the cooperative in Bassar.

“Thanks to the solar dryers offered by GIC Togo, we can freely dry our products in good conditions,” Bossa explained.

“The products derived from the processing of peanuts are of improved quality, unlike the conventional open-drying method we used.”

All is not sunny

Despite the initial success of the solar dryers, there are challenges that remain for scaling up this innovation. The dyers are quite heavy and, for smallholding women, it can be difficult to maneuver the machines by themselves. At the same time, farmers say that – even with the greater volume the dryers have helped them achieve – they would still like a higher-capacity machine.

But even with the need for lighter, harder-working dryers, there is enormous potential for this innovation to spread to new areas, bring additional production and income to smallholding farmers (including many women), and help make groundnuts a bigger piece of the economic pie in Togo.

Cover photo: Smallholding peanut farmers Aicha Gaba and Aïssetou Koura lay peanuts into a solar dryer in Koumonde, Togo. (Photo: Laré B. Penn/University of Lome)

Thank you to our partners, Laré B. Penn (University of Lomé) and Johanna Steinkuehler (GIZ Togo).

The importance of germplasm in protecting nature

At COP15, Sarah Hearne gives an overview of the CGIAR Allele Mining Initiative projects and their potential role in conserving biodiversity and nature. (Photo: Michael Halewood/Alliance of Bioversity International and CIAT)

Prioritizing the protection of biodiversity is an essential part of mitigating and adapting to the effects of climate change and global warming. At the 15th meeting of the Conference of the Parties to the UN Convention on Biological Diversity (CBD) (COP15), held between December 7-19 in Montreal, Canada, emphasis was placed on the important role of nature in meeting the Sustainable Development Goals (SDGs), proposing the adoption of a bold global biodiversity framework that addresses the key drivers of nature loss to secure health and wellbeing for humanity and for the planet.

On December 7, scientists from the International Maize and Wheat Improvement Center (CIMMYT), together with colleagues from CGIAR research centers and the secretariat of the International Treaty on Plant Genetic Resources for Food and Agriculture, presented at a COP15 side event on how Digital sequence information (DSI) is changing the way genetic resources are used in agricultural research and development and implications for new benefit-sharing norms.

The session, organized by the CGIAR Initiative on Genebanks explored the role of DSI to conserve crop and livestock genetic diversity and explore and utilize that diversity in plant and animal breeding programs.

Attendees at the COP15 side event on DSI discover how genetic resources are used in research and development for agriculture. (Photo: Michael Halewood/Alliance of Bioversity International and CIAT)

Carolina Sansaloni, wheat germplasm bank curator and genotyping specialist, illustrated how DSI is being used in the CIMMYT wheat collection to analyze structure, redundancies, and gaps, further detailing how generation and use of DSI to conduct similar analyses within national genebanks in Latin America is being supported through collaborative efforts of CIMMYT and the Alliance of Bioversity and CIAT.

CIMMYT principal scientist Sarah Hearne focused on the application of DSI to interrogate broad swathes of crop genetic diversity for potential climate change adaptation, providing examples of work from the Allele Mining Initiative projects, Mining Useful Alleles and Fast Tracking Climate Solutions, alongside earlier work funded by the Mexican Government.

The take-home message was that genetic diversity and germplasm bank collections, when explored at “global scale” with modern tools and diverse partnerships, offer a powerful resource in the efforts to mitigate the impacts of climate change. This potential is only realized through appropriate generation and sharing of DSI generated from collections of many countries of origin.

Sansaloni and Hearne also contributed to a discussion paper, titled “Digital sequence information is changing the way genetic resources are used in agricultural research and development: implications for new benefit sharing norms”. This article, developed by scientists and germplasm law experts from across the CGIAR, provides a more detailed assessment of CGIAR use of DSI and the benefit sharing options being considered by the Contracting Parties to the Convention on Biological Diversity.

CIMMYT leads innovation sprint to deliver results to farmers rapidly

Smallholder farmers, the backbone of food systems around the world, are already facing negative impacts because of climate change. Time to adapt climate mitigation strategies is not a luxury they have. With that in mind, the Agriculture Innovation Mission for Climate (AIM4C) facilitates innovation sprints designed to leverage existing development activities to create a series of innovations in an expedited timeframe.

At the UN COP27 in Egypt, AIM4C announced its newest round of innovation sprints, including one led by the International Center for Maize and Wheat Improvement (CIMMYT) to enable smallholder farmers to achieve efficient and effective nitrogen fertilizer management. From 2022 to 2025, this sprint will steer US $90 million towards empowering small-scale producers in Africa (Kenya, Malawi, Morocco, Tanzania, and Zimbabwe), Asia (China, India, Laos and Pakistan), and Latin America (Guatemala and Mexico).

“When we talk to farmers, they tell us they want validated farming practices tailored to their specific conditions to achieve greater productivity and increase their climate resilience,” said Sieg Snapp, CIMMYT Sustainable Agrifood Systems (SAS) program director who is coordinating the sprint. “This sprint will help deliver those things rapidly by focusing on bolstering organic carbon in soil and lowering nitrous oxide emissions.”

Nitrogen in China

Working with the Chinese Academy of Agricultural Sciences (CAAS), the sprint will facilitate the development of improved versions of green manure crops, which are grown specifically for building and maintaining soil fertility and structures which are incorporated back into the soil, either directly, or after removal and composting. Green manure can significantly reduce the use of nitrogen-based fertilizers, which prime climate culprits.

“There are already green manure systems in place in China,” said Weidong Cao from CAAS, “but our efforts will integrate all the work being done to establish a framework for developing new green manure crops aid in their deployment across China.”

Triple wins in Kenya

The Kenya Climate Smart Climate Project, active since 2017, is increasing agricultural productivity and building resilience to climate change risks in the targeted smallholder farming and pastoral communities. The innovation sprint will help rapidly achieve three wins in technology development and dissemination, cutting-edge innovations, and developing sets of management practices all designed to increase productive, adaption of climate smart tech and methods, and reduce greenhouse gas (GHG) emissions.

Agricultural innovations in Pakistan

The Agricultural Innovation Program (AIP), a multi-disciplinary and multi-sectoral project funded by USAID, led by CIMMYT, and active in Pakistan since 2015, fosters the emergence of a dynamic, responsive, and competitive system of science and innovation that is ‘owned’ by Pakistan and catalyzes equitable growth in agricultural production, productivity, and value.

“From its beginning, AIP has been dedicated to building partnerships with local organizations and, smallholder farmers throughout Pakistan, which is very much in line with the objectives and goal as envisioned by Pakistan Vision 2025 and the Vision for Agriculture 2030, as Pakistan is a priority country for CIMMYT. However, a concerted effort is required from various players representing public and private sectors,” said Thakur Prasad Tiwari, senior scientist at CIMMYT. “Using that existing framework to deliver rapid climate smart innovations, the innovation sprint is well-situated to react to the needs of Pakistani farmers. “

Policies and partnerships for innovations in soil fertility management in Nepal

The Nepal Seed and Fertilizer (NSAF) project, funded by USAID and implemented by CIMMYT, facilitates sustainable increases in Nepal’s national crop productivity, farmer income, and household-level food and nutrition security. NSAF promotes the use of improved seeds and integrated soil fertility management technologies along with effective extension, including the use of digital and information and communications technologies. The project facilitated the National Soil Science Research Centre (NSSRC) to develop new domain specific fertilizer recommendations for rice, maize, and wheat to replace the 40 years old blanket recommendations.

Under NSAFs leadership, the Ministry of Agriculture and Livestock Development (MOALD) launched Asia’s first digital soil map and has coordinated governmental efforts to collect and analyze soil data to update the soil map and provide soil health cards to Nepal’s farmers. The project provides training to over 2000 farmers per year to apply ISFM principles and provides evidence to the MOALD to initiate a balanced soil fertility management program in Nepal and to revise the national fertilizer subsidy policy to promote balanced fertilizers. The project will also build efficient soil fertility management systems that significantly increase crop productivity and the marketing and distribution of climate smart and alternative fertilizer products and application methods.

Public-private partnerships accelerate access to innovations in South Asia

The Cereal Systems Initiative for South Asia (CSISA), established in 2009, has reached more than 8 million farmers by conducting applied research and bridging public and private sector divides in the context of rural ‘innovation hubs’ in Bangladesh, India, and Nepal. CSISA’s work has enabled farmers to adopt resource-conserving and climate-resilient technologies and improve their access to market information and enterprise development.

“Farmers in South Asia have become familiar with the value addition that participating in applied research can bring to innovations in their production systems,” said Timothy Krupnik, CIMMYT systems agronomist and senior scientist. “Moreover, CSISA’s work to address gaps between national and extension policies and practices as they pertain to integrated soil fertility management in the context of intensive cropping systems in South Asia has helped to accelerate farmers’ access to productivity-enhancing innovations.”

CSISA also emphasizes support for women farmers by improving their access and exposure to improved technological innovations, knowledge, and entrepreneurial skills.

Sustainable agriculture in Zambia

The Sustainable Intensification of Smallholder Farming systems in Zambia (SIFAZ) is a research project jointly implemented by the UN Food and Agriculture Organization (FAO), Zambia’s Ministry of Agriculture and CIMMYT designed to facilitate scaling-up of sustainable and climate smart crop production and land management practices within the three agro-ecological zones of Zambia. “The Innovation Sprint can take advantage of existing SIFAZ partnerships, especially with Zambia’s Ministry of Agriculture,” said Christian Thierfelder, CIMMYT scientist. “Already having governmental buy-in will enable quick development and dissemination of new sustainable intensification practices to increase productivity and profitability, enhance human and social benefits while reducing negative impacts on the environment.”

Cover photo: Paul Musembi Katiku, a field worker based in Kiboko, Kenya, weighs maize cobs harvested from a low nitrogen trial. (Florence Sipalla/CIMMYT)

Plant health data is critical for effective policy change

Learning to evaluate wheat stem rust, a significant cause of crop loss, in the field in Kenya. (Photo: Petr Kosina/CIMMYT)

With rising demand for food, it is more critical than ever to address the challenge of crop losses due to pests and diseases. Current limited understanding of the extent of the problem prevents the advancement and implementation of plant health solutions. Global scientific collaboration is integral to ensure policy recommendations are well-informed by robust evidence and therefore more likely to succeed in the long-term.

The issue of global burden of crop loss closely correlates with the objectives of the One CGIAR Plant Health Initiative, which aims to prevent and manage major pest and disease outbreaks through the development and deployment of inclusive innovations and by building effective national, regional, and global networks. The Initiative, which is being led by the International Maize and Wheat Improvement Center (CIMMYT), will support low- and middle-income countries in Africa, Asia, and Latin America to reduce crop losses due to pests and diseases, and improve food security and livelihoods for smallholder farmers.

Data-driven approaches

The Global Burden of Crop Loss project, which is run by the Centre for Agriculture and Bioscience International (CABI), is working to ensure that there is accurate data on the challenges posed by plant pests and diseases. Questions to understand include where crop losses are the highest, the causes behind these losses, and how best these they can be addressed.

Cambria Finegold, Global Director, Digital Development, CABI said, “If you are not measuring crop loss well, then you don’t know if the extraordinary $25.8 billion spent annually on agricultural research and development is working, or if we are spending it in the right ways.”

Research by the Plant Health Initiative will play a significant role in collecting and disseminating data on some major pests and diseases, which can guide scientists on which areas to prioritize, thereby contributing to an impactful research agenda.

Once data is gathered, CABI aims to inform decision-making for actors at the top levels of the plant health system and ensure that appropriate action is taken to safeguard global food security with the limited resources available.

Integrated pest management strategies have been key in dealing with fall armyworm in Africa and Asia. (Photo: B.M. Prasanna/CIMMYT)
Integrated pest management strategies have been key in dealing with fall armyworm in Africa and Asia. (Photo: B.M. Prasanna/CIMMYT)

Establishing global networks

The value of a data-driven approach was emphasized at a session organized by the Global Burden of Crop Loss on October 14 exploring evidence-based systems to tackle food security. This session was a side event of the UN Food and Agriculture Organization (FAO) Science and Innovation Forum, which this year focused on highlighting the centrality of science, technology and innovations for agrifood systems transformation.

Prasanna Boddupalli, One CGIAR Plant Health Initiative Lead and Director of CIMMYT’s Global Maize Program, explained how the Initiative will bridge knowledge gaps, build risk assessment and rapid response capability, improve integrated pest and disease management, design and deploy tools to prevent contamination of food chains, and promote gender-equitable and socially inclusive innovations for plant health.

With six devastating plant epidemics in Africa alone during the last decade and an increased number of climate change-induced droughts and floods, Boddupalli proposed a revitalized strategy using the objectives of the Plant Health Initiative.

Built on a foundation of partnerships, there are more than 80 national, regional, and international organizations involved in the Initiative across 40 countries in the Global South, in addition to the CGIAR research centers. Through this rapidly expanding collaboration, the focus will be on establishing regional diagnostic and surveillance networks and implementing Integrated Pest Management (IPM) and integrated mycotoxin management.

To address the need for evidence-based policy recommendations, Boddupalli explained the purpose of the Plant Health Innovation Platforms in Africa, Asia and Latin America, leveraging the partners’ research sites. Combining innovations from the CGIAR system, national partners and the private sector, these platforms will enable the co-creation and validation of pest and disease management packages, with the aim of significantly improving adoption of effective and affordable plant health innovations by smallholder farmers.

Removing the barriers for data sharing

The Plant Health Initiative team has recently collected and collated information from national partners and the private sector on actions needed to remove constraints on sharing pest and disease surveillance data. Potential solutions include improved training of national partners, joint research projects, pre-defined processes for data sharing, and focusing on work that meets national and regional priorities.

These approaches will inform the sharing of data collected through the Initiative. For example, researchers are gathering surveillance data on 15 crop pests affecting seven different plants in 25 countries, with the expectation of collecting more than 44,000 samples from 2,100 sites in 2022 alone, with plans for sharing the results with partner institutions.

Boddupalli also emphasized the importance of ramping up remote sensing and drone usage, wherever feasible, for diagnostics and surveillance. However, the current gaps in accessing data and computing facilities in the Global South need to be addressed to make this a reality.

“The OneCGIAR Plant Health Initiative and the Global Burden of Crop Loss project have excellent complementarity,” said Boddupalli. Both have an opportunity to generate and share robust data on crop loss due to existing and emerging crop pests and diseases and use this data to drive effective policy change on plant health management.”

About the Global Burden of Crop Loss:

The Global Burden of Crop Loss initiative is modelled after the Global Burden of Disease initiative in human health, which has transformed health policy and research, over the last 25 years through better use of data. 

The initiative aims to have a similar impact in agriculture, providing evidence to enable the global plant health community to generate actionable information and lead to a dramatic reduction in crop loss, resulting in increased food security and trade.

About the Centre for Agriculture and Bioscience International (CABI):

CABI is an international, inter-governmental, not-for-profit organization that improves people’s lives worldwide by providing information and applying scientific expertise to solve problems in agriculture and the environment.

Their approach involves putting information, skills and tools into people’s hands. CABI’s 49 Member Countries guide and influence their work which is delivered by scientific staff based in their global network of centers.

Zambia officials promote sustainable maize cropping practices for small-scale farmers

For the first time in Zambia, a special Ministry of Agriculture committee has endorsed innovative sustainable intensification practices to diversify maize-based farming systems and boost the food and nutritional security of millions of small farm households, while enriching depleted soils.

Zambia’s recently formed “National Advisory Committee for the Approval/Validation of Candidate Technologies or Agronomic Practices” approved in September the release to farmers of three new systems for better yields and soil maintenance: growing maize between “hedge-rows” of legume trees; or in rows side-by-side with grain legumes as strip crops; or on permanent, raised soil beds or ridges.

Legume trees and grain legumes enhance soil nitrogen and organic matter content, and legume grains themselves are a valuable, alternative food, rich in protein for rural households. Raised soil beds and ridges can keep soils oxygenated and productive when heavy rainfall floods the fields, as can often occur in northern and northwestern Zambia.

All three systems can be bundled with conservation agriculture approaches, which are based on the principles of minimum soil disturbance, keeping crop residues on the soil, and growing a more diverse selection of crops.

The improved maize cropping methods are a research outcome of the Sustainable Intensification of Smallholder Farming Systems in Zambia (SIFAZ) project, a partnership involving the Food and Agriculture Organization (FAO) of the United Nations, Zambia’s Ministry of Agriculture (MoA), and the International Maize and Wheat Improvement Centre (CIMMYT), with funding from the European Union (EU) and building in part on other results in Africa, including the Feed the Future-Africa Research in Sustainable Development for the Next Generation (Africa RISING) initiative.

“The official clearing of these transformative cropping technologies is a huge milestone for the project and for Zambia’s resource-poor farmers,” said Christian Thierfelder, CIMMYT principal cropping systems agronomist based in southern Africa who, as part of SIFAZ, is testing and disseminating maize cropping practices that boost harvests, enrich soils, and capture and conserve moisture. “We’re working closely with Zambia’s MoA and the FAO, planning research trials, demonstrations and promotion to reach 20,000 farmers as a first step.”

An essential crop

Maize is the number-one food staple in sub-Saharan Africa, sown by some 300 million smallholder farmers using seasonal rains. A leading crop as well for Zambia’s small-scale, subsistence, and often impoverished farmers, maize grows poorly in extreme heat, infertile soils, and extended dry weather. Failed maize crops can bring hunger to smallholders and their families, for whom risks are high and formal safety nets are non-existent.

The EU recently announced that it will provide an additional EUR 20 million in funding for SIFAZ, now three years old and operating in five provinces and 27 districts of Zambia.

The cropping practices submitted to the National Advisory Committee by Thierfelder and his colleagues conform to a sustainable intensification assessment framework developed by the Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification of the US Agency for International Development (USAID) and Kansas State University.

“The framework provides a set of indicators for evaluating technologies according to their effects on productivity, economics, the environment, and social and human conditions — domains considered essential for sustainable agriculture systems,” Thierfelder explained. “The framework is well suited for smallholder farm settings, where agriculture is linked to development goals such as alleviating poverty, avoiding land degradation, increasing food and nutrition security, and supporting women’s empowerment.”

Cover photo: Jane Miti, a Zambia extension methodology officer, is testing intercropped strips of maize and soybean at Nyanje, Sinda District, to improve her soils and yields. (Photo: Christian Thierfelder/CIMMYT)

Kenya Lifts 10-year Ban On GM Foods, Allows Open Cultivation, Importation Of White GM Maize

Food crops and animal feeds produced through biotechnology innovations can now be imported into Kenya after the ban on genetically modified organisms (GMOs) was lifted.

Kenyan scientists and research institutions are now able to develop crop varieties that will benefit farmers and their communities.

In a landmark statement on October 3, the Cabinet said: “In accordance with the recommendation of the Task Force to review matters relating to GMOs and Food Safety, and in fidelity with the guidelines of the National Biosafety Authority (NBA) on all applicable international treaties including the Cartagena Protocol on Biosafety (CPB), Cabinet vacated its earlier decision of 8th November 2012 prohibiting the open cultivation of GMOs and the importation of food crops and animal feeds produced through biotechnology innovations; effectively lifting the ban on GMOs. By dint of the executive action open cultivation and importation of white (GMO) maize is now authorized.”

Read the original article: Kenya Lifts 10-year Ban On GM Foods, Allows Open Cultivation, Importation Of White GM Maize

Cover photo: A decade-long ban on genetically modified foods has been lifted in Kenya. (Photo: New Nigerian Newspaper)

In Burkina Faso, a business model for mechanization is providing hope

Ouattara Ali grows rice and maize on a small parcel of land in a village on the outskirts of Bobo Dioulasso, Burkina Faso’s second-largest city.

In the eight years since he began farming, he has faced significant challenges because he depends on traditional practices. Other smallholders in the community are in a similar situation, which limits their ability to realize greater prosperity.

A steady trickle of young adults is leaving the area to find work in the city as an alternative to the difficulty of trying to make ends meet on limited hectarage, coping with erratic harvests and with no guarantee of long-term financial stability.

This story is not unique to Ali and his community – it is familiar across Burkina Faso and other nations where the problems of food security, reliable employment, and dependable income limit economic development in rural areas.

Mechanization as a business

To help communities tackle these challenges, in 2014 Germany’s Federal Ministry for Economic Cooperation and Development (BMZ) created the special initiative One World No Hunger, which launched Green Innovation Centers for the Agriculture and Food Sector (GIC) in 14 countries in Africa and two in Asia. In Burkina Faso, the GIC focuses primarily on the sesame and rice value chains in the Hauts-Bassins, Cascades, Boucle du Mouhoun, and Sud-Ouest regions.

These initiatives include the introduction of mechanized agricultural practices that can increase yields of maize, rice, and other crops. In connection with GIC, farmers like Ali have used machines across the full agricultural value chain – from seed development to post-harvest – to improve their own crop yields. Mechanization has also enabled them to offer their services for hire to other farmers in the area.

Mechanization is a significant economic driver for boosting development of farm areas, but to achieve sustainable success and maximize the ability to bring transformative change to communities, business model development must be a critical focus area.

One of Ouattra Ali’s two-wheel tractors that he uses to provide machinery hire services to nearby farmers. (Credit: Rabe Yahaya/GIZ)

In August, the International Maize and Wheat Improvement Center (CIMMYT) and Deutsche Gesellschaft fuer Internationale Zusammenarbeit (GIZ) GmbH, collaborated with the United Nations Food and Agriculture Organization (FAO) and Germany’s University of Hohenheim to host a webinar on business models for agricultural mechanization projects. Joining the conversation were 48 participants from countries including Burkina Faso, Nigeria, Benin, and Vietnam.

During the webinar, FAO Senior Consultant Karim Houmy presented research on business models from two case studies of agricultural mechanization hire services in sub-Saharan Africa. Houmy found five basic types of business model, each with its own structure, complexity, and requirements, but he also outlined common features that characterize all successful models.

Many models, a few key principles

The basic business model for agricultural mechanization involves a farmer who uses machinery on their own crops, and then subsequently provides the same services to neighboring farmers. This model is probably the simplest and least expensive. Any smallholder who can procure the necessary machinery, parts, and training can launch this small business, generate additional income, and help neighbors increase their yield. This model also has limits, however, as it restricts farmers to a relatively small footprint of clients whose farms are located near the service provider.

At the other end of the scale is an enterprise model where an entrepreneur does not own any farm machinery but uses mobile phones and geographic information system (GIS) technology to connect farmers with service providers. This model provides a much greater geographical scope as well as greater opportunities for growth and innovation. It also adds layers of complexity that require a network of intermediaries – from machinery dealers and mechanics to booking agents – and bank financing.

The more diverse in operational offerings a business model is, the more promise it holds for generating economic growth and food security. This occurs by spreading activity across a wider geographic region, providing yield-increasing services for more farmers, employing more workers, and generating increased demand up and down the supply chain.

In addition to laying out the range of business models in operation today, Houmy identified success factors important for all, including long-term access to financing and local infrastructure, both of which are structural issues that entrepreneurs have less immediate control over. GIC works to address this shortcoming by involving a broad range of stakeholders, including government actors, in addressing issues of sustainability.

Houmy encouraged entrepreneurs to focus on areas like cultivating a skilled staff, building close links with processors and aggregators, and diversifying the services they offer. This sort of business model training can translate into significant improvements on the ground.

Building a business

Life began to change dramatically for Ali when his local agricultural bureau connected him to the GIC in his area.

Through his relationship with GIC, Ali gained access to some basic mechanized farming equipment, including disc plows, harrows, and planters, which revolutionized his work. He now prepares his rice and maize fields more quickly and evenly. He plants them more efficiently and spends less time harvesting while producing equal and sometimes higher yields. To support this transition, GIC provided training in agricultural mechanization, seed production, and financial management.

Initially, Ali sustained an injury while using a harrow and trailer. Thankfully, this did not slow him down for long, he said. He learned how to regularly tighten components of the machine to avoid further injuries and other safety problems.

Soon, Ali began using his machines to provide services to his neighboring farmers as well, helping them with land preparation, transportation, and planting.

Today, 22 local farmers use Ali’s services, and his community is experiencing the benefits. Less time is spent on planting and harvesting while agricultural yields are increasing. Mechanization marked a sharp decline in the drudgery associated with farming tasks, especially for the area’s youth and women.

Ali is thinking about the future by expanding and diversifying. He plans to buy a seeder and a thresher if he can get financing, and he is interested in additional training. He is developing a business plan for a larger enterprise that would be “the farmers’ one-stop shop” for mechanization services in his area. With the profits so far, he has built a house for his wife and two children and bought a small car.

GIC has supported 26 service providers like Ali in Burkina Faso as well as others in Benin, Mali, and Kenya. Over time, the proliferation of sustainable agricultural operations like Ali’s, as well as their growth into more complex and more profitable business networks, holds enormous promise for rural areas where food security, sustainable employment and a baseline of prosperity have been elusive for far too long.

Cover photo: Workers on Ouattra Ali’s farm outside of Bobo Dioulasso, Burkina Faso. (Credit: Rabe Yahaya/GIZ)

More than machines

Cooperative farmers receive training on operation of a mobile seed cleaner in Oromia, Ethiopia. (Credit: Dessalegn Molla/GIZ)

It’s a familiar problem in international agricultural development – a project with external funding and support has achieved impressive early results, but the money is running out, the time is growing short, and there’s not a clear plan in place to continue and extend the program’s success.

Over the past seven years, the German development agency Deutsche Gesellschaft fĂŒr Internationale Zusammenarbeit (GIZ) established Green Innovation Centers in 13 countries in Africa and two in Asia, partnering with the International Maize and Wheat Improvement Center (CIMMYT) to support projects that introduce mechanization in a way that improves long-term food security and prompts economic growth. Now, as the project enters its final two years of funding, GIZ and CIMMYT are focused on ensuring the gains produced by the Green Innovation Centers are not lost.

Like any complex challenge, there’s not just one solution to the sustainability problem – but CIMMYT is working to address a massive question around why pilots fail in agricultural development by implementing a systematic approach to scalability that recognizes the critical importance of context and puts projects on a sustainable path before the money is gone.

Training the trainers

As the Green Innovation Centers enter a crucial, final stage, a CIMMYT-led team recently completed training for seven GIZ staff from Ivory Coast, Togo, Ethiopia, and Zambia, who are now certified to facilitate CIMMYT’s Scaling Scan tool and train others to put agricultural innovations in their home countries on a solid path for growth. The training team included CIMMYT scaling advisor Lennart Woltering, CIMMYT mechanization support specialist Leon Jamann, and students from Germany’s University of Hohenheim and Weihenstephan-Triesdorf University.

The Scaling Scan is a practical tool that helps users set a defined growth ambition, analyze their readiness to scale using ten core ingredients, and identify specific areas that need attention in order to reach the scaling ambition.

The GIZ staff learned to use the Scaling Scan by applying it to early stage innovations in their home countries, ranging from commercial fodder production in the Southern Province of Zambia to seed value chains in the Oromia and Amhara regions of Ethiopia.

Mohammed, a farmer in Amhara, Ethiopia, with a fistful of wheat on his farm. (Credit: Mulugeta Gebrekidan/GIZ)

What will scale up in Ethiopia?

In Ethiopia, smallholding farmers producing legumes, wheat and maize struggle to increase their yield to a level that can improve food security, generate higher incomes for producers and their families, and promote economic growth and jobs in agricultural communities. To help smallholders develop sustainable solutions, GIZ senior advisor Molla Dessalegn worked with his Green Innovation Center team to brainstorm and launch a range of 20 proposed innovations – from risk mitigation and new contract structures to introduction of new technology – all with the aim of improving agricultural yields.

To date, these innovations have introduced over 200,000 Ethiopian smallholders to new knowledge and practices to improve their output. But with the project exit bearing down, Molla and his team were eager to identify which innovations held the most promise for survival and growth beyond the endpoint. So they put their pilot projects to the test using the Scaling Scan.

The scan involves an intensive, day-long seminar originally designed for in-person delivery, but remote versions have also proved successful as COVID limited global travel. The scan focuses on thorough analysis and scoring of the current state of a pilot project and its potential for growth given the realities of conditions on the ground.

Facilitators lead project managers through evaluation of the ten ingredients required for successful scaling, from finance and collaboration to technology, know-how, and public sector governance. The outcome is a clear data set assessing the scalability of the pilot and directing attention to specific areas where improvement is needed before a project can expect serious growth.

An unexpected outcome

What emerged from the scan surprised Molla. Some of the strategies he saw as most successful in the early stages, such as a contract farming program, scored poorly, whereas the scan identified deployment of mobile seed cleaners as a solution that held particular promise for scalability. These outcomes prompted the team to refocus efforts on this strategy.

About 95 percent of Ethiopian smallholders rely on informal seed systems, either saving and reusing seed or exchanging low quality seed with other farmers. Seed cleaning plays a critical role in helping farmers build a high quality, high yield seed development system. Molla and his team had already worked with smallholder cooperatives in Oromia to distribute three mobile seed cleaners, and they knew these machines were being heavily relied upon by farmers in this region.

The Scaling Scan showed them, among other things, that the successful adoption of the seed cleaners had even more potential – it was an innovation that could be sustained and even expanded by local stakeholders, including the Ministry of Agriculture.

This result prompted Molla to recommend investment in additional mobile seed cleaners – four to serve cooperatives in the Amhara region and a fifth for the West Arsi district in Oromia. These machines are now in operation and helping additional smallholders improve the quality of their seed stock. This initial expansion confirms the Scaling Scan results – and CIMMYT plans to continue supporting this growth with the purchase of another round of seed cleaners.

The Scaling Scan also identified problems with the business model for sustaining the mobile seed cleaners through cooperatives in Ethiopia, and this outcome directed the Green Innovation Centers to partner with a consultant to develop improvements in this area. In this way, one of the most important values of the scan is its ability to guide decision-making.

Scaling up the future

Seed cleaners alone won’t solve every yield problem for Ethiopian farmers, but the scan has now guided the initial implementation – and contextual adaptation – of a new form of agricultural mechanization across two regions of the country, with the promise of more to come.

And there’s more to come from the Scaling Scan as well.

Now that he’s received certification as a trainer, Molla plans to help farmers, officials, and other development workers adopt this rigorous approach to evaluating innovations that show potential. When funding for his project ends in 2024, he will be leaving 300,000 smallholders in Ethiopia with more than machines – he will be leaving them with the knowledge, experience, and practices to make the most of the technological solutions that are improving their yields today and building a more secure future for their communities.

Addressing the Global Food Crisis: CIMMYT Experts Weigh In

The confluence of climate change, COVID-19, and the war in Ukraine have placed enormous stress on food systems across the globe. Food insecurity spiked in 2020 and has stayed high, and the number of undernourished people is on the rise.

As we respond to this emergency, there is an opportunity—and a need—to strengthen the kind of strategic investments that will make our agrifood systems resilient to tomorrow’s shocks. “We cannot be running crisis to crisis,” says Bram Govaerts, Director General of the International Maize and Wheat Improvement Center, or CIMMYT, in this week’s New Security Broadcast. “We need to look at the underlying elements that are provoking these ripple effects.”

On the episode, ECSP Director Lauren Risi and ECSP Advisor Sharon Burke speak with Govaerts and his colleague Kai Sonder, head of CIMMYT’s Geographic Information System Unit, about how to address the unfolding food crisis as we simultaneously build food system resilience in the medium and long term. Drawing from their newly-published article in Nature Food, Govaerts and Sonder share approaches that governments, civil society, and private actors can take to tackle today’s wheat supply disruptions and food insecurity. They also share past success stories and lay out key challenges moving forward.

Beyond the immediate humanitarian aid needed to boost food security, Govaerts identifies intensified wheat production and greater investments in local cereals as essential short-term priorities. Medium-term investments should focus on agricultural production that is agroecologically suitable, policies that support the adoption of improved crop varieties, and data analysis to target the vulnerabilities of smallholder farmers. And with long term goals in mind, Govaerts says that we need to ask “how can we enhance our ecosystem diversity, resolve the gender disparity [in the agricultural sector] and invest in agrifood transformation from efficiency to resilience?”

Both experts emphasize that these approaches aren’t meant to be taken incrementally. “We’re really saying we need to start today, taking actions with an impact on the short, medium, and long term. It would be a mistake to only focus on the short-term actions that need to be taken,” says Govaerts.

Sonder acknowledges that transforming agricultural systems takes time—and isn’t easy. “You need to invest in breeding systems. You need to build capacity and identify areas where that is easily possible,” he explains. “Bringing out a new variety of wheat or maize or other crop takes up to ten years.”

Introducing new farming technologies can also come with challenges, since it requires making sure those technologies can actually be maintained. “You have to ensure that there are mechanics who can fix [them] quickly, that there’s a supply chain for spare parts,” observes Sonder. And securing sustained large-scale investment for research or program activities can prove difficult, as was the case for a study CIMMYT did on the potential for wheat in Africa. “The ministers were very interested,” Sonder says. “But other crisis come along, and then the funds go somewhere else.”

Despite the hurdles, there are plenty of examples of agrifood interventions with positive impact. For instance, one of CIMMYT’s current areas of work is in developing risk assessment and disease warning systems to allow people to act quickly before a crisis occurs. Sonder describes how his colleagues in Ethiopia had a recent success in identifying a risk of rust epidemic in collaboration with the government and stakeholders on the ground by using weather models.  The joint effort allowed the government “to procure and to spread fungicides and to be prepared for that crisis,” he says.

Addressing the challenges that underlie world hunger will take both this kind of strategic medium-term action as well as longer-term transformations—Even as we respond to the current hunger crisis with much-needed short-term efforts, we can also be reshaping our global agricultural systems for a more biodiverse, equitable, and resilient future.

This piece by , was originally posted on New Security Beat

Scientists step up wheat landrace conservation efforts in Afghanistan, Turkey and other countries in the region

Farmers gather in a landrace field. Photo: Raqib Lodin/CIMMYT

For thousands of years, farmers in Afghanistan, Turkey and other countries in the region, have been breeding wheat, working closely with the environment to develop traditional wheat varieties known as landraces. Untouched by scientific breeding, landraces were uniquely adapted to their environment and highly nutritious.

As agriculture became more modernised and intensified, it threatened to push these traditional landraces into extinction, resulting in the loss of valuable genetic diversity. Institutions around the world decided to act, forming germplasm collections known as genebanks to safely house these landraces.

In 2009, a team of wheat scientists from the International Maize and Wheat Improvement Center (CIMMYT), the International Center for Agricultural Research in the Dry Areas (ICARDA), the UN Food and Agriculture Organization (FAO), and national partners set off on a five-year expedition across Central Asia to collect as many landraces as they could find. The project, led by FAO Cereal Breeder and former CIMMYT Principal Scientist Alexey Morgunov, was made possible by the International Treaty on Plant Genetic Resources for Food and Agriculture Benefit-Sharing Fund.

The project had two main missions. The first is to preserve landrace cultivation in three countries, Afghanistan, Turkey and other countries in the region by selecting, purifying, and multiplying the landraces and giving them back to farmers. The second is to scientifically evaluate, characterize and use these landrace varieties in ongoing breeding programmes, exchange the information between the countries, and to deposit the seeds in genebanks to safely preserve them for future generations.

The latest results from the project were published in July in the journal Crops. The study, authored by a team of experts from CIMMYT, ICARDA, FAO, and research institutes in Afghanistan, Turkey and other countries in the region, compared the diversity, performance, and adaptation of the collected wheat landraces with modern varieties grown in the regions using a series of field experiments and cutting-edge genomic tools.

“Landraces are very useful from a breeding perspective because they have been cultivated by farmers over thousands of years and are well adapted to climate change, have strong resistance to abiotic stresses and have very good nutritional quality,” said Rajiv Sharma, a CIMMYT senior scientist and co-author of the paper.

“We were interested in seeing how well landraces adapt to certain environments, how they perform agronomically, and whether they are more diverse than modern varieties grown in these regions – as well as give their improved versions back to farmers before they are lost.”

The experiments, which were carried out in 2018 and 2019 in Turkey, and 2019 in Afghanistan, and other countries in the region revealed several physical characteristics in landraces which are no longer present in modern varieties. For example, the team found striking differences in spike and grain colors with landraces more likely to have red spikes and white grains, and modern varieties tending to have white spikes and red grains. This may have adaptive values for high altitudes and dry conditions.

A surprising finding from the study, however, was that landraces were not more genetically diverse than modern landraces.

“Many people thought that when we went from cultivating landraces to modern varieties, we lost a lot of diversity but genetically speaking, that’s not true. When you look at the genomic profile, modern varieties are just as diverse as landraces, maybe even a little bit more so,” said Sharma.

When the team compared landraces and modern varieties on crop performance, the results were mixed with modern wheat varieties outyielding landraces in half of the environments tested. However, they found that the highest yielding landraces were just as good as the best modern varieties – a reassuring finding for farmers concerned about the productivity of their crops.

A new breeding paradigm  

The results of the study have important implications for landrace conservation efforts in farmers’ fields and in future breeding strategies. While crossing wheat landraces with modern varieties to develop improved modern varieties is not new, the authors proposed a novel alternative breeding strategy to encourage the continued cultivation of landraces: improving landraces by crossing them with other landraces.

“In order to maintain landraces, we have to make them competitive and satisfy farmers’ needs and requirements. One option is that we breed landraces,” said Sharma.

“For example, you might have a landrace that is very-high yielding but susceptible to disease. By crossing this variety with another landrace with disease-resistant traits you can develop a new landrace better suited to the farmer and the environment. This approach maintains all the features of landraces – we are simply accelerating the evolution process for farmers to replace the very fast disappearance of these traditional varieties.”

This approach has already been used by crop scientists at the University of California, Davis who has successfully developed and registered “heirloom-like varieties” of dry beans. The varieties trace about 98% of their ancestry to landraces but are resistant to the common mosaic virus.

Heirloom food products are becoming increasingly popular with health-conscious consumers who are willing to pay a higher price for the products, garnering even more interest in conserving traditional landraces.

One of the overarching aims of the project was to give wheat landraces back to farmers and let nature take its course. Throughout the mission, the team multiplied and returned landrace seed to over 1500 farmers in communities across Afghanistan, Turkey and other countries in the region. The team also supplied over 500 farmers with improved landrace seed between 2018 and 2019.

Despite the political turmoil facing these countries, particularly Afghanistan, farmers are still growing wheat and the project’s contribution to food security will continue.

These landraces will take their place once more in the farming landscape, ensuring on-farm wheat diversity and food security for future generations.

This research was conducted with the financial assistance of the European Union within the framework of the Benefit-Sharing Fund project “W2B-PR-41-TURKEY” of the FAO’s International Treaty on Plant Genetic Resources for Food and Agriculture.

CGIAR Plant Health Initiative formally launched on the International Day of Plant Health

National, regional, and international partners at the CGIAR Plant Health and Rapid Response to Protect Food Security and Livelihoods Initiative launch in Nairobi, Kenya, on May 12, 2022. (Credit: Susan Otieno)

CGIAR together with national, regional, and international partners kicked off the Plant Health and Rapid Response to Protect Food Security and Livelihoods Initiative also known as the Plant Health Initiative in Nairobi, Kenya, on May 12-13, 2022. The Initiative’s inception meeting was fittingly held on the first-ever International Day of Plant Health on May 12 and was attended by over 200 participants (both in-person and virtual), representing diverse institutions.

The Plant Health Initiative targets a broad range of pests and diseases affecting cereals (especially rice, wheat and maize) and legumes such as beans, faba bean, chickpea, lentil, and groundnut; potato; sweet potato; cassava; banana; and other vegetables.

Speaking at the meeting, CGIAR Plant Health Initiative Lead and Director of Global Maize Program at the International Maize and Wheat Improvement Center (CIMMYT) noted that climate change, together with human activities and market globalization, is aggravating challenges to plant health, including outbreaks of devastating insect-pests and diseases. In addition, according to data from the African Union Partnership on Aflatoxin Control in Africa (AUC-PACA), 40 percent of commodities in local African markets exceed allowable levels of mycotoxins in food, causing adverse effects on diverse sectors, including agriculture, human health, and international trade.

“The CGIAR Plant Health Initiative is, therefore, a timely program for strengthening inter-institutional linkages for effective plant health management especially in the low- and middle-income countries in Africa, Asia, and Latin America, said Prasanna. “This calls for synergizing multi-stakeholder efforts to improve diagnostics, monitoring and surveillance, prediction and risk assessment of transboundary pests and pathogens, and implementing integrated pest and disease management in a gender-responsive and socially inclusive manner.”

Demand-driven multistakeholder approach

CGIAR Global Science Director for Resilient Agrifood Systems Martin Kropff reiterated the importance of the Initiative, and emphasized the need for a global plant health research-for-development consortium. He mentioned that all the CGIAR Initiatives, including the Plant Health Initiative, are demand-driven and will work closely with national, regional, and international partners for co-developing and deploying innovative solutions.

The chief guest at the event, Oscar Magenya, Secretary of Research and Innovation at Kenya’s Ministry of Agriculture, pointed out the need for a well-coordinated, multisectoral and multistakeholder approach to managing invasive pests and diseases. He recognized CGIAR’s contribution and partnership with the Government of Kenya through CIMMYT, especially in combating maize lethal necrosis and wheat rust in Kenya.

“As government, we invite the CGIAR Plant Health Initiative to partner with us in implementing the Migratory and Invasive Pests and Weeds Management Strategy that was launched recently [by the Kenya Government],” said Magenya.

Implications of Plant Health in Africa and globally

Zachary Kinuya, Director of Crop Health Program at the Kenya Agricultural and Livestock Research Organisation (KALRO) spoke on the importance of plant health management to African stakeholders, and observed that in addition to improved crop production, food and feed safety must be given adequate priority in Africa.

Director of the Plant Production and Protection Division at the UN Food and Agriculture Organization (FAO), Jingyuan Xia applauded CGIAR for launching the global Initiative. Through his virtual message, Xia stated that the goals of the two organizations are aligned towards supporting farmers and policy makers in making informed decisions and ultimately ending global hunger. He added that the CGIAR has strong research capacity in developing and disseminating new technologies.

CIMMYT Director General Bram Govaerts explained how negative impacts on plant health, combined with climate change effects, can lead to global production losses and food system shocks, including the potential to result in food riots and humanitarian crises. He challenged stakeholders in the meeting to resolve tomorrow’s problems today, through collective and decisive action at all levels.

Sarah M. Schmidt, Fund International Agriculture Research Advisor_GIZ Germany making a contribution during the Launch of the Plant Health Initiative. (credit Susan Otieno/CIMMYT)

The German development agency (GIZ) Fund International Agricultural Research (FIA) Advisor Sarah Schmidt said that GIZ supports the Initiative because of its interest in transformative approaches in innovations for sustainable pest and disease management. Recognizing women’s major involvement in farming in Africa, Schmidt said there is a need to empower and equip women with knowledge on plant health as this will result to greater productivity on farms in Africa. “We welcome that the Plant Health Initiative dedicated an entire crosscutting work package to equitable and inclusive scaling of innovations,” she added.

Participants at the launch were also reminded by Ravi Khetarpal, Executive Secretary of the Asia-Pacific Association of Agricultural Research Institutions (APAARI), that the Initiative is now at the critical phase of Implementation and requires diverse actors to tackle different issues in different geographies. Ravi added that biosecurity and plant health are important subjects for the Asia-Pacific region, in view of the emergence of new pests and diseases, and therefore the need to save the region from destructive pest incursions.

Other online speakers at the launch included Harold Roy Macauley, Director General of AfricaRice & CGIAR Regional Director, Eastern and Southern Africa; Nteranya Sanginga, Director General of the International Institute of Tropical Agriculture (IITA) and CGIAR Regional Director, West and Central Africa; and Joaquin Lozano, CGIAR Regional Director, Latin America & the Caribbean.

Reflecting on gender, social inclusion, and plant health

Panel discussions allowed for more in-depth discussion and recommendations for the Initiative to take forward. The panelists delved into the progress and challenges of managing plant health in the Global South, recommending a shift from a reactive to a more proactive approach, with strong public-private partnerships for sustainable outcomes and impacts.

Gender inequities in accessing the plant health innovations were also discussed. The discussion highlighted the need for participatory engagement of women and youth in developing, validating and deploying plant health innovations, a shift in attitudes and policies related to gender in agriculture, and recognition and deliberate actions for gender mainstreaming and social inclusion for attaining the Sustainable Development Goals (SDGs).

B.M. Prasanna speaking at the launch. (credit: Susan Otieno/CIMMYT)

Charting the course for the Initiative

The Plant Health Initiative Work Package Leads presented the Initiative’s five specific work packages and reiterated their priorities for the next three years.

“We are looking forward to taking bold action to bring all players together to make a difference in the fields of farmers all over the world,” said Prasanna.

The Initiative is poised to boost food security, especially in key locations through innovative and collaborative solutions.

For more information, visit the CGIAR Plant Health Initiative page or download a brief. 

Panel Discussion Presentations

“Plant Health Management in the Global South: Key Lessons Learnt So Far, and the Way Forward” moderated by Lava Kumar (IITA) with panelists: Florence Munguti [Kenya Plant Health Inspectorate (KEPHIS)], Maryben Chiatoh Kuo (African Union-Inter-African Phytosanitary Council), Roger Day (CABI) and Mark Edge (Bayer).

 “Scaling Strategy, including Gender and Social Inclusiveness of Plant Health Innovations” moderated by Nozomi Kawarazuka (CIP), with panelists Jane Kamau (IITA), Alison Watson (Grow Asia), Sarah Schmidt (GIZ), Aman Bonaventure Omondi (Alliance Bioversity-CIAT) and Nicoline de Haan (CGIAR Gender Platform)

Work Package Title and Leads

Work Package 1: Bridging Knowledge Gaps and Networks: Plant Health Threat Identification and Characterization

Lead: Monica Carvajal, Alliance of Bioversity-CIAT

Work Package 2: Risk Assessment, data management and guiding preparedness for rapid response

Lead: Lava Kumar, IITA

Work Package 3: Integrated pest and disease management

Lead: Prasanna Boddupalli, CIMMYT

Work Package 4: Tools and processes for protecting food chains from mycotoxin contamination

Lead: Alejandro Ortega-Beltran, IITA

Work Package 5: Equitable and inclusive scaling of plant health innovations to achieve impacts Co-leads:Nozomi Kawarazuka, International Potato Center (CIP), Yanyan Liu, International Food Policy Research Institute (IFPRI)

It is time to invest in the future of Afghanistan’s wheat system

A wheat field of Bamyan, Afghanistan. (Photo: Nigel Poole/SOAS University of London)
A wheat field of Bamyan, Afghanistan. (Photo: Nigel Poole/SOAS University of London)

The UN High Commissioner Michelle Bachelet recently said of Afghanistan, “In the wake of years of conflict, and since the takeover by the Taliban in August last year, the country has been plunged into a deep economic, social, humanitarian and human rights crisis” (UN News 2022a). International humanitarian agencies and NGOs have persisted in supporting the population, half of whom are suffering food insecurity, and some of whom are facing unprecedented and catastrophic levels of hunger (UN News 2022b). The conflict in Ukraine is exacerbating the crises in poor import-dependent countries and humanitarian programmes, and Afghanistan will be among the most affected (Bentley and Donovan 2022).

The rural sector underlies Afghanistan’s economic potential, with agriculture as the foundation of the economy. Wheat, both irrigated and rainfed, is the principal agricultural crop, and bread is the major component of the Afghan diet. For decades the country has relied for food security on neighbors such as Kazakhstan and Pakistan and import dependence appears to be a permanent feature of the agricultural economy (Sharma and Nang 2018).

In a recent paper published in Plants, People, Planet, CIMMYT scientists and partners from SOAS University of London, Afghanistan Research and Evaluation Unit, FAO-Afghanistan, The HALO Trust, Afghanaid and the Agricultural Research Institute of Afghanistan call for renewed investment in Afghanistan’s wheat and agricultural sector.

Bread and spread in Bamyan, Afghanistan. (Photo: Nigel Poole/SOAS University of London)
Bread and spread in Bamyan, Afghanistan. (Photo: Nigel Poole/SOAS University of London)

Improved CIMMYT wheat germplasm has supported agricultural development

CIMMYT’s activities in Afghanistan have focused primarily on supporting the national agricultural research system through the provision of elite, widely adapted germplasm with strong disease resistance. Recent estimates of genetic gains over 14 years (2002-2003 to 2015-2016) of testing of CIMMYT’s Elite Spring Wheat Yield Trial material across 11 locations in Afghanistan documents significant grain yield progress of 115 kg/year. Average yields across 11 testing locations ranged from 3.58 to 5.97 t/ha (Sharma et al., 2021). This indicates that yield potential can be increased through introduction and testing of internationally improved germplasm.

But such investment in research has come to a halt. Local public- and private-sector wheat breeding activities have been largely absent in Afghanistan for over a decade. Hence, wheat productivity remains low due to the limited availability of improved varieties, inadequate quality seed production and distribution. Although in the short term, humanitarian interventions are likely to be the major determinant of food security, we propose that strategic rebuilding of the wheat system will lay the foundation for restoring Afghanistan’s agricultural production, food supplies, nutrition and health. Here we signal opportunities for future improvement.

Opportunities to build climate resilience and enhance seed systems

The need for climate-resilient varieties that meet farmers’ varied requirements and consumer preferences is paramount. Afghan farmers need varieties with improved traits such as heat and drought resilience, incorporating functional variation from existing landrace collections. In addition, agronomic interventions such as conservation agriculture will offer substantial benefits in buffering environmental stresses.

The technological pathways for seed (re-)distribution are a critical part of the innovation pathway from plant breeding to production and productivity. Given the particularities of markets in Afghanistan, both the public sector and the private sector often fail to reach farming geographies that are remote, diverse, and unserved by physical and institutional infrastructure. For many years, basic public services and agricultural interventions have been provided by the NGO sector, and this form of delivery continues. Hence, local ‘informal’ systems for seed and inputs are important to smallholder farmers.

Investment to support both irrigated and rain-fed wheat production

Rehabilitation of ancient irrigation practices and infrastructure could once again serve local farming in a way that supports stable production, restores Afghan heritage, and rebuilds social cohesion. However, there are no easy solutions to the challenges of increasing irrigation to boost agriculture. Although yields are lower, there is potential to optimize breeding specifically for rain-fed production. We expect rain-fed agriculture to continue given the limitations of water and infrastructure access.

Wheat improvement must be embedded in the wider agricultural environment. There is a renewed need for a deep understanding of social, political, and cultural systems and how they vary between villages, and from districts, provinces, and regions to people groups. We need to re-envision the roles of men and women in agriculture, and investment in skills and capacity building to provide a stable foundation for the eradication of poverty and food insecurity.

A new wheat program for Afghanistan

We highlight the urgent need for:

  • Resumption of breeding of nutritious and climate-resilient varieties.
  • Development of a knowledge base on current wheat production systems, gendered agricultural roles, farmer needs for varietal change and consumer preferences for tasty and nutritious wheat-based products.
  • Development of seed information systems using new technologies to enhance farmer engagement in research.
  • Expansion of appropriate irrigation systems and development of nature-based solutions to protect soil and to preserve and conserve water.
  • Investment in capacity building among private, non-governmental, university and public stakeholders in seed systems and delivery of agricultural services.

These foundations will support the wider regeneration of Afghanistan’s agricultural sector and enhance food security, nutrition and health of some of the world’s most vulnerable populations.

Full paper

Poole, N., Sharma, R., Nemat, O.A., Trenchard, R., Scanlon, A., Davy, C., Ataei, N., Donovan, J. and Bentley, A.R. (in production). Sowing the wheat seeds of Afghanistan’s future. Plants, People, Planet DOI: https://doi.org/10.1002/ppp3.10277

References

Bentley, A. and Donovan, J. (2022). What price wheat? Crisis in Ukraine underscores the need for long-term solutions for global food security. Retrieved 16 June 2022, from https://staging.cimmyt.org/blogs/what-price-wheat/.

Sharma, R.K. and Nang, M. (2018). Afghanistan wheat seed scenario: Status and imperatives. International Journal of Agricultural Policy and Research 6(5): 71-75 DOI: https://doi.org/10.15739/IJAPR.18.008

UN News (2022a). Afghanistan facing ‘the darkest moments’ in a generation. Retrieved 16 June 2022, from https://news.un.org/en/story/2022/06/1120492.

UN News (2022b). Afghanistan: Nearly 20 million going hungry. Retrieved 16 June 2022, from https://news.un.org/en/story/2022/05/1117812.

Throwing money at the problem won’t solve world hunger

In this op-ed, Harvard Professor Gabriela Soto Laveaga stresses the importance of tackling hunger as more than a technical problem to be addressed through scientific advancement alone, praising CGIAR for its community-centered & inclusive approach to food systems amid the climate crisis.

Read more: https://www.washingtonpost.com/outlook/2021/11/22/throwing-money-problem-wont-solve-world-hunger/

World Food Day 2021: The future of food is in our hands

As the calendar turns to October 16, the International Maize and Wheat Improvement Center (CIMMYT) celebrates World Food Day. This year’s theme is “Our actions are our future.”

Our lives depend on agri-food systems.

They cover the journey of food (for example, cereals, vegetables, fish, fruits and livestock) from farm to table — including when it is grown, harvested, processed, packaged, transported, distributed, traded, bought, prepared, eaten and disposed of. It also encompasses non-food products (for example forestry, animal rearing, use of feedstock, biomass to produce biofuels, and fibers) that constitute livelihoods, and all the people, as well as the activities, investments and choices that play a part in getting us these food and agricultural products.

The food we choose and the way we produce, prepare, cook and store it make us an integral and active part of the way in which an agri-food system works.

A sustainable agri-food system is one in which a variety of sufficient, nutritious and safe foods is available at an affordable price to everyone, and nobody is hungry or suffers from any form of malnutrition. The shelves are stocked at the local market or food store, but less food is wasted and the food supply chain is more resilient to shocks such as extreme weather, price spikes or pandemics, all while limiting, rather than worsening, environmental degradation or climate change. In fact, sustainable agri-food systems deliver food security and nutrition for all, without compromising the economic, social and environmental bases, for generations to come. They lead to better production, better nutrition, a better environment and a better life for all.

Let’s fix the system

The contradictions could not be starker — millions of people are hungry or undernourished, while large numbers are chronically overweight due to a poor diet. Smallholder farmers produce more than one-third of the world’s food, yet are some of the worst affected by poverty, as agriculture continues to be an unpredictable sector. Agri-food systems are major contributors to climate change, which in turn threatens food production in some of the world’s poorest areas. Rampant food loss and waste, side by side with people relying on food banks or emergency food aid.

The evidence is there for all to see — there has never been a more urgent need to transform the way the world produces and consumes food.

This year, for World Food Day, we bring you four stories about CIMMYT’s work to support sustainable agri-food systems.

Better production

CGIAR centers present methodology for transforming resource-constrained, polluting and vulnerable farming into inclusive, sustainable and resilient food systems that deliver healthy and affordable diets for all within planetary boundaries.

New integrated methodology supports inclusive and resilient global food systems transformation

Better nutrition

CIMMYT scientists expect to sharply ramp up new wheat varieties enriched with zinc that can boost the essential mineral for millions of poor people with deficient diets. Newly-developed high-zinc wheat is expected to make up at least 80% of varieties distributed worldwide over the next ten years, up from about 9% currently.

New zinc-fortified wheat set for global expansion to combat malnutrition

A woman makes roti, an unleavened flatbread made with wheat flour and eaten as a staple food, at her home in the Dinajpur district of Bangladesh. (Photo: S. Mojumder/Drik/CIMMYT)

Better environment

Understanding the relationship between climate change and plant health is key to conserving biodiversity and boosting food production today and for future generations.

Protecting plants will protect people and the planet

Durum wheat field landscape at CIMMYT's experimental station in Toluca, Mexico. (Photo: Alfonso Cortés/CIMMYT)
Durum wheat field landscape at CIMMYT’s experimental station in Toluca, Mexico. (Photo: Alfonso CortĂ©s/CIMMYT)

Better life

Assessing value chain development’s potential and limitations for strengthening the livelihoods of the rural poor, a new book draws conclusions applicable across the development field.

Taking stock of value chain development

A researcher from the International Maize and Wheat Improvement Center (CIMMYT) demonstrates the use of a farming app in the field. (Photo: C. De Bode/CGIAR)
A researcher from the International Maize and Wheat Improvement Center (CIMMYT) demonstrates the use of a farming app in the field. (Photo: C. De Bode/CGIAR)

Subscribe to our email updates to stay in the loop about the latest research and news related to maize and wheat agriculture.

La Agricultura de ConservaciĂłn, una oportunidad para afrontar los retos presentes y futuros de la agricultura

At the 8th World Congress on Conservation Agriculture (8WCCA), Martin Kropff, Director General of CIMMYT, argued that “agriculture cannot take a toll on the environment”, praising conservation agriculture for its contribution to building resilience to drought.

Read more: https://agroinformacion.com/la-agricultura-de-conservacion-una-oportunidad-para-afrontar-los-retos-presentes-y-futuros-de-la-agricultura/