Skip to main content

funder_partner: Ethiopian Institute of Agricultural Research (EIAR)

Can digital agricultural services boost Ethiopia’s durum wheat production?

Participants gather to discuss solutions to low levels of durum wheat cultivation in Ethiopia. (Credit: Enawgaw Shibeshi/CIMMYT)

Despite an increase in the total area used for growing wheat in Ethiopia, the share of durum wheat, the wheat used for pasta, has decreased substantially across the country. Smallholder farmers grow durum wheat on marginal lands for their own use but are not benefitting financially from cultivating the crop.

To understand factors contributing to low area coverage of durum wheat and identify opportunities for reinvigoration and improved marketing, the International Maize and Wheat Improvement Center (CIMMYT) hosted a workshop for stakeholders from the entire durum wheat value chain.

“New breeding technologies have great promise for expanding the area of durum wheat production,” said Moti Jaleta, agricultural economist at CIMMYT, “but this achievement remains primarily dependent on the market’s ability to purchase grains at a higher price to stimulate farmer adoption. The market in Ethiopia is not favoring durum wheat, so suppliers and extension workers must promote it very well.”

Rising consumption of durum wheat products such as pasta and macaroni is causing higher dependency on wheat imports. Reducing this reliance requires addressing the challenges facing Ethiopia’s durum wheat farmers in variety development and release, seed supply, crop management, level of productivity, market opportunities, and extension systems.

Kindie Tesfaye, scientist and crop modeler at CIMMYT, explained, “There is a need to improve the durum wheat seed system and extension service, enhance the development of new varieties with desired grain quality and create market linkages to meet the increasing durum wheat demand from the rapidly growing urban population and expanding agro-industrial parks.”

The potential of digital

As Ethiopia’s agricultural systems are highly dependent on rainfall, digital interventions can serve as key decision support tools to manage climate risk and bolster the adaptive capacity and productivity of smallholder farmers. CIMMYT collaborates with value chain-based digital agro-advisory services through the Digital Agricultural Advisory Services (DAAS) project, which runs multiple projects in Ethiopia to advance the use of digital tools in farming.

Taye Tadesse, director of crop research at the Ethiopian Institute of Agricultural Research, emphasized that the introduction of production technology should be participatory and customer-oriented to achieve the intended outcomes. Ensuring that technology is accessible is vital for strengthening the value chain system, he said.

Agreed actions from the workshop included focusing attention on the bodies responsible for the expansion of infrastructure and raising wheat farmers’ awareness of the value-adding tools available to them through training.

“We must ensure that farmers are the biggest decision-makers,” Tasfaye said.

Institutionalizing Monitoring of Crop Variety Adoption using Genotyping (IMAGE)

Institutionalizing Monitoring of Crop Variety Adoption using Genotyping (IMAGE) is a five-year program with the aim of establishing, institutionalizing, and scaling routine monitoring of improved variety adoption and turnover using genotyping.

It is led by country teams in Ethiopia, Nigeria and Tanzania, supported by Context Global Development and the Bill & Melinda Gates Foundation.

Reliable monitoring: IMAGE will assess the varieties that farmers are growing of four staple crops within the three target countries and marking the rate of improved variety adoption through recurring surveys and comparative analysis.

Vision for change: IMAGE supports inclusive agricultural transformation by providing insights and evidence for seed sector actors to enhance government agency capacity, improve stakeholder coordination, and lead to better resource allocation for varietal development and commercialization.

Project objectives:

  • Enable a national leadership mandate to monitor crop varieties and adoption
  • Build a network of technical experts and service providers to provide personalized advisory support
  • Establish best practices that enable routine monitoring and produce credible results
  • Form a sustainable funding mechanism based on use cases with government and stakeholder buy-in
  • Advocate for institutional capacity for reliable monitoring programs

IMAGE provides the opportunity to leverage past monitoring pilots and for cross-country learnings while advancing genetic reference libraries, establishing protocol adoption, and building towards institutionalization over five years. This is done through six objectives:

  • Comparable estimates of varietal adoption and turnover will be generated and made available to stakeholders​
  • Standardization of best-practices ​and supporting technologies​
  • Establishment of ​sustainable business cases
  • Pilot study results on varietal identity preservation in seed value chains for each country-crop combination ​
  • Institutionalized system of ​varietal monitoring for long-term, sustainable national partner implementation
  • Generated data used by seed sector stakeholders to make key decisions​

2022 Excellence in International Service Award

Pablo D Olivera Firpo

Scientist Pablo D Olivera Firpo has been awarded the Excellence in International Service Award by Advancing the Science of Plant Pathology (APS) for outstanding contributions to plant pathology by APS members for countries other than their own.

Firpo was born in Montevideo, Uruguay, where he received a BSc degree as an agronomy engineer in 1997 from the University of the Republic, College of Agronomy. His PhD degree in 2008 was from the Department of Plant Pathology at the University of Minnesota (UMN). He began his career as a postdoctoral research associate with the Department of Plant Pathology and the USDA-ARS Cereal Disease Lab, and then became a research assistant professor in the Department of Plant Pathology at UMN in 2017.

Firpo has been a vital member in the global cereal rust pathology community and contributed substantially to the fight against Ug99 and other virulent wheat stem rust races that have re-emerged around the world and pose serious threats to food security. Firpo’s contributions are not only within the realm of research of great impact, but also include training 79 scientists and facilitating the establishment of a world-class research group in Ethiopia. He has worked to improve international germplasm screening in Ethiopia. As a postdoctoral research associate, Firpo’s first assignment was to search for new sources of resistance to Ug99 in durum wheat, used for pasta, and related tetraploid wheat lines. That project took him to Ethiopia, where an international Ug99-screening nursery for durum wheat was established at Debre Zeit Research Center. He worked closely with researchers from the Ethiopian Institute of Agricultural Research (EIAR) and the International Maize and Wheat Research Center (CIMMYT) to improve the methodologies for screening and to provide hands-on training to researchers managing the international screening nursery. During a period of 10 years (from 2009 to 2019), he traveled to Ethiopia 21 times to evaluate stem rust reactions of US and international durum wheat germplasm and completed the screening of the entire durum collection (more than 8,000 accessions) from the USDA National Small Grains Collection.

Firpo’s research on sources and genetics of stem rust resistance led to discoveries of valuable genetic resistance in durum and other relatives of wheat. These sources of resistance have provided the needed diversity to ensure the development and sustainability of durable stem rust resistance.

With frequent epidemics and severe yield losses caused by stem rust in eastern Africa, establishing a functional rust pathology laboratory to support international screening, as well as to monitor and detect new virulences in the pathogen population, became a high priority for the international wheat research community. Utilizing the onground opportunities in Ethiopia, Firpo and his colleagues at the CDL and UMN enthusiastically participated in building up the rust pathology lab at the Ambo Plant Protection Center of EIAR. Firpo traveled to Ambo 11 times to provide hands-on training to staff and to develop cereal rust protocols to suit local conditions. He worked closely with colleagues at CDL, EIAR, and CIMMYT to secure and upgrade facilities, equipment and supplies to a standard that ensures reliable rust work will be carried out. As a result, the rust pathology lab at the Ambo Center became the only laboratory in eastern Africa, and one of a handful in the world, that can conduct high-quality race analysis of wheat stem rust samples and provide vital and necessary support for breeding global wheat varieties for rust resistance. Currently, the laboratory is playing a critical role in the global surveillance of the stem rust pathogen and supports wheat breeding efforts led by EIAR, CIMMYT, and the USDA.

Firpo has been passionate in supporting capacity building of human resources in Ethiopia and elsewhere. He has been eager to share his knowledge whenever he encounters an opportunity to do so. In addition to the direct training of the staff at the Ambo Center, Firpo accepted invitations to provide training lectures and hands-on field- and greenhouse-based workshops on rust pathology at three research centers in Ethiopia. He prepared training materials, delivered a total of 12 lectures and 10 practical sessions in three Ethiopia national workshops in 2014, 2015, and 2017. These workshops enhanced human resource development and technical capacity in ​Ethiopia in cereal rust pathology; participants included a total of 64 junior scientists and technical staff from nationwide research centers. Beyond Ethiopia, he was responsible for developing and implementing a six-week training program in cereal rust prevention and control for international scientists. This training program, under the aegis of the Stakman-Borlaug Center for Sustainable Plant Health in the Department of Plant Pathology, University of Minnesota, provided an experiential learning opportunity for international scientists interested in acquiring knowledge and practical skills in all facets of working with cereal rusts. The program trained 15 rust pathologists and wheat scientists from Ethiopia, Kenya, Pakistan, Nepal, Bhutan, Georgia, and Kyrgyzstan, ranging from promising young scientists selected by the USDA as Borlaug Fellows to principal and senior scientists in their respective countries. Many of these trainees have become vital partners in the global surveillance network for cereal rusts.

Working in collaboration with CDL and international scientists, Firpo has been closely involved in global surveillance of the stem rust pathogen, spurred by monitoring the movements of, and detecting, new variants in the Ug99 race group. Since 2009, he and the team at the CDL have analyzed 2,500 stem rust samples from 22 countries, described over 35 new races, and identified significant virulence combinations that overcome stem rust resistance genes widely deployed in global wheat varieties. Among the most significant discoveries were the identification of active sexual populations of the stem rust pathogen in Kazakhstan, Georgia, Germany, and Spain that have unprecedented virulence and genetic diversities. More than 320 new virulent types (or races) were identified from these sexual populations. Evolution in these populations will present continued challenges to wheat breeding. Research in race analysis has provided valuable pathogen isolates that are used to evaluate breeding germplasm to select for resistant wheat varieties and to identify novel sources of stem rust resistance.

Scaling Out Small Mechanization in the Ethiopian Highlands

The project goal is to provide smallholder farmers with appropriate mechanization technologies that reduce drudgery during farm operations.

The objectives of the project are:

  • To promote small-scale mechanization through awareness and demand creation, and service provision of appropriate technologies
  • To create employment along the mechanization value chain.

The project sites are located in Amhara, Oromia, SNNP (Southern Nations, Nationalities and Peoples) and Tigray regions of Ethiopia.

The target beneficiaries of the project include smallholder farmers who use traditional methods of farming, the youth who can be employed in service provision activities along the mechanization value chain, service providers, and private sector companies involved in equipment manufacturing and importing.

Through the project, smallholder farmers access planting, harvesting, post-harvest processing (threshing and shelling), irrigation and transport services from service providers located in their communities. The project operates under the Africa-RISING program led by ILRI in Ethiopia.

Rapid Point-of-Care Diagnostics for Wheat Rusts (MARPLE)

MARPLE (Mobile And Real-time PLant disEase) diagnostics is a new innovative approach for fungal crop pathogen diagnostics developed by Diane Saunders’s team at the John Innes Centre.

MARPLE is the first operational system in the world using nanopore sequencing for rapid diagnostics and surveillance of complex fungal pathogens in situ. Generating results in 48 hours of field sampling, this new digital diagnostic strategy is leading revolutionary changes in plant disease diagnostics. Rapid strain level diagnostics are essential to quickly find new emergent strains and guide appropriate control measures.

Through this project, CIMMYT will:

  • Deploy and scale MARPLE to priority geographies and diseases as part of the Current and Emerging Threats to Crops Innovation Lab led by Penn State University / PlantVillage and funded by USAID’s Feed the Future.
  • Build national partner capacity for advanced disease diagnostics. We will focus geographically on Ethiopia, Kenya and Nepal for deployment of wheat stripe and stem rust diagnostics, with possible expansion to Bangladesh and Zambia (wheat blast).
  • Integrate this new in-country diagnostic capacity with recently developed disease forecasting models and early warning systems. Already functional for wheat stripe rust, the project plans to expand MARPLE to incorporate wheat stem rust and wheat blast.

Accelerating Impacts of CGIAR Climate Research for Africa (AICCRA)

The Accelerating Impacts of CGIAR Climate Research for Africa (AICCRA) project is an initiative that will enhance access to climate information services and validated climate-smart agriculture technologies in Africa.

AICCRA aims to support farmers and livestock keepers to better anticipate climate-related events and take preventative actions, with better access to climate advisories linked to information about effective response measures.

MAIZE partners announce a new manual for effectively managing maize lethal necrosis (MLN) disease

For a decade, scientists at the International Maize and Wheat Improvement Center (CIMMYT) have been at the forefront of a multidisciplinary and multi-institutional effort to contain and effectively manage maize lethal necrosis (MLN) disease in Africa.

When the disease was first reported in Kenya 2011 it spread panic among stakeholders. Scientists soon realized that almost all commercial maize varieties in Africa were susceptible. What followed was a superlative effort coordinated by the CGIAR Research Program on Maize (MAIZE) to mobilize “stakeholders, resources and knowledge” that was recently highlighted in an external review of program.

The publication of Maize Lethal Necrosis (MLN): A Technical Manual for Disease Management builds on the partnerships and expertise accrued over the course of this effort to provide a comprehensive “guide on best practices and protocols for sustainable management of the MLN.”

The manual is relevant to stakeholders in countries where MLN is already present, and also aims to offer technical tips to “‘high-risk’ countries globally for proactive implementation of practices that can possibly prevent the incursion and spread of the disease,” writes B.M. Prasanna, director of CIMMYT’s Global Maize Program and MAIZE, in the foreword.

“While intensive multi-disciplinary and multi-institutional efforts over the past decade have helped in containing the spread and impact of MLN in sub-Saharan Africa, we cannot afford to be complacent. We need to continue our efforts to safeguard crops like maize from devastating diseases and insect-pests, and to protect the food security and livelihoods of millions of smallholders,” says Prasanna, who is presently leading the OneCGIAR Plant Health Initiative Design Team.

Adaptation, Demonstration and Piloting of Wheat Technologies for Irrigated Lowlands of Ethiopia (ADAPT-Wheat)

Wheat is the second most important staple crop in Ethiopia and a major pillar for food security. Based on fingerprinting analysis from 2018, about 87% of all wheat varieties grown in Ethiopia are CIMMYT-derived.

Domestic wheat production and productivity has nearly doubled over the past 15 years, due to improved farmer access to better varieties, agronomic practice recommendations and conducive marketing and supply chain policies. Nevertheless, due to population growth, higher incomes and accelerated urbanization, the demand for wheat in Ethiopia is increasing faster than productivity, with the demand for an additional 1.5 million tons of wheat per year satisfied through imports.

In 2018, the Government of Ethiopia set a policy to achieve wheat national self-sufficiency by 2023. Additional production would come primarily from the irrigated lowlands of the Awash valley, in the Afar and Oromia regions, where the current cotton mono-culture would be converted to a cotton-wheat rotation.

Preliminary yield trials conducted by Werer Agricultural Research Center and based on experiences in Sudan where climate conditions are similar, on-farm wheat grain yields of 4 tons per hectare can be achieved. The potential area for irrigated wheat-cotton is at present around 500,000 hectares, which, when fully implemented, has the potential to make Ethiopia self-sufficient for wheat production.

The challenges to develop the current lowland into productive farming systems are significant and include identifying high yielding, early maturing, heat-tolerant, rust-resistant wheat varieties with appropriate end-use quality.

Appropriate mechanization will be required to allow farmers to facilitate rapid preparation of fields for wheat sowing after harvesting cotton, as well as for mechanized harvesting. Tested packages of agronomic and land management practices will be needed to optimize the production systems while mitigating against soil salinization.

In coordination with the national research and extension systems, this project will evaluate and pilot wheat technologies and packages of practices to reach 1,000 smallholders and medium commercial farmers in the Awash valley, and enable them to use these technologies and practices on 10,000 hectares of irrigated land in the first year, following the conclusion of this project.

Objectives

  • Capacity of research and development practitioners working on irrigated lowland wheat developed.
  • Improved wheat elite lines evaluated, and pre-release seed multiplication initiated of variety candidates.
  • Tested package of agronomic practices are ready for scaling.
  • Demonstration and piloting of appropriate machineries (modern mechanization) for irrigated wheat production.

Dryland Crops

Dryland Crops, formerly known as the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project, aims to improve the livelihoods of small-scale producers and consumers of sorghum, millet, groundnut, cowpea and bean. Project partners focus on improving the breeding and seed systems of these crops in their key geographies in Burkina Faso, Ethiopia, Ghana, Mali, Nigeria, Tanzania and Uganda. Other crops receiving growing attention in the project include finger millet, pigeon pea and chickpea.

Although significant adoption of improved seed of dryland cereals and legume crops in Africa has been reported, its overall use remains low. There is a growing interest in these crops, particularly because of their resilience to climate-change; however, the seed sector is constrained by lack of product information, dearth of knowledge of the size and scale of the business opportunity, and inadequate access to early generation seed.

Dryland Crops will address these constraints by contributing to the establishment of robust systems that:

  • Enable networks to work synergistically across countries with common challenges and opportunities.
  • Support national agricultural research systems to access research, professional development and infrastructure-building opportunities.
  • Increase the quantity and quality of data substantiating varietal superiority and the demand for seed and grain of improved varieties.
  • Boost the availability of early generation seed and strengthen links between the research system and private- and public-sector actors.

The aspiration is to codevelop, validate by co-implementation, and continuously improve with partners research-to-farm-to-consumer models that achieve positive impacts on farmers’ livelihoods and consumers’ wellbeing.

The Alliance of Bioversity and CIAT and IITA will lead initiatives for common bean and cowpea, respectively. For sorghum, pearl millet and groundnut breeding, CIMMYT will design programs that support crop improvement networks, including CGIAR and national agricultural research systems, and incorporate best approaches, principles, and tools, particularly those availed through the Excellence in Breeding (EiB) platform.

The project is committed to gender equity as a guiding principle, considering the critical role women play in choosing legume and cereal varieties and seed sources. Women seed entrepreneurs and women-led seed companies will garner special attention for capacity development. Partnerships with actors through the value chain, platforms and demonstrations will ensure women have equal access to improved technologies.

The previous phase of the AVISA project was led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).

Mechanization takes off

In a small workshop in Ethiopia’s Oromia region, mechanic Beyene Chufamo and his technician work on tractor repairs surrounded by engines and spare machinery parts.

Established in Meki in 2019, Beyene’s workshop provides maintenance, repair and overhaul services for two-wheel tractors and their accessories, and it acts as a point of sale for spare parts and implements such as planters, threshers and water pumps. Beyene also works as a tractor operation instructor, providing trainings on driving, planter calibration and how to use threshers and shellers.

The city already had a well-established mechanics and spare parts industry based around four-wheel tractors and combine harvester hire services, as well as motorcycle and tricycle transportation services. But now, as market demand for two-wheel tractor hire services rises among smallholder farming communities and entrepreneurial youth race to become local service providers, business is booming.

A two-wheel tractor with an improved driver seat and hydraulic tipping trailer system sits in from of Beyene Chufamo’s workshop in Meki, Ethiopia. (Photo: CIMMYT)
A two-wheel tractor with an improved driver seat and hydraulic tipping trailer system sits in from of Beyene Chufamo’s workshop in Meki, Ethiopia. (Photo: CIMMYT)

Building a business

Beyene’s business has benefitted from support from the International Maize and Wheat Improvement Center (CIMMYT) and the German development agency GIZ since its formation. Beyene was initially trained as a mechanic through the Innovative Financing for Sustainable Mechanization in Ethiopia (IFFSMIE) project, which promotes small-scale mechanization in the area through demand creation, innovative financing mechanisms and the development of private sector-driven business. He went on to receive additional technical and business skills development training to enable him to run his own enterprise.

His ongoing association with the project and its new leasing scheme has helped Beyene establish connections with local service providers, while also improving his own skills portfolio. Currently, he helps maintain the smooth operation of machinery and equipment at CIMMYT project sites in Amhara, Oromia and Tigray. This involves everything from training other local mechanics and troubleshooting for service providers, to facilitating the delivery of aftersales services in project areas.

In addition to this, Beyene receives orders for maintenance, repair and overhaul services for two-wheel tractors and implements. He sources replacement parts himself, though the cost of purchase is covered by his clients. In some cases — and depending on the distance travelled — CIMMYT covers the transport and accommodation costs while Beyene services equipment from service providers and sources equipment from local distributors. When individual parts are not readily available, he often purchases whole two-wheel tractors from the Metals and Engineering Corporation (METEC) and breaks them down into individual parts.

Tools and spare machinery parts lie on the ground during at Beyene Chufamo’s workshop in Meki, Ethiopia. (Photo: CIMMYT)
Tools and spare machinery parts lie on the ground during at Beyene Chufamo’s workshop in Meki, Ethiopia. (Photo: CIMMYT)

The way forward for sustainable mechanization

“Mechanization take-off relies heavily on skilled staff and appropriate infrastructure to perform machinery diagnostics, repair and maintenance,” said Rabe Yahaya, a CIMMYT agricultural mechanization expert based in Ethiopia.

“Agricultural machinery should be available and functional any time a famer wants to use it — and a workshop can support this. Beyene’s work in Meki reflects the way forward for sustainable mechanization success in Ethiopia.”

Creating an agricultural machinery workshop from scratch was a challenging task, Rabe explained, but support and guidance from partners like CIMMYT and GIZ helped to make it happen. “Also, Beyene’s commitment and flexibility to travel to CIMMYT project sites anywhere and at any time — even on bad roads in difficult weather conditions — really helped him achieve his goal.”

A sign hangs on the entrance of Beyene Chufamo’s agricultural machinery workshop in Meki, Ethiopia. (Photo: CIMMYT)
A sign hangs on the entrance of Beyene Chufamo’s agricultural machinery workshop in Meki, Ethiopia. (Photo: CIMMYT)

Beyene is excited about how quickly the local two-wheel tractor market has grown in the past few years. He currently has 91 service providers as regular clients at CIMMYT project sites — up from just 19 in 2016.

Trends show that — with support from local microfinance schemes and the removal of domestic taxes on imported machinery — aftersales services will continue to evolve, and the number of service providers will rise alongside increased market demand for mechanization services, both at farm level and beyond.

With this in mind, Beyene aims to remain competitive by diversifying the services offered at his workshop and expanding his business beyond CIMMYT project sites. As a starting point he plans to hire more staff, altering his organizational structure so that each mechanic or technician is dedicated to working with a specific type of machinery. Longer term, he hopes to transform his workshop into one that can also service four-wheel tractors and combine harvesters, and establish a mobile dispatch service team that can reach more locations in rural Ethiopia.

For now, however, he simply remains grateful for CIMMYT’s support and investment in his business. “I am happy that I have been able to secure an income for myself, my family and my staff through this workshop, which has changed our lives in such a positive way.”

Cover photo: Workshop owner Beyene Chufamo (left) speaks to CIMMYT researcher Abrham Kassa during a visit to Meki, Ethiopia. (Photo: CIMMYT)

A view from above

Scientists at the International Maize and Wheat Improvement Center (CIMMYT) have been harnessing the power of drones and other remote sensing tools to accelerate crop improvement, monitor harmful crop pests and diseases, and automate the detection of land boundaries for farmers.

A crucial step in crop improvement is phenotyping, which traditionally involves breeders walking through plots and visually assessing each plant for desired traits. However, ground-based measurements can be time-consuming and labor-intensive.

This is where remote sensing comes in. By analyzing imagery taken using tools like drones, scientists can quickly and accurately assess small crop plots from large trials, making crop improvement more scalable and cost-effective. These plant traits assessed at plot trials can also be scaled out to farmers’ fields using satellite imagery data and integrated into decision support systems for scientists, farmers and decision-makers.

Here are some of the latest developments from our team of remote sensing experts.

An aerial view of the Global Wheat Program experimental station in Ciudad Obregón, Sonora, Mexico (Photo: Francisco Pinto/CIMMYT)

Measuring plant height with high-powered drones

A recent study, published in Frontiers in Plant Science validated the use of drones to estimate the plant height of wheat crops at different growth stages.

The research team, which included scientists from CIMMYT, the Federal University of Viçosa and KWS Momont Recherche, measured and compared wheat crops at four growth stages using ground-based measurements and drone-based estimates.

The team found that plant height estimates from drones were similar in accuracy to measurements made from the ground. They also found that by using drones with real-time kinematic (RTK) systems onboard, users could eliminate the need for ground control points, increasing the drones’ mapping capability.

Recent work on maize has shown that drone-based plant height assessment is also accurate enough to be used in maize improvement and results are expected to be published next year.

A map shows drone-based plant height estimates from a maize line trial in Muzarabani, Zimbabwe. (Graphic: CIMMYT)

Advancing assessment of pests and diseases

CIMMYT scientists and their research partners have advanced the assessment of Tar Spot Complex — a major maize disease found in Central and South America — and Maize Streak Virus (MSV) disease, found in sub-Saharan Africa, using drone-based imaging approach. By analyzing drone imagery, scientists can make more objective disease severity assessments and accelerate the development of improved, disease-resistant maize varieties. Digital imaging has also shown great potential for evaluating damage to maize cobs by fall armyworm.

Scientists have had similar success with other common foliar wheat diseases, Septoria and Spot Blotch with remote sensing experiments undertaken at experimental stations across Mexico. The results of these experiments will be published later this year. Meanwhile, in collaboration with the Federal University of Technology, based in Parana, Brazil, CIMMYT scientists have been testing deep learning algorithms — computer algorithms that adjust to, or “learn” from new data and perform better over time — to automate the assessment of leaf disease severity. While still in the experimental stages, the technology is showing promising results so far.

CIMMYT researcher Gerald Blasch and EIAR research partners Tamrat Negash, Girma Mamo and Tadesse Anberbir (right to left) conduct field work in Ethiopia. (Photo: Tadesse Anberbir)

Improving forecasts for crop disease early warning systems

CIMMYT scientists, in collaboration with Université catholique de Louvain (UCLouvain), Cambridge University and the Ethiopian Institute of Agricultural Research (EIAR), are currently exploring remote sensing solutions to improve forecast models used in early warning systems for wheat rusts. Wheat rusts are fungal diseases that can destroy healthy wheat plants in just a few weeks, causing devastating losses to farmers.

Early detection is crucial to combatting disease epidemics and CIMMYT researchers and partners have been working to develop a world-leading wheat rust forecasting service for a national early warning system in Ethiopia. The forecasting service predicts the potential occurrence of the airborne disease and the environmental suitability for the disease, however the susceptibility of the host plant to the disease is currently not provided.

CIMMYT remote sensing experts are now testing the use of drones and high-resolution satellite imagery to detect wheat rusts and monitor the progression of the disease in both controlled field trial experiments and in farmers’ fields. The researchers have collaborated with the expert remote sensing lab at UCLouvain, Belgium, to explore the capability of using European Space Agency satellite data for mapping crop type distributions in Ethiopia. The results will be also published later this year.

CIMMYT and EIAR scientists collect field data in Asella, Ethiopia, using an unmanned aerial vehicle (UAV) data acquisition. (Photo: Matt Heaton)

Delivering expert irrigation and sowing advice to farmers phones

Through an initiative funded by the UK Space Agency, CIMMYT scientists and partners have integrated crop models with satellite and in-situ field data to deliver valuable irrigation scheduling information and optimum sowing dates direct to farmers in northern Mexico through a smartphone app called COMPASS — already available to iOS and Android systems. The app also allows farmers to record their own crop management activities and check their fields with weekly NDVI images.

The project has now ended, with the team delivering a webinar to farmers last October to demonstrate the app and its features. Another webinar is planned for October 2021, aiming to engage wheat and maize farmers based in the Yaqui Valley in Mexico.

CIMMYT researcher Francelino Rodrigues collects field data in Malawi using a UAV. (Photo: Francelino Rodrigues/CIMMYT)

Detecting field boundaries using high-resolution satellite imagery

In Bangladesh, CIMMYT scientists have collaborated with the University of Buffalo, USA, to explore how high-resolution satellite imagery can be used to automatically create field boundaries.

Many low and middle-income countries around the world don’t have an official land administration or cadastre system. This makes it difficult for farmers to obtain affordable credit to buy farm supplies because they have no land titles to use as collateral. Another issue is that without knowing the exact size of their fields, farmers may not be applying to the right amount of fertilizer to their land.

Using state of the art machine learning algorithms, researchers from CIMMYT and the University of Buffalo were able to detect the boundaries of agricultural fields based on high-resolution satellite images. The study, published last year, was conducted in the delta region of Bangladesh where the average field size is only about 0.1 hectare.

A CIMMYT scientist conducts an aerial phenotyping exercise in the Global Wheat Program experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: Francisco Pinto/CIMMYT)

Developing climate-resilient wheat

CIMMYT’s wheat physiology team has been evaluating, validating and implementing remote sensing platforms for high-throughput phenotyping of physiological traits ranging from canopy temperature to chlorophyll content (a plant’s greenness) for over a decade. Put simply, high-throughput phenotyping involves phenotyping a large number of genotypes or plots quickly and accurately.

Recently, the team has engaged in the Heat and Drought Wheat Improvement Consortium (HeDWIC) to implement new high-throughput phenotyping approaches that can assist in the identification and evaluation of new adaptive traits in wheat for heat and drought.

The team has also been collaborating with the Accelerating Genetic Gains in Maize and Wheat (AGG) project, providing remote sensing data to improve genomic selection models.

Cover photo: An unmanned aerial vehicle (UAV drone) in flight over CIMMYT’s experimental research station in Ciudad Obregon, Mexico. (Photo: Alfredo Saenz/CIMMYT)

Many birds with one stone

In Ethiopia, farming systems rely heavily on animal and human power, reducing productivity and efficiency. In recent years, the government and development partners have made significant efforts to modernize agriculture.

In 2013, CIMMYT introduced one-axel multipurpose tractors in various districts of Amhara, Oromia, South and Tigray regions. This new technology has helped to improve farmers’ lives and phase out outdated farming practices. Farmers have reduced drudgery, improved productivity and gained higher profits. This short video shows the impacts the two-wheel tractor brough to smallholder farmers in Ethiopia.

Financial support for this initiative came from the German development agency GIZ, USAID and the Australian government.

Capacitating farmers and development agents through radio

Representing CIMMYT, Kinde Tesfaye (on the left) took part in the live radio programs. (Photo: CIMMYT)

The continuing increase in the number of farming families has led to a growing emphasis on approaches on how to reach more people at a time. Among others, individual, group and mass-media approaches to agricultural extension and advisory services have been used concurrently.

This year, the global COVID-19 pandemic presented yet another challenge to the agriculture sector due to travel restrictions and limited face-to-face interactions. This has obstructed capacity building for farmers as well as development agents to deliver seasonal and intra-seasonal agroclimate advisories for farmers to support farm decisions.

Realizing the importance of mass media in extension, the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with the Ministry of Agriculture, the Ethiopian Institute of Agricultural Research (EIAR) and Climate Change, Agriculture and Food Security (CCAFS)-EA used live show radio program on Sunday mornings to provide climate advisories on the 2020 Kiremt (main cropping) season to farmers and extension workers on a two-weekly basis between June and November. The live show also allows listeners to call in and ask questions and provide feedback. Besides the climate agro-advisories, COVID-19 alerts and precautionary measures were provided to the radio audience.

Extremely low climate induced risk perception

CIMMYT-CASCAID II project baseline assessment indicates that the rural communities in the project intervention areas have an extremely low climate induced risk perception and are also quite resistant to change. The areas are also highly prone to recurring droughts. Erratic rainfall distribution and dry spells are common. Large areas of barren and uncultivable land, water shortage, poor soil quality, soil erosion due to high run off rate are adversely affecting the farming systems. Research shows that simple adaptation actions such as watershed management, changing planting dates and crop varieties could greatly reduce the climate variability and change impacts. However, communities being poorly linked to scientists and policy makers lack information about climate change adaptation options and government schemes related to the same. There are also challenges of communicating scientific research in simplified ways that are appropriate to local stakeholder needs.

In recent years, the use of improved technologies has been increasing due to the progressive national agricultural development policy and strategy that is in place coupled with advisories provided to help farmers to make timely and appropriate farm level decisions and practices.

Agroclimate advisory – the fourth production factor

The provision of agroclimate advisory is considered as the fourth production factor after labor, land, and capital and critical to the agricultural sector as climate and its associated adverse effects can negatively affect agricultural activities and productivities. Thus, ensuring the accessibility of relevant time sensitive forecast based advisory information to farming communities helps improve productivity and yields higher returns.

The advice will also assist smallholder farmers to manage climate risks through informed decisions such as identifying optimum planting time/sowing windows, planting density at the start of the rainy season, while at the same time managing fertilizer application. Moreover, it also benefits farmer decisions and practices on soil water, weeds, diseases, and pest management throughout the growing season. By monitoring weather and crop growth during the season, the same forecast information can assist in predicting crop yields well in advance of crop maturity and to allow farmers to decide whether to sell the product immediately after harvest or store it until it commands better prices later in the year.

Radio for disseminating agroclimate information

In Ethiopia, the use of ICT for the accumulation and dissemination of agroclimate information and other agricultural updates is still low. Radio transmission covers a large percentage of the country with most of the households own a radio. This makes the use of radio programs one of the most cost-effective channels for conveying weather forecast information and agricultural knowledge to rural communities which ultimately facilitate informed decision-making and adoption of new technologies and practices.

In collaboration with its partners, the CIMMYT-CASCADE II project through Fana FM radio implemented a six-month (June-November 2020) live radio program providing seasonal advisories at the start of the main season in June using seasonal forecast from the National Meteorology Agency which was downscaled to Woreda/Kebele level by EIAR, CCAFS-EA and CIMMYT. This was followed by a biweekly or monthly Wereda specific agro-climate advisories which focus on fertilizer application, weeding, crop protection, soil and water management and climate extremes such as flood and droughts.

The program also included experts from the Ministry of Agriculture, EIAR, and CGIAR Centers to provide professional explanations and updates from the perspective of in situational readiness to support issues coming from the radio audience. The program created an opportunity for the federal government to prepare in time on some activities like importing agricultural inputs such as pesticides and fungicides to control the outbreak of pests and diseases (e.g., desert locust infestation and wheat rust outbreak). The platform also provided an opportunity to reach to millions of farmers to convey COVID-19 prevention messages such as physical distancing, use of masks, handwashing and other precautions that need to be taken while working in groups.

Q&A: A decade of improved and climate-smart maize through collaborative research and innovation

The food security and livelihoods of smallholder farming families in sub-Saharan Africa depend on maize production. The region accounts for up to two-thirds of global maize production, but is facing challenges related to extreme weather events, climate-induced stresses, pests and diseases, and deteriorating soil quality. These require swift interventions and innovations to safeguard maize yields and quality.

In this Q&A, we reflect on the results and impact of the long-term collaborative work on drought-tolerant maize innovations spearheaded by two CGIAR Research Centers: the International Maize and Wheat Improvement Center (CIMMYT) and International Institute of Tropical Agriculture (IITA). This innovative work has changed guises over the years, from the early work of the Drought Tolerant Maize for Africa (DTMA) and Drought Tolerant Maize for Africa Seed Scaling (DTMASS) projects through later iterations such as Stress Tolerant Maize for Africa (STMA) and the newest project, Accelerating Genetic Gains in Maize and Wheat (AGG).

In this Q&A, three leaders of this collaborative research reflect on the challenges their work has faced, the innovations and impact it has generated for smallholder farmers, and possible directions for future research. They are: B.M Prasanna, director of CIMMYT’s Global Maize Program and of the CGIAR Research Program on Maize (MAIZE); Abebe Menkir, a maize breeder and maize improvement lead at IITA; and Cosmos Magorokosho, project lead for AGG-Maize at CIMMYT.

Briefly describe the challenges confronting small-scale farmers prior to the introduction of drought-tolerant maize and how CIMMYT and IITA responded to these challenges?

B.M.P.: Maize is grown on over 38 million hectares in sub-Saharan Africa, accounting for 40% of cereal production in the region and providing at least 30% of the population’s total calorie intake. The crop is predominantly grown under rainfed conditions by resource-constrained smallholder farmers who often face erratic rainfall, poor soil fertility, increasing incidence of climatic extremes — especially drought and heat — and the threat of devastating diseases and insect pests.

Around 40% of maize-growing areas in sub-Saharan Africa face occasional drought stress with a yield loss of 10–25%. An additional 25% of the maize crop suffers frequent drought, with yield losses of up to 50%. Climate change is further exacerbating the situation, with devastating effects on the food security and livelihoods of the millions of smallholder farmers and their families who depend on maize in sub-Saharan Africa. Therefore, the improved maize varieties with drought tolerance, disease resistance and other farmer-preferred traits developed and deployed by CIMMYT and IITA over the last ten years in partnership with an array of national partners and seed companies across sub-Saharan Africa are critical in effectively tackling this major challenge.

A.M.: Consumption of maize as food varies considerably across sub-Saharan Africa, exceeding 100 kg per capita per year in many countries in southern Africa. In years when rainfall is adequate, virtually all maize consumed for food is grown in sub-Saharan Africa, with a minimal dependence on imported grain. Maize production, however, is highly variable from year to year due to the occurrence of drought and the dependence of national maize yields on seasonal rainfall. One consequence has been widespread famine occurring every five to ten years in sub-Saharan Africa, accompanied by large volumes of imported maize grain as food aid or direct imports.

This places a significant strain on resources of the World Food Programme and on national foreign exchange. It also disincentivizes local food production and may not prevent or address cyclical famine. It also leaves countries ill-equipped to address famine conditions in the period between the onset of the crisis and the arrival of food aid. Investment in local production, which would strengthen the resilience and self-sufficiency in food production of smallholder farming families, is a far better option to mitigate food shortages than relying on food aid and grain imports.

C.M.: Smallholder farmers in sub-Saharan Africa face innumerable natural and socioeconomic constraints. CIMMYT, in partnership with IITA and national agricultural research system partners, responded by developing and catalyzing the commercialization of new maize varieties that produce reasonable maize yields under unpredictable rainfall-dependent growing season.

Over the life of the partnership, more than 300 new climate-adaptive maize varieties were developed and released in more than 20 countries across sub-Saharan Africa where maize is a major staple food crop. Certified seed of over 100 stress-tolerant improved maize varieties have been produced by seed company partners, reaching more than 110,000 tons in 2019. The seeds of these drought-tolerant maize varieties have benefited more than 8 million households and were estimated to be grown on more than 5 million hectares in eastern, southern and west Africa in 2020.

A farmer in Mozambique stands for a photograph next to her drought-tolerant maize harvest. (Photo: CIMMYT)
A farmer in Mozambique stands for a photograph next to her drought-tolerant maize harvest. (Photo: CIMMYT)

In what ways did the drought-tolerant maize innovation transform small-scale farmers’ ability to respond to climate-induced risks? Are there any additional impacts on small scale farmers in addition to climate adaptation?

B.M.P.: The elite drought-tolerant maize varieties can not only provide increased yield in drought-stressed crop seasons, they also offer much needed yield stability. This means better performance than non-drought-tolerant varieties in both good years and bad years to a smallholder farmer.

Drought-tolerant maize varieties developed by CIMMYT and IITA demonstrate at least 25-30% grain yield advantage over non-drought-tolerant maize varieties in sub-Saharan Africa under drought stress at flowering. This translates into at least a 1 ton per hectare enhanced grain yield on average, as well as reduced downside risk in terms of lost income, food insecurity and other risks associated with crop yield variability. In addition to climate adaptation, smallholder farmers benefit from these varieties due to improved resistance to major diseases like maize lethal necrosis and parasitic weeds like Striga. We have also developed drought-tolerant maize varieties with enhanced protein quality — such as Quality Protein Maize or QPM — and provitamin A, which improve nutritional outcomes.

We must also note that drought risk in sub-Saharan Africa has multiple and far-reaching consequences. It reduces incentives for smallholder farmers to intensify maize-based systems and for commercial seed companies to invest and evolve due to a limited seed market.

Drought-tolerant maize is, therefore, a game changer as it reduces the downside risk for both farmers and seed companies and increases demand for improved maize seed, thus strengthening the commercial seed market in sub-Saharan Africa. Extensive public-private partnerships around drought-tolerant maize varieties supported the nascent seed sector in sub-Saharan Africa and has enabled maize-based seed companies to significantly grow over the last decade. Seed companies in turn are investing in marketing drought-tolerant maize varieties and taking the products to scale.

A.M.: The DTMA and STMA projects were jointly implemented by CIMMYT and IITA in partnership with diverse national and private sector partners in major maize producing countries in eastern, southern and western Africa to develop and deploy multiple stress-tolerant and productive maize varieties to help farmers adapt to recurrent droughts and other stresses including climate change.

These projects catalyzed the release and commercialization of numerous stress-resilient new maize varieties in target countries across Africa. Increasing the resilience of farming systems means that smallholder farmers need guaranteed access to good quality stress resilient maize seeds. To this end, the two projects worked with public and private sector partners to produce large quantities of certified seeds with a continual supply of breeder seeds from CIMMYT and IITA. The availability of considerable amount of certified seeds of resilient maize varieties has enabled partners to reach farmers producing maize under stressful conditions, thus contributing to the mitigation of food shortages that affect poor people the most in both rural and urban areas.

C.M.: The drought-tolerant maize innovation stabilized maize production under drought stress conditions in sub-Saharan Africa countries. Recent study results showed that households that grew drought-tolerant maize varieties had at least half a ton more maize harvest than the households that did not grow the drought-tolerant maize varieties, thus curbing food insecurity while simultaneously increasing farmers’ economic benefits. Besides the benefit from drought-tolerant innovation, the new maize varieties developed through the partnership also stabilized farmers’ yields under major diseases, Striga infestation, and poor soil fertility prevalent in sub-Saharan Africa.

How is the project addressing emerging challenges in breeding for drought-tolerant maize and what opportunities are available to address these challenges in the future? 

Margaret holds an improved ear of drought-tolerant maize. Margaret’s grandmother participated in an on-farm trial in Murewa district, 75 kilometers northeast of Zimbabwe’s capital Harare. (Photo: Jill Cairns/CIMMYT)
Margaret holds an improved ear of drought-tolerant maize. Margaret’s grandmother participated in an on-farm trial in Murewa district, 75 kilometers northeast of Zimbabwe’s capital Harare. (Photo: Jill Cairns/CIMMYT)

B.M.P.: A strong pipeline of elite, multiple-stress-tolerant maize varieties — combining other relevant adaptive and farmer-preferred traits — has been built in sub-Saharan Africa through a strong germplasm base, partnerships with national research partners and small- and medium-sized seed companies, an extensive phenotyping and multi-location testing network, and engagement with farming communities through regional on-farm trials for the identification of relevant farmer-preferred products.

CGIAR maize breeding in sub-Saharan Africa continues to evolve in order to more effectively and efficiently create value for the farmers we serve. We are now intensively working on several areas: (a) increasing genetic gains (both on-station and on-farm) through maize breeding in the stress-prone environments of sub-Saharan Africa by optimizing our breeding pipelines and effectively integrating novel tools, technologies and strategies (e.g., doubled haploids, genomics-assisted breeding, high-throughput and precise phenotyping, improved breeding data management system, etc.); (b) targeted replacement of old or obsolete maize varieties in sub-Saharan Africa with climate-adaptive and new varieties; (c) developing next-generation climate-adaptive maize varieties with traits such as native genetic resistance to fall armyworm, and introgressed nutritional quality traits (e.g., provitamin A, high Zinc) to make a positive impact on the nutritional well-being of consumers; and (d) further strengthening the breeding capacity of national partners and small and medium-sized seed companies in sub-Saharan Africa for a sustainable way forward.

A.M.:  The DTMA and STMA projects established effective product pipelines integrating cutting-edge phenotyping and molecular tools to develop stress-resilient maize varieties that are also resistant or tolerant to MLN disease and fall armyworm. These new varieties are awaiting release and commercialization. Increased investment in strengthening public and private sector partnerships is needed to speed up the uptake and commercialization of new multiple stress-resilient maize varieties that can replace the old ones in farmers’ fields and help achieve higher yield gains.

Farmers’ access to new multiple-stress-tolerant maize varieties will have a significant impact on productivity at the farm level. This will largely be due to new varieties’ improved response to fertilizer and favorable growing environments as well as their resilience to stressful production conditions. Studies show that the adoption of drought-tolerant maize varieties increased maize productivity, reduced exposure to farming risk among adopters and led to a decline in poverty among adopters. The availability of enough grain from highly productive and stress-resilient maize varieties can be the cheapest source of food and release land to expand the cultivation of other crops to facilitate increased access to diversified and healthy diets.

C.M.:  The project is tackling emerging challenges posed by new diseases and pests by building upon the successful genetic base of drought-tolerant maize. This is being done by breeding new varieties that add tolerance to the emerging disease and pest challenges onto the existing drought-tolerant maize backgrounds. Successes have already been registered in breeding new varieties that have high levels of resistance to MLN disease and the fall armyworm pest.

Opportunities are also available to address new challenges including: pre-emptively breeding for threats to maize production challenges that exist in other regions of the world before these threats reach sub-Saharan Africa; enhancing the capacity of national partners to build strong breeding programs that can address new threats once they emerge in sub-Saharan Africa; and sharing knowledge and novel high-value breeding materials across different geographies to immediately address new threats once they emerge.

Cover photo: Alice Nasiyimu stands in front of a drought-tolerant maize plot at her family farm in Bungoma County, in western Kenya. (Photo: Joshua Masinde/CIMMYT)

New CIMMYT maize hybrids available from Eastern Africa breeding program

The International Maize and Wheat Improvement Center (CIMMYT) is offering a new set of elite, improved maize hybrids to partners in eastern Africa and similar agro-ecological zones. National agricultural research systems (NARS) and seed companies are invited to apply for licenses to pursue national release of, and subsequently commercialize, these new hybrids, in order to bring the benefits of the improved seed to farming communities.

The deadline to submit applications to be considered during the first round of allocations is 9 February 2021. Applications received after that deadline will be considered during the following round of product allocations.

Information about the newly available CIMMYT maize hybrids from Eastern Africa breeding program, application instructions and other relevant material is available below.

Download all documents

Or download individual files below:

CIMMYT Eastern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2019 and 2020 Trials and Product Announcement (including Appendix 1: ACQUISITION AND USE OF CIMMYT MAIZE HYBRIDS FOR COMMERCIALIZATION)

Appendix 2: CIMMYT maize hybrids available under EA-PP1A

Appendix 3: CIMMYT maize hybrids available under EA-PP1B

Appendix 4: CIMMYT maize hybrids available under EA-PP2

Appendix 5: Eastern Africa Trial Sites Information

To apply, please fill out the CIMMYT Improved Maize Product Allocation Application Forms, available for download at the links below. Each applicant will need to complete one copy of Form A for their organization, then for each hybrid being requested a separate copy of Form B. (Please be sure to use these current versions of the application forms.)

FORM A – Application for CIMMYT Improved Maize Product Allocation

FORM B – Application for CIMMYT Improved Maize Product Allocation

Please send completed forms via email to GMP-CIMMYT@cgiar.org.