Participants of the IMAGE National Advisory Committee launch event in Ethiopia. (Credit: EIAR)
Coordinating the development and deployment of improved seed varieties is a complex task involving many stakeholders, including government agencies, public and private seed sector organizations, and ultimately, farmers and farmer groups. Cooperation among these groups is vital to assess and measure the impact of improved varieties and to guide decision making for future crop breeding efforts.
The Institutionalizing Monitoring of Crop Variety Adoption using Genotyping (IMAGE) project, funded by the Bill & Melinda Gates Foundation and managed by Context Global Development, is a five-year program operating in Nigeria, Tanzania, and Ethiopia designed to increase the efficacy of variety deployment by establishing, institutionalizing, and scaling up routine monitoring of improved variety adoption and turnover using genotyping technologies, focusing on wheat, maize, teff, and the common bean.
The International Center for Maize and Wheat Improvement (CIMMYT), in collaboration with the Ethiopian Institute of Agricultural Research (EIAR), launched Ethiopia’s IMAGE National Advisory Committee (NAC) February 25, 2022, in Addis Ababa.
Feto Esemo, the Director General of the Ethiopian Institute of Agricultural Research (EIAR) officially opened the workshop.
Esemo underscored in his opening remarks the NAC’s mission to promote the application of DNA fingerprinting for an accurate assessment and understanding of the adoption of improved maize and wheat varieties by small-holder farmers in Ethiopia and resolve data discrepancy among researchers.
The NAC is the highest advisory body for IMAGE’s implementation in Ethiopia and comprises seven institutions: Ministry of Agriculture (MoA), Ministry of Planning and Development (MPD), Agricultural Transformation Institute (ATI), EIAR, Central Statistical Agency (CSA), Ethiopian Biodiversity Institute (BI), and the Ethiopian Biotechnology Institute (EBI).
Kindie Tesfaye, CIMMYT senior scientist, emphasized the application of DNA fingerprint data on maize and wheat in Ethiopia and summarized the IMAGE Project.
“IMAGE supports inclusive agricultural transformation by providing insights and evidence for seed sector actors to enhance government agency capacity, improve stakeholder coordination, and lead to better resource allocation for varietal development and commercialization,” said Tesfaye.
He added the IMAGE Project provides the opportunity to leverage past monitoring pilots and cross-country lessons while advancing genetic reference libraries, establishing protocol adoption, and building towards institutionalization over five years.
National maize and wheat genotyping studies in Ethiopia proved the feasibility of using DNA fingerprinting for variety monitoring at scale and CIMMYT and EIAR presented the findings to seed system and policy stakeholders with an emphasis on demonstrating how varietal identity based on genotyping compares with farmers’ elicitation, the area-weighted average age of varieties, germplasm attribution, and varietal performance.
Chilot Yirga, Deputy Director-General, Capacity Building and Administration of EIAR, emphasized the functional and structural roles of the National Advisory Committee (NAC), Country Team (CT), and Technical Working Group (TWG) of the project in the country.
EIAR, the Holetta National Agricultural Biotechnology Research Center, CSA, and CIMMYT comprise the Country Team.
Yirga also briefed the participants on the details of the Committee’s mandate and indicated the roles of all stakeholders and policymakers, specifically in DNA fingerprinting.
The workshop concluded by electing a chairperson and vice-chairperson of the committee among its members and co-project leaders from CIMMYT and EIAR.
The Government of Ethiopia has consistently prioritized agriculture and sees it as a core component of the country’s growth. However, despite considerable efforts to improve productivity, poor management of soil health and fertility has been an ongoing constraint. This is mainly due to a lack of comprehensive site-and context-specific soil health and fertility management recommendations and dissemination approaches targeted to specific needs.
The government envisions a balanced soil health and fertility system that helps farmers cultivate and maintain high-quality and fertile soils through the promotion of appropriate soil-management techniques, provision of required inputs, and facilitation of appropriate enablers, including knowledge and finance.
So far, a plethora of different research-for-development activities have been carried out in support of this effort, including the introduction of tools which provide location-specific fertilizer recommendations. For example, researchers on the Taking Maize Agronomy to Scale in Africa (TAMASA) project, led by the International Maize and Wheat Improvement Center (CIMMYT), have created locally calibrated versions of Nutrient Expert® (NE) — a tool for generating fertilizer recommendations — for maize farmers in Ethiopia, Nigeria and Tanzania.
Nutrient Expert® is only one of the many fertilizer recommendation tools which have been developed in recent years covering different levels of applicability and accuracy across spatial scales and users, including smallholder farmers, extension agents and national researchers. However, in order to make efficient use of all the resources available in Ethiopia, there is a need to systematically evaluate the merits of each tool for different scales and use cases. To jump start this process, researchers from the TAMASA project commissioned an assessment of the tools and frameworks that have been developed, adapted and promoted in the country, and how they compare with one another for different use-cases. Seven tools were assessed, including Nutrient Expert®, the Ethiopian Soil Information System (EthioSIS) and RiceAdvice.
For each of these, the research team asked determined how the tool is currently being implemented — for example, as an app or as a generic set of steps for recommendation generation — and its data requirements, how robust the estimates are, how complicated the interface is, how easy it is to use, the conditions under which it performs well, and the spatial scale at which it works best.
Farmer Gudeye Leta harvests his local variety maize in Dalecho village, Gudeya Bila district, Ethiopia. (Photo: Peter Lowe/CIMMYT)
Combining efforts and information
The results of this initial assessment indicate that the type of main user and the scale at which decisions are made varied from tool to tool. In addition, most of the tools considered have interactive interfaces and several — including Nutrient Expert® and RiceAdvice — have IT based platforms to automate the optimization of fertilizer recommendations and/or analyze profit. However, the source codes for all the IT based platforms and tools are inaccessible to end-users. This means that if further evaluation and improvements are to be made, there should be a means of collaborating with developers to share the back-end information, such as site-specific response curves and source codes.
Because most of the tools take different approaches to making fertilizer application site-specific, each of them renders unique strengths and trade-offs. For example, Nutrient Expert® may be considered strong in its approach of downscaling regionally calibrated responses to field level recommendations based on a few site-specific responses from farmers. By contrast, its calibration requires intensive data from nutrient omission trials and advice provision is time consuming.
Overall, the use of all the Site-Specific Decision-Support Tools (SSDST) has resulted in improved grain yields compared to when farmers use traditional practices, and this is consistent across all crops. On average, use of Nutrient Expert® improved maize, rice and wheat yields by 5.9%, 8.1% and 4.9%, respectively. Similarly, the use of RiceAdvice resulted in a 21.8% yield advantage.
The assessment shows that some of the tools are useful because of their applicability at local level by development agents, while others are good because of the data used to develop and validate them. However, in order to benefit the agricultural system in Ethiopia from the perspective of reliable fertilizer-use advisory, there is a need to develop a platform that combines the merits of all available tools. To achieve this, it has been suggested that the institutions who developed the individual tools join forces to combine efforts and information, including background data and source codes for IT based tools.
While the COVID-19 pandemic has disrupted efforts to convene discussions around this work, CIMMYT has and will continue to play an active advocacy role in supporting collaborative efforts to inform evidence-based reforms to fertilizer recommendations and other agronomic advice in Ethiopia and the wider region. CIMMYT is currently undertaking a more rigorous evaluation of these tools and frameworks as a follow up on the initial stocktaking activity.
To protect crops, a rapid alert system has been developed which is able to predict the spread of wheat rust and warns policy makers and farmers allowing timely and targeted interventions.
The project involved a multidisciplinary team – biologists, meteorologists, agronomists, IT and telecommunications experts – and the system was developed by the University of Cambridge, the Met Office of Great Britain, the Ethiopian Agricultural Research Institute (EIAR), the Ethiopian Agricultural Transformation Agency (ATA) and the International Maize and Wheat Improvement Center (CIMMYT).
At the base of it all is the data. Read more here.
One of the researchers behind the study, Yoseph Alemayehu, carries out a field survey in Ethiopia by mobile phone. (Photo Dave Hodson/CIMMYT)
TEXCOCO, Mexico — Using field and mobile phone surveillance data together with forecasts for spore dispersal and environmental suitability for disease, an international team of scientists has developed an early warning system which can predict wheat rust diseases in Ethiopia. The cross-disciplinary project draws on expertise from biology, meteorology, agronomy, computer science and telecommunications.
Reported this week in Environmental Research Letters, the new early warning system, the first of its kind to be implemented in a developing country, will allow policy makers and farmers all over Ethiopia to gauge the current situation and forecast wheat rust up to a week in advance.
The system was developed by the University of Cambridge, the UK Met Office, the Ethiopian Institute of Agricultural Research (EIAR), the Ethiopian Agricultural Transformation Agency (ATA) and the International Maize and Wheat Improvement Center (CIMMYT). It works by taking near real-time information from wheat rust surveys carried out by EIAR, regional research centers and CIMMYT using a smartphone app called Open Data Kit (ODK).
This is complemented by crowd-sourced information from the ATA-managed Farmers’ Hotline. The University of Cambridge and the UK Met Office then provide automated 7-day advance forecast models for wheat rust spore dispersal and environmental suitability based on disease presence.
All of this information is fed into an early warning unit that receives updates automatically on a daily basis. An advisory report is sent out every week to development agents and national authorities. The information also gets passed on to researchers and farmers.
Example of weekly stripe rust spore deposition based on dispersal forecasts. Darker colors represent higher predicted number of spores deposited. (Graphic: University of Cambridge/UK Met Office)
Timely alerts
“If there’s a high risk of wheat rust developing, farmers will get a targeted SMS text alert from the Farmers’ Hotline. This gives the farmer about three weeks to take action,” explained Dave Hodson, principal scientist with CIMMYT and co-author of the research study. The Farmers’ Hotline now has over four million registered farmers and extension agents, enabling rapid information dissemination throughout Ethiopia.
Ethiopia is the largest wheat producer in sub-Saharan Africa but the country still spends in excess of $600 million annually on wheat imports. More can be grown at home and the Ethiopian government has targeted to achieve wheat self-sufficiency by 2023.
“Rust diseases are a grave threat to wheat production in Ethiopia. The timely information from this new system will help us protect farmers’ yields, and reach our goal of wheat self-sufficiency,” said EIAR Director Mandefro Nigussie.
Wheat rusts are fungal diseases that can be dispersed by wind over long distances, quickly causing devastating epidemics which can dramatically reduce wheat yields. Just one outbreak in 2010 affected 30% of Ethiopia’s wheat growing area and reduced production by 15-20%.
The pathogens that cause rust diseases are continually evolving and changing over time, making them difficult to control. “New strains of wheat rust are appearing all the time — a bit like the flu virus,” explained Hodson.
In the absence of resistant varieties, one solution to wheat rust is to apply fungicide, but the Ethiopian government has limited supplies. The early warning system will help to prioritize areas at highest risk of the disease, so that the allocation of fungicides can be optimized.
Example of weekly stripe rust environmental suitability forecast. Yellow to Brown show the areas predicted to be most suitable for stripe rust infection. (Graphic: University of Cambridge/UK Met Office)
The cream of the crop
The early warning system puts Ethiopia at the forefront of early warning systems for wheat rust. “Nowhere else in the world really has this type of system. It’s fantastic that Ethiopia is leading the way on this,” said Hodson. “It’s world-class science from the UK being applied to real-world problems.”
“This is an ideal example of how it is possible to integrate fundamental research in modelling from epidemiology and meteorology with field-based observation of disease to produce an early warning system for a major crop,” said Christopher Gilligan, head of the Epidemiology and Modelling Group at the University of Cambridge and a co-author of the paper, adding that the approach could be adopted in other countries and for other crops.
“The development of the early warning system was successful because of the great collaborative spirit between all the project partners,” said article co-author Clare Sader-Allen, currently a regional climate modeller at the British Antarctic Survey.
“Clear communication was vital for bringing together the expertise from a diversity of subjects to deliver a common goal: to produce a wheat rust forecast relevant for both policy makers and farmers alike.”
This study was made possible through the support provided by the BBSRC GCRF Foundation Awards for Global Agriculture and Food Systems Research, which brings top class UK science to developing countries, the Delivering Genetic Gains in Wheat (DGGW) Project managed by Cornell University and funded by the Bill & Melinda Gates Foundation and the UK Department for International Development (DFID). The Government of Ethiopia also provided direct support into the early warning system. This research is supported by CGIAR Fund Donors.
ABOUT CIMMYT:
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.
ABOUT THE ETHIOPIAN INSTITUTE OF AGRICULTURAL RESEARCH (EIAR):
The Ethiopian Institute of Agricultural Research (EIAR) is one of the oldest and largest agricultural research institutes in Africa, with roots in the Ethiopian Agricultural Research System (EARS), founded in the late 1940s. EIAR’s objectives are: (1) to generate, develop and adapt agricultural technologies that focus on the needs of the overall agricultural development and its beneficiaries; (2) to coordinate technically the research activities of Ethiopian Agricultural Research System; (3) build up a research capacity and establish a system that will make agricultural research efficient, effective and based on development needs; and (4) popularize agricultural research results. EIAR’s vision is to see improved livelihood of all Ethiopians engaged in agriculture, agro-pastoralism and pastoralism through market competitive agricultural technologies.
Researchers visit maize fields in Ethiopia’s Wondo Genet Agricultural Research Center. (Photo: Peter Lowe/CIMMYT)
One major reason why maize productivity in sub-Saharan Africa is very low is poor soil health. Soil acidity is often mentioned because of its impact on crop yields and the extent of acid soils in the region. A recent soil mapping exercise, conducted by the Ethiopian Soil Information System (EthioSIS) under the administration of the Ethiopian Agricultural Transformation Agency (ATA), estimated that 43% of arable lands were affected by acid soils and that 3.6 million people, about 10% of the total rural population, live in areas with acidic soils.
Very acid soils — those with a pH below 5.5, roughly one hundred times more acidic than neutral soils — are associated with certain toxicities, like aluminum and iron excess, and some nutrient deficiencies. Soil acidity pushes soil nutrients out of reach of the plant, leading to stunting of root system and plant. As a result, the plant becomes also less tolerant to drought.
Soil acidification depends on soil nature, agroecology and farming systems. It happens through natural leaching of CO2 after rainfall and excess application of nitrogenous fertilizer or organic matter, for instance.
As a result, soil acidity significantly affects maize yields. In Ethiopia, studies have revealed substantial impacts on crop productivity related to acid soils and the importance of acid soil management for Ethiopia’s food security. The Ethiopian Institute of Agricultural Research (EIAR) estimated that soil acidity on wheat production alone costed the country over 9 billion Ethiopian Birr, about $300 million per year.
Acidic soils in the limelight
Preliminary analysis led by the International Food Policy Research Institute (IFPRI) suggests that yields of major cereal crops, such as wheat and barley, could increase by 20 to 40% with the application of lime in acidic areas of the country.
While these preliminary results are significant, we need to know more about local farmers’ experience with acidic soil and their mitigation strategies. Such impact assessments are however typically determined at either the national or experimental plot level and do not map where mitigating against acid soils would be the most profitable.
To improve acid soils, farmers may apply lime on their fields to raise the pH, a practice known as liming. How much lime to apply will depend on the crop, soil type but also on the quality of lime available. Liming has multiple beneficial effects like improving nitrogen fixation of legume nodules, boosting yields of legume crops.
But liming has a cost. It can quickly become a very bulky affair as we need to apply 3 to 4 tons per hectare for sandy soils and up to 8 tons per hectare for clay and humifere soils.
Furthermore, existing lime markets are quite limited or even non-existent in many areas, even those where acidic soils are prevalent. Developing supply chains from scratch is difficult and costly. Understanding the costs and potential returns to such investments is important. There are many questions to ask at different levels, from the farm and farming system to the lime supply chain. What are the available lime sources — calcitic, dolomite or blend — and lime quality? Where are the lime processing units and how could you assess the transport cost to the farms? What could be the crop yield response depending on the lime application?
User-friendly and scalable dashboard
IFPRI, in collaboration with EIAR, the International Maize and Wheat Improvement Center (CIMMYT) and the German aid agency GIZ, developed a pilot in Ethiopia’s Amhara region to help better target lime interventions for a greater impact. Amhara region was chosen because of the importance of acid soils, and access to extensive soil data.
Combination of several spatial datasets on soil quality, agroecological, weather, long-term agronomic trials and crop modelling tools enabled to generate at scale, georeferenced estimates of crop yield responses for different lime applications. Calibration of this spatial model for wheat estimated a yield increase of approximately 30% increasing the pH from 5.5 to 6.5, which is relatively consistent with general research data and expert opinion.
Mapped estimates of the grain prices and the delivered costs of lime, based on the location of the lime crushers in the region and transport costs, enables then to map out the spatial profitability of lime operations.
Initial calculations revealed a great variability of lime costs at the farmgate, with transportation representing at least half of total lime costs. It showed also that farmers often do not use the most cost-effective combination of inputs to tackle soil acidity.
Another possible application is to determine maize growing areas where lime benefits outweigh the costs, which would be ideal sites for demonstrating to farmers the positive impact lime applications could have to their livelihoods.
This Amhara lime dashboard prototype demonstrated its scalability. A national dashboard is currently being developed, which includes lime sources GPS location, grain prices and district-level soil quality mapping. This approach is tested also in Tanzania.
CIMMYT and its partners plan to package such tool in a user-friendly open-access web version that can be rapidly updated and customized depending on the area of intervention, for instance integrating a new lime source, and applied for different crops, and across the Eastern African region. Such dashboards will help development organizations and government make better informed decisions regarding lime investments.