Skip to main content

funder_partner: Food and Agriculture Organization of the United Nations (FAO)

Plowing through poverty

CIMMYT E-News, vol 6 no. 4, June 2009

As part of the global work to test and disseminate conservation agriculture, CIMMYT and partners have introduced and promoted new agricultural machinery in Bangladesh, helping farmers to improve their crop yields, food security, and livelihoods.

Continue reading

Bangladesh and CIMMYT: decades of partnership, commitment, and achievement

CIMMYT E-News, vol 5 no. 8, August 2008

01aWork by CIMMYT with researchers, extension workers, policymakers, and farmers in Bangladesh for nearly four decades has helped establish wheat and maize among the country’s major cereal crops, made farming systems more productive and sustainable, improved food security and livelihoods, and won ringing praise from national decision makers in agriculture, according to a recent report published by CIMMYT.

“CIMMYT is one of the leading centers of the CGIAR …working in Bangladesh since the early 70s…initiating multi-dimensional work for varietal improvement, improved crop management, conservation of natural resources, and human resource development,” says Dr. Md. Nur-E-Elahi, Director General, Bangladesh Rice Research Institute, citing the center’s contributions to the development of high-yielding maize and wheat varieties, wheat-rice and maize-rice systems, whole-family training, small-scale farm mechanization for conservation agriculture, and triticale (a wheat-rye hybrid) for fodder. “CIMMYT’s contributions to agricultural research and development in Bangladesh are highly recognized.”

aug06
Building capacity among scientists and farm families

More than 140 Bangladeshi wheat and maize scientists and extensionists have taken part in courses at CIMMYT-Mexico or come as visiting scientists in crop breeding, agronomy, pathology, cereal technology, experiment station management, seed production, economics, heat stress, and resource conserving practices. Dozens of scientists from Bangladesh have also attended conferences or international workshops organized by the center and partners. Finally, joint efforts in crop, soil, and water management research over the last 20 years have added to expertise in Bangladesh.More often than not, women and children contribute substantively to farm activities, so CIMMYT and the Wheat Research Centre (WRC) developed and refined a whole-family-training approach that has boosted adoption of improved cropping practices. “We’ve reached over 27,000 women and men farmers on maize and wheat production, and around 700 small-scale dairy farmers,” says Anton Prokash Adhikari, CIMMYT-Bangladesh Administrator. Follow-up studies in 1996 among a randomly-selected subset of families who attended training sessions showed a 90-100% adoption of improved practices. After training, maize farmers adopted a range of improved production practices, planting the crop on more land and raising grain yields by 0.8 tons per hectare. “This type of training has raised the quality of farming in Bangladesh,” says Adhikari.

With an average of over 1,000 inhabitants per square kilometer, Bangladesh is among the world’s most densely-populated countries, and nearly two-thirds of its people work in agriculture. The country furnishes a case study for the future of farming in developing countries: as a result of intensive cropping rotations, every square centimeter of arable land is used 1.8 times a year, and resources are stretched beyond what is normally considered “sustainable.” A recent report on CIMMYT efforts in Bangladesh gives an interesting account of how, through broad partnerships and sustained research for farmers, an international agricultural center can help improve farmers and consumers’ lives.

Joint work brings food and windfalls

“The last quarter century of work by a small team of dedicated CIMMYT staff and their colleagues in Bangladesh national programs has brought improvements in local and national income, food security, human nutrition, and well-being,” says agronomist Stephen Waddington, who worked for CIMMYT in Bangladesh during 2005-2007. “This is easily seen by any visitor to Bangladesh, where nowadays many otherwise poor people regularly have wheat chapattis for their breakfast, a glass of milk from triticale fodder-fed cows for their lunch, and maize-fed chicken, eggs, or fish for their dinner.”

Bangladesh emerged on the map of significant wheat-growing countries in the 1980s, according to Waddington. “Wheat became the second major cereal after rice, contributing to food security and human nutrition, and improving the livelihoods of resource-poor farmers and urban consumers,” he says. “Nineteen of the twenty-four wheat varieties released in Bangladesh carry CIMMYT lines in their backgrounds.” Much crop management and soil research for wheat was conducted in joint Bangladesh Wheat Research Center (WRC)-CIMMYT programs.

With climate change, enter maize and alternative crops

After playing a crucial role in Bangladesh agriculture, wheat production has declined in recent years, due chiefly to higher temperatures that hamper grain filling and incubate wheat diseases. But maize has become increasingly popular, partly in response to rising demand from the poultry sector for feed. “Last year farmers produced 1.3 million tons of maize, and output and interest are growing ,” says Enamul Haque, Senior Program Officer for CIMMYT-Bangladesh. “Maize fits well in Bangladesh’s climate, soils, and intensive farming systems.”

Again, CIMMYT has helped in a big way, providing improved maize lines adapted to local conditions, offering expertise in hybrid-based maize breeding and crop management research, helping to promote dialogue on enabling policies that foster productivity and effective markets. “Six out of the seven maize hybrids released by the Bangladesh Agricultural Research Institute, in recent years contain CIMMYT maize lines, and there is significant use of CIMMYT maize by emerging private breeding companies,” says Haque.

Finally, in recent years, triticale has become a source of high-quality green fodder for small-scale dairy producers during the cool, dry, winter season. “Dual-purpose fodder and grain triticale can produce 7 to 12 tons per hectare of fresh fodder, and as much as 2 tons per hectare of grain for poultry feed or for chapattis,” says Haque. All triticale varieties sown in Bangladesh come from CIMMYT.

Mechanization and resource-conserving practices

Within the last decade or so, agriculture in Bangladesh has become highly-mechanized: 8 of 10 farmers use two-wheel tractors, which are more apt for their small and scattered land holdings than the four-wheel variety. Since 1995, Haque has worked with the WRC and local organizations to promote a varied set of implements for reduced, more efficient tillage and seeding. One key aim has been to enable farmers to sow wheat or other crops directly after rice harvest in a single day—instead of after two weeks of back-breaking, fuel-hungry plowing—thus saving money and allowing the new crop to mature before the pre-monsoon heat shrivels the grain.

 Craig Meisner (left), a CIMMYT wheat agronomist during 1990-2005, contributed significantly to CIMMYT's presence, partnerships, and achievements in Bangladesh.
Craig Meisner (left), a CIMMYT wheat agronomist during 1990-2005, contributed significantly to CIMMYT’s presence, partnerships, and achievements in Bangladesh.

“To date thousands of farmers have adopted a small, two-wheel tractor-driven implement that tills, seeds, and covers the seed in a single pass,” says Haque. “This reduces turn-around between crops by 50%, cuts costs 15-20%, saves 30% in irrigation water and 25% in seed, and improves fertilizer efficiency—all this, as well as increasing yields by 20%, for wheat.” Owners of the single-pass seeding implement often hire out their services, earning USD 1,000-2,000 a year and each helping 20-100 other farmers to obtain the above-mentioned benefits. In addition, the reduced tillage implement and practices help address labor shortages that constrain farm operations at peak times, and are opening lucrative opportunities for machinery manufacturing and repair businesses.

For the future, CIMMYT staff are testing and promoting with researchers and farmers the use of permanent, raised beds and straw retention systems that can increase yields as much as 50% in intensive, wheat-maize-rice cropping sequences. Future activities of CIMMYT-Bangladesh will also focus on strengthening wheat and maize breeding programs, system-based research and resource-conserving practices, and the use of maize as food, fodder, and feed. “We’d also like to do more capacity building, study soil health and nutrition, and better disseminate useful technologies to farmers and extension agents,” Haque says, “but much depends on the resources available.”

Extensive partnerships key to past and future success

“CIMMYT has worked with national programs, NGOs, the private sector, farmers, donors, and policy planners,” says Md. Harun-ur-Rashid, Executive Chairman, Bangladesh Agricultural Research Council, and Director General, Bangladesh Agricultural Research Institute. “These joint programs have accumulated an impressive array of achievements and benefits.”

In addition to the key partners cited above, CIMMYT has worked with agricultural universities in Bangladesh, the Department of Agricultural Extension, the Bangladesh Livestock Research Institute, the Soil Resource Development Institute, the Bangladesh Rural Advancement Committee (BRAC), the Bangladesh Chashi Kollan Samity, the Bangladesh Institute of Nuclear Agriculture, Deoel Agro Industries Complex Ltd., and the Mahbub Engineering Workshop at Jamalpur. IRRI; ILRI; ICRISAT; IFDC; FAO; Murdoch University, ACIAR, and CSIRO, in Australia; Cornell University, Texas A&M University, Winrock International, and the Helen Keller Foundation, USDA, in the USA.

For more information: Enamul Haque, Senior Program Manager, CIMMYT-Bangladesh (e.haque@cgiar.org)

Brothers on the land

CIMMYT E-News, vol 4 no. 7, July 2007

Somewhere between the romance of the Silk Road and the land mines, CIMMYT works as part of the team that is rebuilding the shattered agriculture of Afghanistan.

It looked like a scene from a Tolstoy novel—four, weathered men with hand sickles working under the blazing, noonday sun to harvest a field of wheat. No combine harvester here, just the power of their backs and arms and hands. But Tolstoy wrote 140 years ago. This scene is today, 2007, in northern Afghanistan near the city of Mazur i Sharif, not far from the Uzbekistan border. Wheat is the most important food crop in this embattled country where 85% of the population depends on agriculture to sustain life. Yet wheat yields on its worn soils are notoriously low—only 2-2.5 tons per hectare, even on irrigated land. Unlike the republics of the former Soviet Union to the north, land holdings in this part of Afghanistan are small and do not lend themselves to large scale mechanization. You can understand what that really means when you talk to the farmers themselves.

jul06Faizal Ahmad and his brother Hayatt Mohammad are sharecroppers on this 8 hectare parcel of land. They pay the landowner a share and the crew that is harvesting gets a share, and with what is left, they try to feed their families, maybe sell a little.

“From the sharecropping we just survive,” Faizal says. “We are not going to get rich and we won’t make very much money.”

The crew working the field is part of a community harvesting system. They are paid in wheat seed rather than cash and get two meals for the day’s work. They too keep some land for wheat. In Afghanistan, no matter what else you grow, wheat comes first for family food security.

During the Taliban and warlord times, the brothers fled with their families to Pakistan but returned with the installation of the new government in 2004. And even though farming this irrigated land year round is tough, Hayatt, who is married with a son and daughter, says they are making a go of it. “Life is difficult, and we are struggling and hope things could improve.”

They are growing an improved but older wheat variety called Zardana Kunduzi which they get through an informal farmer-to-farmer seed system. Unhappily, their land is infested with wild oats. The weed reduces the wheat harvest, both by competing for space and by taking nutrients. No matter what the farmers try, the weeds come back every season. Of course herbicides are not an option for people with so little.

This is the milieu in which CIMMYT finds itself in Afghanistan—older varieties that are more susceptible to pests and diseases, a seed system that needs rebuilding from the ground up and agronomic practices that need improvement to give farmers like Faizal and Hayatt a real chance on the little land they have.

In partnership with the Ministry of Agriculture Irrigation and Livestock of Afghanistan (MAIL), CIMMYT has been testing potentially better wheats for conditions specific to different parts of the country. Already a new variety of durum wheat is available and not far from where Faizel, Hayatt and the crew are working another farmer is growing the durum for seed. His field is healthy and the crop looks excellent. He has been contracted by one of the new seed production companies that are part of a project sponsored by the Food and Agriculture Organization of the United Nations (FAO). Making that seed system sustainable, while providing seed at an affordable price is a great challenge.

The new agriculture master plan for Afghanistan prepared by MAIL praises CIMMYT for “considerable training of Afghans (that) sets a desirable standard.” In fact more than 50 Afghan researchers have had training at CIMMYT and more than 70 technicians, farmers and NGO workers have taken technical training at workshops in Afghanistan. Much of CIMMYT’s work in Afghanistan is supported by Australia through both the Australian overseas aid program, AusAID and the Australian Council for International Agricultural Research (ACIAR).

jul07At least three more varieties developed from materials originally from CIMMYT (some via the winter wheat breeding program in Turkey) are in the new varietal release pipeline that Afghanistan has implemented. They have already demonstrated in farmers’ fields that they are well-suited to local conditions and can provide more wheat per hectare than farmers currently harvest with yields in on-farm trials of almost 5 tons per hectare, double what most farmers get. These wheats can be seen in trials at the Dehdadi Research Farm near Mazur, almost within sight of the sharecropping brothers.

 

Nevertheless, Mahmoud Osmanzai, the CIMMYT country coordinator in Afghanistan says there are still real challenges to close the gap between the yields that can be achieved in well-managed demonstration plots and the yields poor sharecroppers like Faizel and Hayatt actually achieve. “We have good varieties that will make good bread,” he says. “Now we have to find a way that let’s resource-poor farmers get the most from them.”

For the sharecropping brothers, a little more income from their small piece of borrowed land could go a long way. “Yes if we could save, we could have a second business.” says Faizal. “We would probably get a shop as well or buy a car, run a taxi, build something to produce more.”

For more information: Mahmood Osmanzai, Afghanistan country coordinator (m.osmanzai@cgiar.org)

Smallholder maize farmers in Zimbabwe lack knowledge of open-pollinated varieties

CIMMYT E-News, vol 4 no. 5, May 2007

OPVs perform as well as hybrids or better under the low-input conditions of many smallholder farmers in Zimbabwe, but farmers need information and training about how properly to use them.

A new study to assess the effectiveness of a large-scale maize seed relief effort in Zimbabwe during 2003-07 shows that, even among vulnerable, small-scale farmers living on the edge of survival under the most difficult conditions, a livelihood-saving technology like quality seed of open-pollinated maize varieties (OPVs) is not enough, without knowledge about how best to use it.

Farmers can save grain of OPVs from their harvest and sow it the following year without the yield or other qualities of the variety diminishing substantially. Hybrids normally yield more than OPVs under favorable conditions, but “recycling” the seed in subsequent seasons will result in a significant loss of that yield and of other advantages; farmers must purchase fresh seed each season to retain them. “Zimbabwe farmers have historically favored hybrids, and they have limited knowledge about OPVs,” says Augustine Langyintuo, CIMMYT socioeconomist and lead author of the study. “Changing economic circumstances in the country have meant that many farmers can no longer purchase fertilizer to take best advantage of hybrid yield potential. We interviewed 597 households in 6 districts of Zimbabwe where a major seed-relief effort had, among other aims, promoted the broader diffusion of OPVs over hybrids, thereby giving smallholder farmers the possibility to save and re-use their own seed without sacrificing their meager yields.”

The seed aid effort, which was funded by British Department for International Development (DfID) and coordinated by the Food and Agricultural Organization (FAO) regional office in Harare, enlisted the assistance of 16 non-government organizations (NGOs) to distribute improved maize seed to more than 25,000 needy farmers. “The average household size in our survey group was 6.5 members, supported by a cultivated farm size of just 1.7 hectares, over 60% of which is planted to maize,” says Langyintuo. “Nearly a third of the households were headed by widowed females, a factor highly correlated with poverty.”

Under the relief program, the NGOs were expected to inform farmers of the types of seed being distributed and the need to select, store, and re-use the seed properly in subsequent seasons. Less than half the beneficiaries in the first year of the program were informed of the type of seeds to be provided, although the proportion increased to more than 60% over time. Information on OPVs was limited to the fact that they can be recycled. Less than half were ever taught how to select or store their seed.

According to Langyintuo, many farmers continue to recycle hybrids, or improperly select OPV grain for future use as seed, or—in the worst cases—eat all their grain and hope for another aid shipment to sow next year. “The relatively well-endowed farmers were more willing to recycle OPV seed. In future efforts, NGOs should perhaps target them to ensure larger-scale spillovers,” he says. “In general, whoever distributes seed of improved OPVs should provide information on proper seed selection and follow up with field-level training. Farmers should also be involved in the choice of the varieties.”

Another key issue to grapple with is the unavailability of OPV seed on the market. This stems from the unwillingness of seed companies to develop and promote OPVs, given the perception that farmers will simply recycle them and never buy fresh seed. “Zimbabwe farmers recycle both OPVs and hybrids, but if given a choice, they will purchase fresh seed whenever they can,” says Langyintuo. “OPVs perform as well as hybrids or better under the low-input conditions of many smallholder farmers in Zimbabwe, so they constitute a good option for such farmers.”

You can view or download the study “Assessment of the effectiveness of maize seed assistance to vulnerable farm households in Zimbabwe.”

For more information: Augustine Langyintuo, socioeconomist (a.langyintuo@cgiar.org)

Steady as she goes: Improved maize and wheat varieties actually lower farmers’ risks

CIMMYT E-News, vol 3 no. 7, July 2006

jul04A USAID-funded study by Williams College economist Douglas Gollin shows that modern maize and wheat varieties not only increase maximum yields in developing countries, but add hundreds of millions of dollars each year to farmers’ incomes by guaranteeing more reliable yields than traditional varieties.

Modern crop varieties developed through scientific crop breeding clearly produce higher yields than farmers’ traditional varieties. But critics have long maintained that, in developing countries, yields of modern varieties vary more from season to season than the traditional varieties, thereby exposing producers and consumers to greater risk.

Gollin’s study analyzed changes in national-level yield stability for wheat and maize across developing countries and related them directly to the diffusion of modern varieties. “The outcomes strongly suggest that, over the past 40 years, there has actually been a decline in the relative variability of grain yields—that is, the absolute magnitude of deviations from the yield trend—for both wheat and, to a lesser extent, for maize in developing countries,” says Gollin. “This reduction in variability is statistically associated with the spread of modern cultivars, even after controlling for expanded use of irrigation and other inputs.”

 The value to farmers of reduced risk

Valuing these reductions in yield variability requires assumptions about society’s willingness to trade off risk against return. Using a standard analytic framework, the study finds that the reductions in variability are as valuable as small increases in average yield. Assuming a moderate level of risk aversion on farmers’ part and taking estimates for the magnitude of reductions in yield variability, the results suggest that the reductions in yield variability due to modern varieties are worth about 0.3% of annual production in the case of wheat and 0.8% of production in the case of maize. These appear to be small effects, but the sheer scale of wheat and maize production in the developing world means that the benefits from improved yield stability are large in absolute terms. At appropriate world prices, the benefits are about US$143 million for wheat and about US$149 million for maize, on an annual and recurring basis.

The study drew on country-level data for the diffusion of modern wheat and maize varieties compiled by Robert Evenson of Yale University, as well as aggregate data on production and yields from FAOSTAT, the global food information database of the Food and Agriculture Organization of the United Nations. The analysis also made novel use of a mathematical tool called the Hodrick-Prescott filter to disentangle changes in long term trends from annual fluctuations. The filter is most often used in macroeconomics.

According to Gollin, the benefits are not attributable to any particular research theme or program. “They reflect longstanding efforts in breeding for disease and pest resistance, drought tolerance, and improved cropping systems, to name a few,” he says. “By reducing the fluctuations in maize and wheat grain yields, scientists have played a vital role in making modern crop technology attractive, accessible, and beneficial to farmers and consumers around the globe.”

For more information contact John Dixon (j.dixon@cgiar.org)

Nutrition Better but Maize Diversity Down in Chiapas

March, 2005

noticias1Farmer Juan Castillejos Castro of the village Dolores, Jaltenango, state of Chiapas, in southeastern Mexico, leaned forward in the humid, mid-morning heat and pondered the question: had household nutrition improved in the last 10 years? “From the mid-1970s to the mid-1980s, even I was malnourished to the point I couldn’t work,” he says. “Now things have gotten better, and the credits have helped a lot.”

Like many farmers in the “La Frailesca” region of Chiapas, Castillejos has been growing improved, hybrid maize, through a state-sponsored program that offers seed plus other inputs (fertilizer, pesticides, among them) and services (technical advice, crop loss insurance, to name two) on credit, to be repaid at harvest. For the last decade, government policy has also discouraged the burning of crop residues. Burning helped farmers control weeds and pests, but bared often steep, hillside plots to eroding winds and rain and deprived soils of organic matter. Castillejos and most peers now practice a more resource-conserving style of agriculture, sowing with a stick directly into the last year’s crop residues, without plowing or burning.

Folk Varieties Fading in La Frailesca

Unlike many farmers adopting the hybrids, Castillejos still grows small plots of the local maize varieties developed through selection by millennia of predecessors. The local varieties feature a better grain type for tortillas and other preferred foods. Their weaknesses include tallness and a tendency to topple easily. This and their relatively low yields have put them on the road to extinction, according to Dagoberto Flores, research assistant in CIMMYT’s Impacts Assessment and Targeting Program.

noticias3

“We still need a systematic study on this,” says Flores, “but I would guess that half the local varieties have disappeared, and only 30% of farmers are growing any local materials.” Flores and an associate, Alejandro Ramírez López, just spent a month surveying 120 farm households in 4 communities in the region. With funding from the United Nations Food and Agriculture Organization (FAO), they are comparing the costs to farmers of obtaining seed through formal versus informal supply systems and evaluating farmers’ risks, from village to village.

The village of Dolores Jaltenango lies in the mountainous countryside that bred the Zapatista uprising and is a gateway for undocumented immigrants from Central America. Nine-tenths of maize is relegated to steep hillsides—cattle raising and plantation agriculture claim the choice lowlands. “Dolores is one of the poorer communities in the area,” says Flores. “Dwellings are adobe with dirt floors. There’s normally one large sleeping quarters for an average 10 people, including parents, children, and married children’s spouses.”

Flores and Ramírez are concerned about La Frailesca’s farmers. The prices of the seed technology packages are rising steadily, and subsidies are being reduced. They fear that if farmers lose their native seed, they may have no fallback position. “Farmers look at their neighbor’s yields or the size of the ears, but most haven’t done the math on all the costs and benefits of the new technology,” Ramírez says. He cites the results of last year’s serious drought as an example: “Many farmers had poor crops. But some didn’t qualify for crop loss insurance benefits. Now they’re having trouble paying back their credit debts.”

CIMMYT’s Role: Conserving and Replenishing Diversity

According to Flores, CIMMYT staff have collected and preserved important samples of the Frailesca’s farmer varieties in the center’s germplasm bank. The bank contains seed collections for an estimated 80% of all Latin American maize diversity, including many varieties no longer sown by farmers. The seed is kept in trust for humanity, under a 1994 agreement with FAO. Working with partners in 13 countries in the Americas, center staff have coordinated the rescue, regeneration, and back-up storage of more than 10,000 seed samples of unique maize varieties from this hemisphere. CIMMYT and partners from the Mexican National Institute of Agriculture, Forestry, and Livestock Research (INIFAP) recently restored seed of local varieties to farmers in Oaxaca, Mexico, and could do the same for Chiapas farmers, should this become necessary, Flores says.

Fitting into FAO Research Efforts

Environmental economist Leslie Lipper at FAO will draw on the survey and its results in an emerging, multi-country study on how market access to crop genetic resources affects farmers’ welfare and on-farm crop biological diversity, according to Kostas Stamoulis, Chief of the FAO Agricultural Sector in Economic Development Service (ESAE). “CIMMYT’s work will provide unique data on farmer seed sourcing choices,” says Stamoulis. “Among other things, we’ll get a better read on how those choices are affected by the transaction costs of market participation and farmer’s perceptions of risk.” The study is one of three major ESAE efforts to understand the role of markets in rural livelihoods and environmental sustainability.

From 100 hectares to 100%

CIMMYT E-News, vol 2 no. 7, July 2005

100hectaresA Kazakh farmer wins by adopting CIMMYT-led technology.

The soft-spoken Meiram Sagymbayev recalls last year’s harvest, when his hundred hectare, zero-tilled plot had the highest wheat yield in Akmola county. “This completely convinced me,” he says, and to prove he was a farmer who took action when he saw a good thing, he put the rest of his 3,000 hectares under zero-till. This season he is a one hundred percent practitioner of conservation agriculture.

A prize-winning businessman, Sagymbayev put together the beginnings of a business plan while working on a cooperative farm shoveling manure in 1989 and started to implement his ideas when Kazakhstan won independence in 1991. It is no surprise then that this innovator is leading the way in zero-till farming in his region.

In a normal year Akmola receives just 250mm of rain, but 2004 was even drier. Sagymbayev’s zero-tilled plots had an advantage. The technology he used retains the previous season’s residues on the surface, which conserves moisture. As a result, Sagymbayev was able out-perform other farmers in the county. When his neighbor saw the results, he too joined the zero-till movement, sowing 2,500 of his 11,000 hectares using zero-tillage technology. More are watching intently, among them many of the county’s small-scale farmers.

noticias

“Psychologically, zero-tillage is not easy for farmers to accept and adopt,” he says. “For as long as I can remember, farmers have plowed the soil and allowed it to rest in fallow.” But now, because of his knowledge of zero-tillage and retained residues originally learned at an FAO-CIMMYT seminar, and because of his own harvest last year, it is easy for him to adopt the technology.

Neighbors often call on Sagymbayev for advice on various farming issues, including zero-tillage. While on an FAO-sponsored trip to the United States, he was impressed by how farmers there were independent yet worked cooperatively and in associations to acquire inputs and technical knowledge. Today, he is encouraged to see Kazakhstan and its farmers take their first steps to create cooperatives that can provide credit to farmers for fertilizer. Sharing equipment and labor may not be far behind.

In Kazakhstan’s transition period, most farmers didn’t know what to do,” he observes. “Now, things are moving forward step by step and may even be accelerating, but we have a ways to go.”

Zero-tillage: What is it? In zero-tillage, the farmer plants seed directly into the soil without plowing, and the crop comes up amid stubble from the previous year’s crop. In this way, the soil’s natural structure, network of organisms, water capture and retention capacity, and other properties are conserved or improved. Zero-tillage also saves time, fuel, and machinery maintenance costs, and reduces greenhouse gas emissions, to mention a few benefits.

To read another story about zero-tillage in this month’s E-news, click here

Helping to Reinvigorate Agriculture in Afghanistan

CIMMYT E-News, vol 2 no. 8, August 2005
whtVariety
Ghulam m Aqtash, Executive Director, KRA

“The maize brought by CIMMYT and implemented by Kunduz Rehabilitation Agency is doing wonders.”
Years of war (1979-1989) and subsequent internal instability, plus a prolonged drought and an earthquake, devastated Afghanistan’s agricultural infrastructure, production capacity, and agricultural research capabilities. As a result, agricultural production fell to an estimated 45% of 1978 levels, with crop yields declining to about 50% of pre-war levels.
Wheat is the number-one staple crop in Afghanistan, and maize is the third. Together they occupy 80% of the area planted to annual crops in the country. A central aim of CIMMYT in Afghanistan is to make improved, high quality seed of both crops available to farmers, along with appropriate crop management technologies. To date CIMMYT has responded to Afghanistan’s most urgent needs by:

  • Distributing 300 tons of quality seed of the locally-adapted wheat MH-97 to 9,000 farmers in four provinces of Afghanistan.
  • Producing and delivering tons of breeder’s and foundation maize seed.
  • Planting 35 wheat variety trials at 6 sites and 24 maize trials at 8 sites to identify additional materials suited to farmers’ needs.
  • Training Afghan researchers through courses in-country and at CIMMYT in Mexico.

CIMMYT has collaborated with Afghan researchers for over three decades—even during the war. Thanks to the Swedish Committee for Afghanistan and the FAO, Afghan researchers maintained contact with the Turkey-CIMMYT-ICARDA International Winter Wheat Improvement Program (IWWIP) and continued to select the best new wheats from international nurseries. The new seed moved from farmer to farmer; without it, people would have suffered even more hunger and malnutrition than they did. All winter and facultative wheat cultivars currently registered in Afghanistan are derived from those nurseries. In total, several hundred CIMMYT wheat and maize nurseries have been evaluated in Afghanistan over the past 30 years.

Recent Update from the Field

kunduzAn important component of a current ACIAR-funded project (“Wheat and Maize Productivity Improvement in Afghanistan”) has included collaborative work with farmers and non-government and international organizations to verify in farmers’ fields the performance and acceptability of improved wheat and maize varieties. For wheat, the project uses two approaches:

  1. A traditional approach where demonstrations are planted in farmers’ fields and the farmer assessments are recorded informally through topic focused interviews during field days. The varieties included in these demonstrations are released in the country and made available where security allows. Using this approach in Parwan Province, farmers showed a keen interest for the variety ‘Sohla,’ which yielded well and showed superior resistance to diseases like rust. The project is helping to ensure that demand for seed of the variety is met.
  2. A participatory technology development approach implemented by the Aga Khan Foundation brings farmers to research stations to observe yield trials of promising varieties. Farmers identify preferred varieties with red tags; their assessments determine the selection of wheat lines for advancement and subsequent release.

For maize, the project provided non-government organizations with seed of open-pollinated varieties that were distributed to rural communities. Farmer testing and feedback resulted in the identification of two promising varieties: Rampur 9433 and PozaRica 8731. Farmers said the varieties performed well but did not mature quickly enough to fit local cropping systems, so project participants are identifying earlier-maturing varieties. To offer farmers sufficient seed, the project is pursuing two approaches:

  1. A formal scheme whose main partners are the Agricultural Research Institute of Afghanistan (ARIA) and the FAO, through the Improved Seed Enterprise (ISE), and under which breeder’s seed will be offered to recognized producers of certified seed.
  2. Informal farmer-to-farmer distribution systems, which have resulted in up to a 10-fold increase in some areas under improved varieties. For example, the Norwegian Project Office-Rural Rehabilitation Association for Afghanistan (NPO-RRAA) reported that farmers who had planted open-pollinated varieties from the project in 2003 had bartered and sold more than two tons of seed of the varieties in 2004.

afghanFarmers

The project has built human capacity through in-country, technical workshops, five of which have been conducted since 2000 on topics including: agricultural development potential and constraints in specific zones; yellow rust and field scoring for the disease; research methodologies; variety evaluation; and several field days. The workshops have drawn 70 participants, including farmers, workers from non-government organizations, and officers from research stations.

CIMMYT partners in Afghanistan include:
  • The Future Harvest Consortium to Rebuild Agriculture in Afghanistan, funded by USAID and coordinated by ICARDA.
  • AusAID and the Australian Centre for International Agricultural Research (ACIAR).
  • The FAO.
  • The International Fertilizer Development Center (IFDC)-USAID.
  • The French non-government organization, ACTED.
  • The Aga Khan Development Network.
  • Improved Seed Enterprise.
  • The Afghan Ministry of Agriculture.
  • ARIA.

For further information, contact Mahmood Osmanzai (m.osmanzai@cgiar.org).

This write-up draws on contributions from Alma McNab, former CIMMYT science writer and the CIMMYT team in Afghanistan, including team leader Mahmood Osmanzai and former CIMMYT maize agronomist Julien de Meyer. De Meyer manages the Effective Development Group (EDG), a non-government organization based in Australia and has been commissioned by ACIAR to assist the Afghanistan project in data analysis, training, planning workshops, and reporting.

Fellows Program, World Food Prize Laureates Highlight Borlaug’s 90th

March, 2004

borlaug_photo1US Secretary of State Colin Powell paid tribute to Iowa and in particular to one man, known as the father of the Green Revolution, who was born there 90 years ago.

“On behalf of the American people, on behalf of President Bush, we gather to thank heaven for the great state of Iowa,” Powell said at a State Department ceremony to announce the 2004 World Food Prize Laureates on 29 March. “Most of all, we salute Iowa’s own, Norman Borlaug, for creating the World Food Prize and for his own prize winning work against hunger.”

US Secretary of Agriculture Ann Veneman joined Powell in honoring Dr. Borlaug’s 90th birthday in Washington DC. In front of more than 200 guests, including FAO Director General Jacques Diouf, USAID Administrator Andrew Natsios, World Bank Vice President and CGIAR Chair Ian Johnson, CGIAR Director Francisco Reifschneider, and CIMMYT Director General Masa Iwanaga, Veneman described the Norman E. Borlaug Agricultural Science and Technology Fellows Program to be inaugurated by the United States Department of Agriculture.

“Thanks to Dr. Borlaug’s pioneering work in the 1960’s to develop varieties of high-yielding wheat, countless millions of men, women and children, who will never know his name, will never go to bed hungry,” Powell said. “Dr. Borlaug’s scientific breakthroughs have eased needless suffering and saved countless lives. And Dr. Borlaug has been an inspiration to new generations across the globe who have taken up the fight against hunger and have made breakthroughs of their own.”

A tribute to Dr. Borlaug’s individual pursuit of using science and technology to fight hunger, the Fellows Program will focus on strengthening agriculture in developing countries by incorporating and advancing new science and technology. Proposed by Texas A&M University’s Agriculture Program and established by the USDA, it will give scientific training to fellows from developing countries and support exchanges among university faculty, researchers, and policy makers.

borlaug_photo2

The program aims to prepare professionals who want to lead developing countries in agricultural research and education while embracing the values that Dr. Borlaug’s life and work represent. It will be managed by the USDA’s Foreign Agricultural Service, the US Agency for International Development, the US Department of State, land grant colleges, and Texas A&M University, where Dr. Borlaug is professor emeritus.

In 2004, an initial group of fellows from around the world—especially Africa, Latin America, and Asia—will begin training or research programs at US schools, government agencies, private companies, international agricultural research centers such as CIMMYT, and nonprofit institutions. The program will span such diverse areas as biotechnology, food safety, marketing, economics, and natural resource conservation, and it will include studies of policies and regulations to foster the use of new technology.

The US$ 2 million research grant given to the Texas Agriculture Experiment Station by USDA-Cooperative State Research, Education, and Extension Service will be managed by a Consultative Committee, which comprises representatives from universities, foundations, government agencies, and countries affiliated with Dr. Borlaug’s work. This committee will serve as a donor council, advise on the selection and placement of fellows, and evaluate the program.

At the US State Department, Secretary of State Powell named the new World Food Prize Laureates: Yuan Long Ping of China and Monty Jones of Sierra Leone, who have made advances in high-yielding rice.

borlaug_photo3
Borlaug founded the World Food Prize in 1986 to honor people who have made important contributions to improving the world’s food supply. Endowed since 1990 by businessman and philanthropist John Ruan, this international award recognizes achievements of people who have improved the quality, amount, or accessibility of food in the world to advance human development.

World Food Prize Laureate Yuan has revolutionized rice cultivation in China. Known as the Father of Hybrid Rice, he helped cultivate the first successful and widely grown hybrid rice varieties in the world. More than 20 countries have adopted his hybrid rice, and his breeding methods have helped provide food for tens of millions of people.

World Food Prize Laureate Jones, formerly a rice breeder at WARDA—the Africa Rice Center—in Côte d’Ivoire, successfully made fertile inter-specific African and Asian rice crosses that combined the best characteristics of both gene pools. This “New Rice for Africa,” or NERICA, has higher yields and better agronomic characteristics for African conditions.

Jones and Yuan will receive a $250,000 prize to share in October.

borlaug_photo4

Dr. Borlaug has dedicated 60 years to building knowledge and fostering development in poor countries. Since the mid-1940s, when he arrived in Mexico to work on an agricultural project that was the forerunner of CIMMYT, he has worked tirelessly in the cause of international agricultural research. The innovative wheat varieties that he and his team bred in Mexico in the 1950s enabled India and Pakistan to prevent a massive famine in the mid-1960s and to initiate the Green Revolution. This achievement earned Dr. Borlaug the Nobel Prize in 1970 and created extensive support for a network of international agricultural research centers, known as the Consultative Group on International Agricultural Research (CGIAR).

In order to meet the 1996 World Food Summit goal of cutting in half the number of chronically hungry people by 2015, Powell said the international community must reduce the number of undernourished people by an average rate of 22 million people per year. The current rate is only a decrease of 6 million people per year. Of the more than 800 million severely malnourished people in the world, 80 percent are women and children, he said, but famine is entirely preventable in the 21st century.

More information on the Borlaug Fellows Program: http://www.usda.gov/Newsroom/0125.04.html

More information on the World Food Prize: http://www.worldfoodprize.org

New Tools Match Wheat Varieties to Growing Environments

title_newtools

April, 2004

Wheat is grown in about 70 countries, in environments that extend from the Arctic Circle to near the Equator, from sea level to elevations of 4,000 meters, and under very dry and very wet conditions. Wheat researchers may not know that their local growing environment shares key limitations with environments in other parts of the world. They may not know that another scientist, half a world away, is trying to solve the same problem.

A wide-ranging project between CIMMYT and Australian organizations is helping wheat researchers obtain and share information to develop better varieties more efficiently. The project’s tools for analyzing and sharing information will enable many more researchers to work together on common problems.

CIMMYT is working with the University of Queensland (UQ) and Australia’s Commonwealth Scientific and Industrial Research Organization (CSIRO) to characterize growing environments and understand how different wheat lines grow there. (Wheat lines can be thought of as experimental, unfinished varieties.) Researchers are creating information tools—including mapping systems, wheat breeding simulation programs, and environmental simulations—that wheat researchers can use to develop more appropriate wheat varieties and production practices for a set of target environments. The project is supported by Australia’s Grains Research and Development Corporation (GRDC).

One reason that CIMMYT and the Australian organizations can benefit considerably from each other’s research tools and partnerships is that Australian wheat growing environments resemble some important wheat-producing environments in developing countries.

Testing the Ground

Part of the information that powers the project comes from the International Adaptation Trial (IAT), which consists of seed of 80 spring wheat lines of bread wheat and durum wheat. Cooperators who receive the trial plant the seed according to specific instructions, collect data from planting to harvest, and return the data to CIMMYT. CIMMYT breeders Wolfgang Pfeiffer, Richard Trethowan, Maarten van Ginkel, and Tom Payne identified cooperator sites, emphasizing sites with low rainfall and susceptibility to drought. They worked with Australian breeders to choose the CIMMYT and Australian lines that were included in the trial.

The IAT contains broadly and specifically adapted lines. Information on the performance of broadly adapted lines indicates their stability across a range of environments and in the presence of various environmental stresses, including diseases, pests, and soil problems. Individual environmental stresses are identified through specifically bred lines called probe genotypes, which have comparative responses that reflect the presence or absence of a specific trait.

In the IAT, most of the comparative pairs have highly similar genetic backgrounds, except for the trait of interest. For example, the Australian lines Gatcher and Gatcher GS50A help detect root lesion nematode. Gatcher is vulnerable to the nematode, but Gatcher GS50A is not. In the presence of the nematode, Gatcher GS50A yields better than Gatcher—more than half a ton better. In the absence of the nematode, both lines yield about the same.

Simulating the Growing Environment

The project also uses extensive sets of weather, climate, and geographical data. Along with the information from the IAT, these data are used to model how wheat lines with particular characteristics are likely to perform in key locations around the world. Running a crop simulation module that works in all types of environments is difficult, says UQ postdoctoral fellow, Ky Mathews. Researchers need good data that cover long periods. Mathews has been using daily weather data, supplied by the US National Oceanic and Atmospheric Administration, from 1973 to the present for 20,000 locations. These data are supplemented with information from cooperators. She is also using an FAO soil map to identify the most likely soil types in different regions.

From the modeling and IAT results, researchers around the world gain a more detailed understanding of target environments. They can investigate stresses at a location based on the IAT probe lines, find data on other wheat-producing locations that have similar stress responses, and evaluate weather patterns and soil information that might indicate a line’s vulnerability or exceptional resistance to a stress. This information will help breeders to make more informed choices about the lines they request from each other, the crosses they make, the genes and traits they use, and ultimately which lines they release as varieties to farmers.

It will also help them to solve shared problems. Preliminary results indicate that root lesion nematode is found at IAT sites in Ecuador, Bangladesh, India, and Mexico. Breeders can see from project maps that they experience the same challenges. “Before, we could never map the nematode sites around the world,” says Mathews. “That had never been done.”

Many Products

The project has several outputs, such as a global prediction model for flowering that defines global planting dates, a database of weather and soil data, a tool that extracts phenotypic data over the Internet from CIMMYT’s large database, and data summary tools. One tool, called QU-Cim, simulates CIMMYT’s bread wheat breeding program.

“The IAT also provides an ‘adaptation filter’ that increases the usefulness of data that CIMMYT and its partners have collected for decades in wheat breeding environments all over the world,” says CSIRO crop adaptation scientist Scott Chapman. For example, the breeders who discover a Boron problem can use CIMMYT’s historical data to identify locations where CIMMYT lines have performed well despite the presence of Boron and use these lines to develop tolerant varieties.

Mathews thinks it is important that cooperators get the project results so they can see the bigger picture. “I would like the breeders around the world to be able to have the tools to interrogate locations around the world to make better decisions about their breeding programs,” she says.

Despite the challenges, CIMMYT wheat researchers believe that the project has demonstrated tremendous potential for adding value to local and global wheat breeding research. CIMMYT is seeking funds to extend this work to more of the world’s important wheat-producing environments.

QU-Cim: Improving the local relevance of CIMMYT’s global wheat breeding programCIMMYT’s wheat breeding program has more than five decades of accumulated breeding data and has been highly successful. That makes it an excellent testing ground for QU-Cim, a tool that simulates wheat breeding processes and outcomes.

QU-Cim is a module of QU-GENE, a simulation platform developed at the University of Queensland by Mark Cooper and Dean Podlich.

QU-GENE can integrate enormous amounts of genetics-based data from widely different sources, produce realistic scenarios that help breeders compare potential outcomes without expensive field trials, and determine the best way to achieve the results they want. Only the approaches that are most likely to succeed will be used in the field.

Together with UQ programmers, CIMMYT Associate Scientist Jiankang Wang wrote the QU-Cim module and worked with CIMMYT researchers to parameterize it for CIMMYT’s breeding program.

Starting with the genetic characteristics of wheat breeding lines, QU-GENE can simulate the performance of their descendents in a given field environment over many breeding cycles. The resulting information should help breeders devise the crosses that will deliver desirable traits, even traits determined by the interaction of many genes. QU-GENE can also reduce breeding costs by reducing the number of crosses breeders make to reach a particular goal, identifying the best breeding method to use, or determining the most cost-effective, efficient time to use it.

A copy of QuCim 1.1 can be obtained by contacting either Jiankang Wang or Maarten van Ginkel.

South Asian Partners Host Trustees for Extended Field Visits

April, 2004
South Asian Partners Host Trustees for Extended Field Visits

Much of CIMMYT’s research focuses on improving the livelihoods and food security of poor households in South Asia, which is home to more of the world’s poor–43 percent–than any other region. To observe the impact of CIMMYT’s efforts there and to assess opportunities to help farmers, CIMMYT’s Board of Trustees and senior management visited India and Nepal in March. Officials of both countries hosted the visiting delegation.

India and Nepal are two key partners for CIMMYT. India’s relationship with CIMMYT began before the Green Revolution, and the world has benefited from the research products of this collaboration. CIMMYT also has maintained a long partnership with Nepal, where the National Agricultural Research Center (NARC) has hosted CIMMYT’s South Asia Regional Office for 18 years.

Field Visits in India

visitingNepalOn the first day of the field visits, about 200 farmers from nearby villages greeted the delegation and expressed appreciation for new practices that were helping them to diversity agricultural production and conserve resources such as water and soil. The delegation was welcomed in Kapriwas, Gurgaon by senior officials of the Indian Council of Agricultural Research (ICAR), including Director General Mangala Rai, Deputy Director of Crops and Horticulture G. Kalloo, and M.K. Miglani, Vice Chancellor of Haryana Agricultural University. They explained how new tillage and planting practices helped Indian farmers by saving labor, fuel, and irrigation, while maintaining or increasing yields.

Many farmers were extremely enthusiastic about the visit. One farmer was sprinkle irrigating wheat that was close to maturity, which is something that is not typically done. When one of the visitors asked why he was doing this, the farmer replied that he was overjoyed by their visit and wanted to show off his sprinkle irrigation system. (The technical explanation was that he wanted to lower the heat stress and improve grain filling.)

The visitors saw research to identify salt-tolerant wheat and other crops and to study the long-term effects of saline water use at Bawal Research Station. They also saw an experiment showing how paired-row wheat planting on beds produced high yields, large spikes, and large grains, which help wheat fetch a higher market price. Although all the farmers who joined the delegation agreed that wheat planted on beds in paired rows gives higher yields with less labor and fewer inputs, they said there is a shortage of bed planters for Indian farmers. CIMMYT, ICAR, and the private sector are working to improve the situation.

Another experiment they observed evaluated the potential for growing maize in Haryana, where limited production and high demand compel people to buy maize in Delhi or Rajasthan.

On the second day the delegation visited Durgapura Research Station of Rajasthan Agricultural University. They learned about a wide spectrum of research, including breeding for resistance to rust and to cereal cyst nematode and for tolerance to saline conditions. They heard about issues related to the use of brackish and saline water in crop production in arid regions. Some participants expressed concern about the long-term health effects of this practice, especially in the production of green vegetables.

On the third day the delegation was received by farmers of Kallogarhi-Matiala Village, as well as PP Singh (Vice Chancellor, Sardar Vallabh Bhai Patel University of Agriculture and Technology, Meerut) and Larry Paulson (USAID-India). Board members were very interested in locally developed, low-cost equipment for promoting conservation agriculture. They saw the comparative performance of wheat planted using zero-tillage drills with “inverted T” and double disc openers. Farmers at this site are developing a permanent “double no-till” system of conservation agriculture to grow rice and wheat.

During dinner, representatives of Raja Balwant Singh College Trust thanked CIMMYT for more than 50 years of partnership in Indian agricultural development, dating back to before the Green Revolution. They suggested that CIMMYT and RBS, the largest and one of the oldest agricultural colleges in India, could benefit from a joint visiting scientist program.

Field Visits in Nepal

In 2003, Nepal’s national average wheat yield surpassed 2 t/ha for the first time, an achievement that gives some idea of the constraints that farmers there have overcome. The National Wheat Research Program Coordinator, Mr. M.R. Bhatta, described the impact of disease and yield nurseries that CIMMYT and NARC distribute throughout South Asia, and observed that more than 20 wheat varieties have been released in Nepal in the past 15 years.

At Khumaltar Research Station, NARC researchers highlighted studies in areas such as pathology, breeding, agronomy, soil sciences, mechanization, and biotechnology.

The visitors also heard researchers from the Hill Maize Research Project describe how communities have become self-sufficient in maize, their staple food, for the first time. Nearly 80% of Nepal’s maize is grown in the mid-hills, where more than 10 million people depend on the crop for food, income, and animal feed. Shortages are chronic. The Hill Maize Research Project provides the farmers with source seed, plus training in seed production techniques, storage, and marketing. It also ensures that there is sufficient seed of new maize varieties for farmers to replace old improved or local varieties, which yield very little.

Through their efforts, communities have produced more than 150 tons of maize seed. Community-based seed production accelerates seed replacement, disseminates new technologies, improves household food security, and raises incomes. This work, supported by the Swiss Agency for Development and Cooperation (SDC), is having an enormous impact in isolated hill sites.

A visit to farmers’ fields in Thecho Village in the Kathmandu Valley showed how farmers’ access to better wheat varieties and growing practices was increasing through participatory research. The farmers partner with NARC, CIMMYT, the University of Bangore, the Agricultural Development Organization (ADO), and others in a project funded by the UK Department for International Development. Farmers enthusiastically shared their experiences with participatory variety selection and seed production. Some groups are earning enough additional income from growing wheat to purchase new equipment or make other investments.

NARC and ADO have extended participatory variety selection to rice, legumes, vegetables, and other crops throughout Nepal after seeing the success with wheat. (In India, similar exciting work is being done in collaboration with Banaras Hindu University.)

Thanks to Our Hosts

board_memberCIMMYT’s Board and staff are grateful to P.P. Manandhar, Nepal’s Secretary of Agriculture, and officials at the Ministry of Agriculture and Cooperatives for their constant support for CIMMYT’s South Asia Regional Office, and to NARC Executive Director R.P. Sapkota and his colleagues for support and field visits. They are also most grateful to ICAR Director General Mangla Rai, Deputy Director of Crops and Horticulture G. Kalloo, and the many representatives of experiment stations, colleges, and universities in India who made the visit a success. The opportunity to meet and visit the field with representatives of DFID, FAO, the Japan International Cooperation Agency, SDC, USAID, and the World Bank, among others, was also greatly appreciated.

We also thank the farmers who so kindly shared their experiences and hospitality with us.

Resistant wheats and Ethiopian farmers battle deadly fungus

When a devastating stripe rust epidemic hit Ethiopia last year, newly-released wheat varieties derived from international partnerships proved resistant to the disease, and are now being multiplied for seed.

Wheat farmers and breeders are embroiled in a constant arms race against the rust diseases, as new rust races evolve to conquer previously resistant varieties. Ethiopia’s wheat crop became the latest casualty when a severe stripe rust epidemic struck in 2010. “The dominant wheat varieties were hit by this disease, and in some of the cases where fungicide application was not done there was extremely high yield loss,” says Firdissa Eticha, national wheat research program coordinator with the Ethiopian Institute of Agricultural Research (EIAR). “This is a threat for the future because there is climate change—which has already been experienced in Ethiopia—and the varieties which we have at hand were totally hit by this stripe rust.”

Ethiopia is not alone; stripe rust has become a serious problem across Africa, the Middle East, and Asia, with epidemics in 2009 and 2010 which many countries have struggled to control. What’s new is the evolution of stripe rust races that are able to overcome Yr27, a major rust resistance gene that many important wheat varieties rely on. Although recent weather conditions have allowed the new rust races to thrive, they first began to emerge more than a decade ago, and CIMMYT’s wheat program, always looking forward to the next threat, began selection for resistance to Yr27-virulent races in 1998.

“CIMMYT has a number of wheat lines that have shown good-to-excellent resistance to stripe rust without relying on Yr27, in screening in Mexico, Ecuador, and Kenya,” says Ravi Singh, CIMMYT distinguished scientist and rust expert who leads the breeding effort in Mexico. Many of these are also resistant to the stem rust race Ug99 and have 10-15% higher yields than currently-grown varieties, according to Singh. The current step is to work with national programs to identify and promote the most useful of the resistant materials for their environments—a process that was underway in Ethiopia when the epidemic struck.

Eticha is leading his country’s fight against stripe rust. Reflecting on the disease, he says: “For me it is as important as stem rust. I find it like a wildfire when there is a susceptible variety. You see very beautiful fields actually, yellow like a canola field in flower. But for farmers it is a very sad sight. Stripe rust can cause up to 100% yield loss.” There is no official figure yet on the overall loss to Ethiopia’s wheat harvest for 2010, but it is expected to be more than 20%.

Stripe rust symptoms in the field in Ethiopia. | Photo: Firdissa Eticha

The other common name for stripe rust is yellow rust. Severely-infected plants look bright yellow, due to a photosynthesis-blocking coating of spores of the fungus Puccinia striiformis, which causes the disease. These spores are yellow to orange-yellow in color, and form pustules. These usually appear as narrow stripes along the leaves, and can cover the leaves in susceptible varieties, as well as affecting the leaf sheaths and the spikes. The disease lowers both yield and grain quality, causing stunted and weakened plants, fewer spikes, fewer grains per spike, and shriveled grains with reduced weight.

Epidemic flourishes with damp weather

Normally, Ethiopia has two distinct rainy seasons, one short and one main, allowing for two wheat cropping cycles per year. However, 2010 saw persistent gentle rains throughout the year, with prolonged dews and cool temperatures—perfect weather for stripe rust. Most wheat varieties planted in Ethiopia were susceptible, including the two most popular, Kubsa and Galema, so damage was severe. Under normal conditions, the disease only attacks high-altitude wheat in Ethiopia, but last year it was rampant even at low altitudes. This could reflect the appearance of a new race that is less temperature sensitive, or simply the unusual weather conditions; Ethiopian researchers are currently waiting for the results of a rust race analysis.

There was little Ethiopia could do to prevent the epidemic; imported fungicides controlled the disease where they were applied on time, but supplies were limited and expensive. Newly-released, resistant varieties provide a way out of danger. In particular, two CIMMYT lines released in Ethiopia in 2010 proved resistant to stripe rust in their target environments: Picaflor#1, which was released in Ethiopia as Kakaba, and Danphe#1, released as Danda’a. Picaflor#1 is targeted to environments where Kubsa is grown, and so has the potential to replace it, and Danphe#1 could similarly replace Galema. Both varieties are also high-yielding and resistant to Ug99.

CIMMYT scientists Hans-Joachim Braun (left) and Bekele Abeyo visit the fields of the Kulumsa Research Station where CIMMYT materials resistant to stripe rust are being multiplied for seed supply to Ethiopian farmers.

Seed multiplication of resistant CIMMYT varieties

As soon as the situation became clear, EIAR and the Ethiopian Seed Enterprise (the state-owned organization responsible for multiplication and distribution of improved seed of all major crops in Ethiopia) worked together to speed the multiplication of seed of these varieties, using irrigation during the dry seasons. This is happening now, with almost 500 hectares under multiplication over the winter—421 of Picaflor#1 and 70 of Danphe#1. Financial support from this project came from the USAID Famine Fund. Two resistant lines from the International Center for Agricultural Research in the Dry Areas (ICARDA) were released in Ethiopia in 2011, and will add to the diversity for resistance.

Eticha does not foresee any difficulty encouraging farmers to adopt the new varieties. In 2010 they were grown by 900 farmers on small on-farm demonstration plots, as part of EIAR’s routine annual program, so they have been seen—free of stripe rust—by thousands of farmers, and there will be more demonstration plots as more seed becomes available. However, “farmers are at risk still even if the varieties are there,” he says, “the problem is seed supply.” Some seed will reach farmers this year, but the priority will be ongoing multiplication to build up availability as fast as possible.

Hans-Joachim Braun, director of CIMMYT’s Global Wheat Program, visited Ethiopia in 2010. “The epidemic was a real wake-up call,” he says. “Researchers have known for more than ten years that the varieties grown are susceptible. Farmers are not aware of the danger, so it is the responsibility of researchers and seed producers, if we know a variety is susceptible, to replace it with something better.”

Exploring rust solutions in Syria

The ongoing fight against the wheat rust diseases is an international, collaborative effort involving many partners in national programs and international organizations. CIMMYT works closely with ICARDA, which leads efforts against the wheat rust diseases in Central and West Asia and North Africa. At the International Wheat Stripe Rust Symposium, organized by ICARDA in Aleppo, Syria, during 18-20 April 2011, global experts developed strategies to prevent future rust outbreaks and to ensure the control and reduction of rust diseases in the long term.

Other participating organizations included CIMMYT, the Borlaug Global Rust Initiative (BGRI), the Food and Agricultural Organization (FAO) of the UN, the International Development Research Center (IDRC, Canada), and the International Fund for Agricultural Development (IFAD). More than 100 scientists from 31 countries presented work and shared ideas on wheat rust surveillance and monitoring, development and promotion of rust-resistant wheat varieties, and crop diversity strategies to slow the progress of rust outbreaks.

CIMMYT was represented by Hans-Joachim Braun and Ravi Singh. “Wheat crops and stripe rust like exactly the same conditions,” says Braun, “and they both love nitrogen. This means that where a farmer has a high yield potential, stripe rust takes it away, if the wheat variety is susceptible. In addition to the really devastating epidemics, the disease is very important because even in bumper years, farmers who grow susceptible varieties still can’t get a good yield.”

One thing all the attendees agreed on was the immediacy of the rust threat. New variants of both stem rust (also known as black rust) and stripe rust (or yellow rust), able to overcome the resistance of popular wheat varieties, are thriving under the more variable conditions caused by climate change, increasing their chances of spreading rapidly. Breeders in turn are quickly developing the varieties farmers need, with durable resistance to stem and stripe rust, as well as improved yield performance, drought tolerance, and regional suitability.

Other major areas of focus are the development of systems for monitoring and surveillance of rust to enable rapid response to initial outbreaks, and overcoming bottlenecks in getting resistant seed quickly to farmers. There is much to be done, but Singh is confident: “If donors, including national programs and the private sector, are willing to invest in wheat research and seed production, we can achieve significant results in a short time.”

“Ethiopian scientists responded quickly to the epidemic”, says Braun, “but there were heavy losses in 2010. What we need is better communications between scientists, seed producers, and decision makers to ensure the quick replacement of varieties.”

Building on a strong partnership

The value of the collaboration between CIMMYT and Ethiopia is already immeasurable for both partners. CIMMYT materials are routinely screened for rust at Meraro station, an Ethiopian hotspot, in increasing numbers as rust diseases have returned to the spotlight in recent years. CIMMYT lines are also a crucial input for Ethiopia’s national program.

“The contribution of CIMMYT is immense for us,” says Eticha. “CIMMYT provides us with a wide range of germplasm that is almost finished technology—one can say ready materials, that can be evaluated and released as varieties that can be used by farming communities.” Ethiopia has favorable agro-environments for wheat production, and the bread wheat area is expanding because of its high yields compared to indigenous tetraploid wheats. “Wheat is the third most important cereal crop in Ethiopia,” explains Eticha, “and it is really very important in transforming Ethiopia’s economy.”

Bekele Abeyo, CIMMYT senior scientist and wheat breeder based in Ethiopia, works closely with the national program. CIMMYT helps in many ways, he explains, for example with training and capacity building, as well as donation of materials, including computers, vehicles, and even chemicals for research. “In addition, we assign scientists to work closely with the national program, and facilitate germplasm exchange, providing high-yielding, disease resistant, widely-adapted varieties.” Speaking of the stripe rust epidemic, he says, “last year, the Ethiopian government spent more than USD 3.2 million just to buy fungicides, so imagine, the use of resistant varieties can save a lot of money. Most farmers are not able to buy these expensive fungicides. During the epidemic, fungicides were selling for three to four times their normal price, so you can see the value of resistant varieties.”

“I think East Africa is colonized by rust. Unless national programs work hard to overcome and contain disease pressure, wheat production is under great threat,” says Abeyo. “It is very important that we continue to strengthen the national programs to overcome the rust problem in the region.” With Yr27-virulent stripe rust races now widespread throughout the world, Ethiopia’s story has echoes in many CIMMYT partner countries. The challenge is to work quickly together to identify and replace susceptible varieties with the new, productive, resistant materials.

For more information: Bekele Abeyo, senior scientist and wheat breeder (b.abeyo@cgiar.org)

1st ARIA-CIMMYT maize workshop in Kabul, Afghanistan

ARIA-CIMMYTCIMMYT, with support from the Australian Centre for International Agricultural Research (ACIAR), has been working on maize in Afghanistan for more than ten years, and has contributed to the release—led by the Agricultural Research Institute of Afghanistan (ARIA)—of four maize varieties. Historically, the national research and seed systems have not been as proactive for maize as they have for wheat. However, recognizing that maize can be an effective contributor to overall food production, the recent past has seen efforts to give maize its due importance as a food crop in Afghanistan. To this end, the first ARIA-CIMMYT maize workshop was held at the ARIA conference hall in Kabul on 30 April and 01 May 2012, with the aims of further systematizing maize research in the country and coordinating the efforts of stakeholders.

Maize is the fourth most important cereal crop in Afghanistan, accounting for about 6.8% of total cereal production. It has traditionally played a significant role in Afghan food, and during the pre-conflict period Afghanistan grew maize on about half a million hectares, with production reaching 0.7 million tons and productivity at 1.3–1.6 t/ha. During the last decade, productivity has ranged between 0.9 and 2.6 t/ha with signs of improvement, but the area planted to maize has fallen to about 180,000 hectares and total production has hovered around 0.3 million tones. The country has been importing maize to meet its needs, spending about four million USD during 2009.

The workshop was inaugurated by Sahib Dad Pakbin, senior advisor to ARIA. He welcomed the CIMMYT initiative and said he hoped the workshop would lead to increased coordination and more effective contributions by maize researchers in the country. Rajiv Sharma, CIMMYT’s country liaison officer for Afghanistan, highlighted the important supplementary role maize could play in enhancing wheat-based farm-level productivity. A total of 28 participants attended and gave presentations at the workshop, from ARIA, CIMMYT, the Afghan Ministry of Agriculture, Irrigation and Livestock (MAIL), FAO, the International Center for Agricultural Research in the Dry Areas (ICARDA), and private sector seed companies. The themes covered included the importance of maize in Afghanistan, maize agronomy, maize breeding, seed production, and the maize research network in Afghanistan.

All the participants were excited by the opportunity to collaborate with fellow researchers, in particular the ARIA maize researchers by the chance to connect with colleagues from other research stations. They expressed immense satisfaction at being able to share and link their proposed research plans for the ensuing maize season. ARIA director Qasem Obaidi thanked CIMMYT for its contributions in providing this opportunity and expressed the wish that it would be repeated in years to come to facilitate meaningful coordination, not only among researchers but also other stakeholders such as seed producers.

Empowering maize technicians in Zimbabwe

Zimbabwe-techniciansA training course was held at the Agricultural Research Trust (ART), in Harare, Zimbabwe during 12-15 March 2012. Organized by CIMMYT-Zimbabwe, the course aimed to improve the skills and knowledge of maize technicians regarding implementing on-station and on-farm trials, seed production, and the use of secondary traits in selecting superior genotypes under low N and drought trials.

Participants represented five Zimbabwean seed companies and national agricultural research systems in Zimbabwe, Lesotho, and Swaziland, and were sponsored by CIMMYT’s New Seed Initiative for Maize in Southern Africa (NSIMA) and Drought Tolerant Maize for Africa (DTMA) projects, and FAO-Swaziland. Training included practical sessions as well as theoretical lectures on seed production and breeding for biotic and abiotic stresses. Participant Lazarus Karori from Progene Seeds said: “I have never attended a similar training before, so it was very useful. I learnt how to implement field trials as well principles of hybrid seed production.”

Many thanks to the course organizers and resource personnel: Charles Mutimaamba, Maize Coordinator, Department of Agricultural Research and Special Services in Zimbabwe, and CIMMYT’s Peter Setimela, Cosmos Magorokosho, Amsal Tarekegne, John MacRobert, Jill Cairns, Sebastian Mawere, Pamela Chirwa, and Oswell Ndoro.

Drought tolerant maize wins UK climate prize

The United Kingdom’s Department for International Development (DFID) has won Best Technological Breakthrough at the 2012 UK Climate Week Awards for its support to the Drought Tolerant Maize for Africa (DTMA) project. The awards were held in London on 12 March 2012 to celebrate the UK’s most effective and ambitious organizations, communities, and individuals and their efforts to combat climate change.

Climate-Week-award-picDTMA has been responsible for the development and dissemination of 34 new drought-tolerant maize varieties to farmers in 13 project countries—Angola, Benin, Ethiopia, Ghana, Kenya, Malawi, Mali, Mozambique, Nigeria, Tanzania, Uganda, Zambia, and Zimbabwe—between 2007 and 2011. An estimated two million smallholder farmers are already using the drought-tolerant maize varieties and have obtained higher yields, improved food security, and increased incomes.

Drought-tolerant varieties are invaluable on a continent where maize is the staple crop for over 300 million people, and nearly always relies on rainwater alone. The DTMA varieties, produced by conventional breeding, provide farmers with better yields than leading commercial varieties under moderate drought conditions, while also giving outstanding harvests when rains are good. DTMA works with a diverse network of partners to develop, market, and distribute seed, including private companies, publicly funded agricultural research and extension systems, ministries of agriculture, nongovernmental organizations, and community-based seed producers.

Jointly implemented by CIMMYT and the International Institute for Tropical Agriculture (IITA), the DTMA project is presently funded by the Bill & Melinda Gates Foundation (BMGF) and is also receiving complementary grants from the Howard G. Buffett Foundation (HGBF) and the United States Agency for International Development (USAID).

“DFID has been a highly-valued and reliable, top-ten core contributor to CIMMYT’s work,” said DTMA project leader Wilfred Mwangi. In addition, the efforts of DTMA build on long-term support from the Swiss Agency for Development Cooperation (SDC), the German Federal Ministry for Economic Cooperation and Development (BMZ), the International Fund for Agricultural Development (IFAD), the Rockefeller Foundation, USAID, the United Nations Development Program (UNDP), and the Eiselen-Foundation.