Skip to main content

funder_partner: CGIAR Research Program on Maize (MAIZE)

The CGIAR Research Program on Maize (MAIZE) is an international collaboration between more than 300 partners that seeks to mobilize global resources in maize research and development to achieve a greater strategic impact on maize-based farming systems in Africa, Latin America and South Asia.

Led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Institute of Tropical Agriculture (IITA) as its main CGIAR partner, MAIZE focuses on increasing maize production for the 900 million poor consumers for whom maize is a staple food in Africa, Latin America and South Asia. MAIZE’s overarching goal is to double maize productivity and increase incomes and livelihood opportunities from sustainable maize-based farming systems.

MAIZE receives funding support from CGIAR Trust Fund contributors.

https://maize.org/

MAIZE Flagship Projects (FPs) and Cluster of Activities

FP1: Enhancing MAIZE’s R4D strategy for impact
• Foresight and targeting of R4D strategies
• Learning from M&E, adoption and impacts
• Enhancing gender and social inclusiveness
• Value chain analysis

FP2: Novel diversity and tools for improving genetic gains
• Informatics, database management and decision support tools
• Development of enabling tools for germplasm improvement
• Unlocking genetic diversity through trait exploration and gene discovery
• Pre-breeding: development of germplasm resources

FP3: Stress-tolerant and nutritious maize
• Climate resilient maize with abiotic and biotic stress tolerance
• Tackling emerging trans-boundary disease/pest challenges
• Nutritional quality and end-use traits in elite genetic backgrounds
• Precision phenotyping and mechanization of breeding operations
• Seed production research and recommendations
• Stronger maize seed systems

FP4: Sustainable intensification of maize-based systems
• Multi-scale farming system framework to better integrate and enhance adoption of sustainable intensification options
• Participatory adoption and integration of technological components
• Development and field-testing of crop management technologies
• Partnership and collaborations models for scaling

Winners of 2019 MAIZE Youth Innovators Awards – Latin America announced

The CGIAR Research Program on Maize (MAIZE) is pleased to announce the winners of the 2019 MAIZE Youth Innovators Awards – Latin America. These awards recognize the contributions of young women and men under 35 who are implementing innovations in Latin American maize-based agri-food systems, including research for development, seed systems, agribusiness, and sustainable intensification.

The winners will attend the 23rd Latin American Maize Reunion (XXIII Reunión Latinoamericana del Maíz) in Monteria, Colombia, where they will receive their awards and present their work. Award recipients may also get the opportunity to collaborate with MAIZE and its partner scientists in Latin America on implementing or furthering their innovations.

This is the third instalment of the awards, following Asia in October 2018 and Africa in May 2019.

Congratulations to this year’s winners, seven exceptional young people working in Latin American maize-based systems:

Eduardo Cruz Rojo.
Eduardo Cruz Rojo.

Eduardo Cruz Rojo (Mexico) – Farmer category

Eduardo Cruz Rojo is a young agricultural entrepreneur, worried about rural out-migration in his region and about the poor agricultural practices that have led farming to cease to be profitable. He has a degree in logistics, and is originally from Alfajayucan, in Mexico’s state of Hidalgo. For the past four years he has been working on maize research and production, with a focus on improved agronomic practices that help farmers increase their yields. This includes soil improvement, organic fertilizers, earthworm compost and biological pest control. Through research and testing, he has shown smallholder farmers the cost-benefit of improved agricultural practices. This has been reflected in local farmers achieving improved soils and yields in an environmentally friendly manner.

 

Yésica Chazarreta.
Yésica Chazarreta.

Yésica Chazarreta (Argentina) – Researcher category

Yésica Chazarreta has a degree in genetics and is currently a doctoral fellow at the Scientific and Technologic Fund, working with the Crop Ecophysiology group at the National Agricultural Technology Institute (INTA) Pergamino in Buenos Aires, Argentina. Her work centers on understanding the genetic and environmental control of the physiological determinants of filling, drying and quality of maize grains in genotypes destined for grain or silage. The objective is to generate knowledge to continue advancing in maize production improvement and to open the possibility of establishing improvement programs differentiated by planting times for her region, as well as to provide valuable information for the creation of mechanistic models to predict the evolution of humidity in maize grains. This information can help farmers make more informed decisions about the best time to harvest. In addition, Chazarreta hopes to deepen understanding of maize biomass quality for animal feed, a practice that has increased in her native country, Argentina, due to changes in crop management practices related to delays in planting dates.

 

Omar Garcilazo Rahme.
Omar Garcilazo Rahme.

Omar Garcilazo Rahme (Mexico) – Researcher category

Omar Garcilazo Rahme is a postgraduate student researching sustainable management of agro-ecosystems at the Meritorious Autonomous University of Puebla (BUAP).

A food engineer by training, he has a profound interest in Mexico’s bio-cultural heritage and maize as a staple food in his native country, as well as the various methods to produce and conserve the crop. His research project seeks to improve the economic, nutritious and sociocultural benefits associated with the production of maize.

He is currently collaborating in a technology transfer and innovation agency on the topics of nutritional labeling, big data and applied technology solutions for the agri-food industry.

 

Lucio Reinoso.
Lucio Reinoso.

Lucio Reinoso (Argentina) – Researcher category

Lucio Reinoso is an agronomist with a master’s degree in agricultural sciences from the National Southern University, Argentina. He has worked as a professor at the National University of Rio Negro since 2019. Reinoso was a fellow and researcher for 12 years at the National Institute for Agricultural Technology (INTA).

He works on sustainable models of maize production under irrigation in the irrigated valleys of Northern Patagonia, Argentina. Reinoso is specifically investigating the adaptation of maize to the soil and climatic conditions of the region, highlighting the water and nutritional needs to maximize production while also caring for the environment.

He works with local farmers to adapt no-till farming to scale and adjust irrigation management to improve water use efficiency while preserving the physical, chemical and biological characteristics of soil, increasing resilience.

 

Viviana López Ramírez.
Viviana López Ramírez.

Viviana López Ramírez (Colombia) – Researcher category

Viviana López Ramírez is a biological engineer with a master’s degree in environmental studies from the National University of Colombia in Medellin.

She is currently a doctoral student in biological sciences at the National University in Río Cuarto, Argentina, studying the application of bacteriocins for the biological control of phytopathogens.

This work on bacteriosis in maize is conducted by a multidisciplinary team and focuses on the identification of pathogenic bacteria isolated from a diverse maize population.

 

José Esteban Sotelo Mariche.
José Esteban Sotelo Mariche.

José Esteban Sotelo Mariche (Mexico) – Change Agent category

José Esteban Sotelo Mariche is an agronomist from the coastal region of Oaxaca, Mexico. He studied at Chapingo Autonomous University and is certified in rural development and food security.

Since 2012 he has offered capacity building to smallholder maize farmers in his region. In 2014 he formed Integradora Agroempresarial del Rio Verde to promote the production and commercialization of agricultural products. The group now has 80 members, including indigenous and Afro-Mexican farmers. In 2016 he began working with tortilla company Masienda to help local farmers export native maize to gourmet restaurants in the United States.

Most recently he has worked on the integration of the Center for Rural Technology Transfer and Validation (Centro de Validación y Transferencia de Tecnología Rural) to evaluate conservation agriculture systems, efficient water use and agroforestry. This space also serves to provide training activities and technical assistance to local farmers.

 

Carlos Barragan.
Carlos Barragan.

Carlos Barragan (Mexico) – Change Agent category

Carlos Barragan has a degree in agroecological engineering from Chapingo Autonomous University.

He collaborates with the MasAgro project in Mexico’s state of Oaxaca, helping to adapt small-scale production systems to climate change.

He also contributes to work on soil fertility as well as inclusive business models for smallholder farmers working in agri-food value chains.

 

 

Study proposes alternative to conventional technology adoption research in smallholder agriculture

Starting machinery to husk maize cobs at Green Farm near Kitale, Trans-Nzoia. (Photo: Peter Lowe/CIMMYT)
Starting machinery to husk maize cobs at Green Farm near Kitale, Trans-Nzoia. (Photo: Peter Lowe/CIMMYT)

The development community is introducing increasingly complex and systemic technological designs for sustainable improvements to agriculture. Yet, a systemic perspective is hard to find in “adoption-outcome” focused analyses of technological change processes. In order to improve development interventions, it is necessary not only to analyze both successes and failures, but also the process and impacts of technological change.

Researchers at the International Maize and Wheat Improvement Center (CIMMYT) and the Institute of Development Studies (IDS) recently published a paper on rethinking technological change in smallholder agriculture, arguing against the conventional approach to studying technology adoption.

The problem with the concept of technology adoption

While the adoption rate of newly introduced technologies is still used in the evaluation of agricultural research and development, the theory of technology adoption is an insufficient framework for understanding technological change. It is too linear, too binary, too focused on individual decisions and gives an inaccurate and misleading picture to researchers.

The theory of adoption treats technology like a “black box” that is transferred smoothly from one setting to another, following a linear progression of old and inferior tools and methods to new improved ones. This theory is too simplistic to align with the complex realities of the capabilities and agency of multiple actors. In addition, in cases of participatory technology development, where intended users are involved in the creation of innovations, adoption rates are often limited due to the relatively small scale of the project.

Using adoption rate as the only indicator of success or failure can lead researchers to ignore wider impacts of the introduction of a new technology. Adoption rates could go up, but use of a new technology could cause harm to social relations, the local environment, or its resilience. Low adoption rates could classify a program as a failure, while farmers benefited substantially in undetected ways, for example forming networks or acquiring new skills and knowledge. A singular focus on adoption rates thus limits our understanding of what happens in processes of technological change.

Farmer Kausila Chanara direct dry seeding rice in Ramghat, Surkhet, Nepal. (Photo: Peter Lowe/CIMMYT).
Farmer Kausila Chanara direct dry seeding rice in Ramghat, Surkhet, Nepal. (Photo: Peter Lowe/CIMMYT)

An alternative conceptual framework

In addition to the introduction of a new technology to small-scale farming systems, technological change involves the agency of many social actors. The agency of farmers, scientists, project managers and extension officers is key to understand whether a new technology is perceived to be useful, accessible or realistic, as well as how it is adjusted and changing social relations.

A new framework is needed to capture this reconfiguration of social and technological components that result from the introduction of a new technology to a community.

The authors of this paper propose an alternative conceptual framework with an agent-, practice- and process-oriented approach to better understand technological change. The framework is composed of four key components: propositions, encounters, dispositions and responses.

Propositions are composed of artefacts, methods, techniques and practices and a proposed mode of engagement in agricultural production. Encounters can be deliberately organized, for example a field day, or spontaneous, when a farmer sees a neighbor using a new tool. Intended users of technology may be disposed to respond in a variety of different ways, and dispositions may change over time. Finally, responses are a process or pathway that is likely to involve adjustment or recalibration to make the new technology work for the farmer.

Further work to operationalize this framework is needed. The authors suggest a next step of developing indicators to measure learning, experimentation and behavioral change as part of analyzing technological change processes.

Extensive use of wild grass-derived “synthetic hexaploid wheat” adds diversity and resilience to modern bread wheat

Elite wheat varieties at CIMMYT’s experimental station in Ciudad Obregon, in Mexico's Sonora state. (Photo: Marcia MacNeil/CIMMYT)
Elite wheat varieties at CIMMYT’s experimental station in Ciudad Obregon, in Mexico’s Sonora state. (Photo: Marcia MacNeil/CIMMYT)

In a new study, scientists have found that genome segments from a wild grass are present in more than one in five of elite bread wheat lines developed by the International Maize and Wheat Improvement Center (CIMMYT).

Scientists at CIMMYT and other research institutes have been crossing wild goat grass with durum wheat — the wheat used for pasta — since the 1980s, with the help of complex laboratory manipulations. The new variety, known as synthetic hexaploid wheat, boosts the genetic diversity and resilience of wheat, notoriously vulnerable due to its low genetic diversity, adding novel genes for disease resistance, nutritional quality and heat and drought tolerance.

The study, which aimed to measure the effect of these long-term efforts using state-of-the-art molecular technology, also found that 20% of CIMMYT modern wheat lines contain an average of 15% of the genome segments from the wild goat grass.

“We’ve estimated that one-fifth of the elite wheat breeding lines entered in international yield trials has at least some contribution from goat grass,” said Umesh Rosyara, genomic breeder at CIMMYT and first author of the paper, which was published in Nature Scientific Reports. “This is much higher than expected.”

Although the synthetic wheat process can help bring much-needed diversity to modern wheat, crossing with synthetic wheat is a complicated process that also introduces undesirable traits, which must later be eliminated during the breeding process.

“Many breeding programs hesitate to use wild relatives because undesirable genomic segments are transferred in addition to desirable segments,” said Rosyara. “The study results can help us devise an approach to quickly eliminate undesirable segments while maintaining desirable diversity.”

CIMMYT breeding contributions are present in nearly half the wheat sown worldwide, many of such successful cultivars have synthetic wheat in the background, so the real world the impact is remarkable, according to Rosyara.

“With this retrospective look at the development and use of synthetic wheat, we can now say with certainty that the best wheat lines selected over the past 30 years are benefiting from the genes of wheat’s wild relatives,” he explained. “Even more, using cutting-edge molecular marker technology, we should be able to target and capture the most useful genes from wild sources and better harness this rich source of diversity.”

Modern breeders tread in nature’s footsteps

The common bread wheat we know today arose when an ancient grain called emmer wheat naturally cross-bred with goat grass around 10,000 years ago. During this natural crossing, very few goat grass genes crossed over, and as a result, current bread wheat is low in diversity for the genome contributed by goat grass. Inedible and considered a weed, goat grass still has desirable traits including disease resistance and tolerance to climate stresses.

Scientists sought to broaden wheat’s genetic diversity by re-enacting the ancient, natural cross that gave rise to bread wheat, crossing improved durum wheat or primitive emmer with different variants of goat grass. The resulting synthetic wheats were crossed again with improved wheats to help remove undesirable wild genome segments.

Once synthetic wheat is developed, it can be readily crossed with any elite wheat lines thus serving as a bridge to transfer diversity from durum wheat and wild goat grass to bread wheat. This helps breeders develop high yielding varieties with desirable traits for quality varieties and broad adaption.

CIMMYT is the first to use wheat’s wild relatives on such a large scale, and the synthetic derivative lines have been used by breeding programs worldwide to develop popular and productive bread wheat varieties. One example, Chuanmai 42, released in China in 2003, stood as the leading wheat variety in the Sichuan Basin for over a decade. Other synthetic derivative lines such as Sokoll and Vorobey appear in the lineage of many successful wheat lines, contributing crucial yield stability — the ability to maintain high yields over time under varying conditions.

The successful, large-scale use of genes from wheat’s wild relatives has helped broaden the genetic diversity of modern, improved bread wheat nearly to the level of the crop’s heirloom varieties. This diversity is needed to combat future environmental, pest, and disease challenges to the production of a grain that provides 20% of the calories consumed by humans worldwide.

This work was supported by the CGIAR Research Program on Wheat (WHEAT) and Seeds of Discovery (SeeD), a multi-project initiative comprising MasAgro Biodiversidad, a joint initiative of CIMMYT and the Ministry of agriculture and rural development (SADER) through the MasAgro (Sustainable Modernization of Traditional Agriculture) project; the CGIAR Research Programs on Maize (MAIZE) and Wheat (WHEAT); and a computation infrastructure and data analysis project supported by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC).  CIMMYT’s worldwide partners participated in the evaluation of CIMMYT international wheat yield trials.

For more information, or to arrange interviews with the researchers, please contact:

Marcia MacNeil, Wheat Communications Officer, CIMMYT
M.MacNeil@cgiar.org, +52 (55) 5804 2004, ext. 2070

Rodrigo Ordóñez, Communications Manager, CIMMYT
r.ordonez@cgiar.org, +52 (55) 5804 2004, ext. 1167

About the CGIAR Research Program on Wheat
The CGIAR Research Program on Wheat (WHEAT) is led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Center for Agricultural Research in the Dry Areas (ICARDA) as a primary research partner. Funding comes from CGIAR, national governments, foundations, development banks and other agencies, including the Australian Centre for International Agricultural Research (ACIAR),  the UK Department for International Development (DFID) and the United States Agency for International Development (USAID).

About CIMMYT
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of CGIAR and leads the CGIAR Research Programs on Maize and Wheat, and the Excellence in Breeding Platform. The center receives support from national governments, foundations, development banks and other public and private agencies.

Warmer night temperatures reduce wheat yields in Mexico, scientists say

As many regions worldwide baked under some of the most persistent heatwaves on record, scientists at a major conference in Canada shared data on the impact of spiraling temperatures on wheat.

In the Sonora desert in northwestern Mexico, nighttime temperatures varied 4.4 degrees Celsius between 1981 and 2018, research from the International Maize and Wheat Improvement Center (CIMMYT) shows. Across the world in Siberia, nighttime temperatures rose 2 degrees Celsius between 1988 and 2015, according to Vladimir Shamanin, a professor at Russia’s Omsk State Agrarian University who conducts research with the Kazakhstan-Siberia Network on Spring Wheat Improvement.

“Although field trials across some of the hottest wheat growing environments worldwide have demonstrated that yield losses are in general associated with an increase in average temperatures, minimum temperatures at night — not maximum temperatures — are actually determining the yield loss,” said Gemma Molero, the wheat physiologist at CIMMYT who conducted the research in Sonora, in collaboration with colleague Ivan Ortiz-Monasterio.

“Of the water taken up by the roots, 95% is lost from leaves via transpiration and from this, an average of 12% of the water is lost during the night. One focus of genetic improvement for yield and water-use efficiency for the plant should be to identify traits for adaptation to higher night temperatures,” Molero said, adding that nocturnal transpiration may lead to reductions of up to 50% of available soil moisture in some regions.

Wheat fields at CIMMYT's experimental station near Ciudad Obregón, Sonora, Mexico. (Photo: M. Ellis/CIMMYT)
Wheat fields at CIMMYT’s experimental station near Ciudad Obregón, Sonora, Mexico. (Photo: M. Ellis/CIMMYT)

Climate challenge

The Intergovernmental Panel on Climate Change (IPCC) reported in October that temperatures may become an average of 1.5 degrees Celsius warmer in the next 11 years. A new IPCC analysis on climate change and land use due for release this week, urges a shift toward reducing meat in diets to help reduce agriculture-related emissions from livestock. Diets could be built around coarse grains, pulses, nuts and seeds instead.

Scientists attending the International Wheat Congress in Saskatoon, the city at the heart of Canada’s western wheat growing province of Saskatchewan, agreed that a major challenge is to develop more nutritious wheat varieties that can produce bigger yields in hotter temperatures.

CIMMYT wheat physiologist Gemma Molero presents at the International Wheat Congress. (Photo: Marcia MacNeil/CIMMYT)
CIMMYT wheat physiologist Gemma Molero presents at the International Wheat Congress. (Photo: Marcia MacNeil/CIMMYT)

As a staple crop, wheat provides 20% of all human calories consumed worldwide. It is the main source of protein for 2.5 billion people in the Global South. Crop system modeler Senthold Asseng, a professor at the University of Florida and a member of the International Wheat Yield Partnership, was involved in an extensive study  in China, India, France, Russia and the United States, which demonstrated that for each degree Celsius in temperature increase, yields decline by 6%, putting food security at risk.

Wheat yields in South Asia could be cut in half due to chronically high temperatures, Molero said. Research conducted by the University of New South Wales, published in Environmental Research Letters also demonstrates that changes in climate accounted for 20 to 49% of yield fluctuations in various crops, including spring wheat. Hot and cold temperature extremes, drought and heavy precipitation accounted for 18 to 4% of the variations.

At CIMMYT, wheat breeders advocate a comprehensive approach that combines conventional, physiological and molecular breeding techniques, as well as good crop management practices that can ameliorate heat shocks. New breeding technologies are making use of wheat landraces and wild grass relatives to add stress adaptive traits into modern wheat – innovative approaches that have led to new heat tolerant varieties being grown by farmers in warmer regions of Pakistan, for example.

More than 800 global experts gathered at the first International Wheat Congress in Saskatoon, Canada, to strategize on ways to meet projected nutritional needs of 60% more people by 2050. (Photo: Matthew Hayes/Cornell University)
More than 800 global experts gathered at the first International Wheat Congress in Saskatoon, Canada, to strategize on ways to meet projected nutritional needs of 60% more people by 2050. (Photo: Matthew Hayes/Cornell University)

Collaborative effort

Matthew Reynolds, a distinguished scientist at CIMMYT, is joint founder of the Heat and Drought Wheat Improvement Consortium (HeDWIC), a coalition of hundreds of scientists and stakeholders from over 30 countries.

“HeDWIC is a pre-breeding program that aims to deliver genetically diverse advanced lines through use of shared germplasm and other technologies,” Reynolds said in Saskatoon. “It’s a knowledge-sharing and training mechanism, and a platform to deliver proofs of concept related to new technologies for adapting wheat to a range of heat and drought stress profiles.”

Aims include reaching agreement across borders and institutions on the most promising research areas to achieve climate resilience, arranging trait research into a rational framework, facilitating translational research and developing a bioinformatics cyber-infrastructure, he said, adding that attracting multi-year funding for international collaborations remains a challenge.

Nitrogen traits

Another area of climate research at CIMMYT involves the development of an affordable alternative to the use of nitrogen fertilizers to reduce planet-warming greenhouse gas emissions. In certain plants, a trait known as biological nitrification inhibition (BNI) allows them to suppress the loss of nitrogen from the soil, improving the efficiency of nitrogen uptake and use by themselves and other plants.

CIMMYT's director general Martin Kropff speaks at a session of the International Wheat Congress. (Photo: Matthew Hayes/Cornell University)
CIMMYT’s director general Martin Kropff speaks at a session of the International Wheat Congress. (Photo: Matthew Hayes/Cornell University)

Scientists with the BNI research consortium, which includes Japan’s International Research Center for Agricultural Sciences (JIRCAS), propose transferring the BNI trait from those plants to critical food and feed crops, such as wheat, sorghum and Brachiaria range grasses.

“Every year, nearly a fifth of the world’s fertilizer is used to grow wheat, yet the crop only uses about 30% of the nitrogen applied, in terms of biomass and harvested grains,” said Victor Kommerell, program manager for the multi-partner CGIAR Research Programs (CRP) on Wheat and Maize led by the International Maize and Wheat Improvement Center.

“BNI has the potential to turn wheat into a highly nitrogen-efficient crop: farmers could save money on fertilizers, and nitrous oxide emissions from wheat farming could be reduced by 30%.”

Excluding changes in land use such as deforestation, annual greenhouse gas emissions from agriculture each year are equivalent to 11% of all emissions from human activities. About 70% of nitrogen applied to crops in fertilizers is either washed away or becomes nitrous oxide, a greenhouse gas 300 times more potent than carbon dioxide, according to Guntur Subbarao, a principal scientist with JIRCAS.

Hans-Joachim Braun,
Director of CIMMYT’s Global Wheat Program and the CGIAR Research Program on Wheat, speaks at the International Wheat Congress. (Photo: Marcia MacNeil/CIMMYT)

Although ruminant livestock are responsible for generating roughly half of all agricultural production emissions, BNI offers potential for reducing overall emissions, said Tim Searchinger, senior fellow at the World Resources Institute and technical director of a new report titled “Creating a Sustainable Food Future: A Menu of Solutions to Feed Nearly 10 Billion People by 2050.”

To exploit this roots-based characteristic, breeders would have to breed this trait into plants, said Searchinger, who presented key findings of the report in Saskatoon, adding that governments and research agencies should increase research funding.

Other climate change mitigation efforts must include revitalizing degraded soils, which affect about a quarter of the planet’s cropland, to help boost crop yields. Conservation agriculture techniques involve retaining crop residues on fields instead of burning and clearing. Direct seeding into soil-with-residue and agroforestry also can play a key role.

CRP Maize Annual Report 2018

The newly released CGIAR Research Program on Maize (MAIZE) Annual Report 2018 highlights significant development outcomes and impacts through varietal release, scale-up, delivery and adoption of CIMMYT- and IITA-derived climate-resilient and nutritionally enriched maize varieties.

In 2018, national partners released 81 unique CGIAR-derived maize varieties across Africa, Asia and Latin America. Of these varieties 14 were hybrid combinations, showing that regional and multinational seed companies use MAIZE’s improved germplasm to develop and release improved maize hybrids. 20 of the released varieties are nutritionally enriched — provitamin A, quality protein maize (QPM), high-zinc — the result of the MAIZE partnership with the CGIAR Research Program on Agriculture for Nutrition and Health (A4NH; HarvestPlus).

MAIZE and partners have made great strides in 2018 combatting major pest and disease challenges such as maize lethal necrosis (MLN) and the devastating fall armyworm. MAIZE researchers found that sustainable intensification practices in combination with stress-tolerant maize led to higher yield gains during the El Niño year in Southern Africa. Meanwhile, a crop growth modelling study quantified the impact of climate change on maize and found combined drought and heat stress tolerance has a benefit at least twice that of either one alone.

Read the full report online

New CIMMYT pre-commercial hybrids available from Asia maize breeding programs

The International Maize and Wheat Improvement Center (CIMMYT) is offering a new set of improved maize hybrids to partners in South and South East Asia and similar agro-ecological zones, to scale up production for farmers in these areas.

National agricultural research systems and seed companies are invited to apply for the allocation of these pre-commercial hybrids, after which they will be able to register, produce and offer the improved seed to farming communities.

The deadline to submit applications to be considered during the next round of allocations is August 15, 2019. Applications received after that deadline will be considered during the following round of product allocations.

Information about the newly available hybrids, application instructions and other relevant material is available below.

Download all documents

Or download individual files below:

Announcement of the Results of the Maize Regional Trials Conducted by CIMMYT-Asia 2017 and 2018 Seasons (including Appendix 1)

Appendix 2: Available Hybrids (CAT-3 to 8) (Product profile 1) and Appendix 3: Available Hybrids (CAT1 &CAT-2) (Product profile 2)

Appendix 4: Trial Summary information 2017-18 in South Asia

To apply, please fill out the CIMMYT Improved Maize Product Allocation Application Forms, available for download at the links below. Each applicant will need to complete one copy of Form A for their organization, then for each hybrid being requested a separate copy of Form B. Please be sure to use these current versions of the application forms.

FORM A – Application for CIMMYT Improved Maize Product Allocation

FORM B – Application for CIMMYT Improved Maize Product Allocation

Please send completed forms via email to P.Nagesh@cgiar.org with copy to GMP-CIMMYT@cgiar.org.

New publications: A study of water markets in Bangladesh

Domestic rice and wheat production in Bangladesh has more than doubled in the last 30 years, despite declining per capita arable land. The fact that the country is now almost self-sufficient in staple food production is due in large part to successful and rapid adoption of modern, high-yielding crop varieties. This has been widely documented, but less attention has been paid to the contribution of small-scale irrigation systems, whose proliferation has enabled double rice cropping and a competitive market system in which farmers can purchase irrigation services from private pump owners at affordable rates.

However, excess groundwater abstraction in areas of high shallow tube-well density and increased fuel costs for pumping have called into question the sustainability of Bangladesh’s groundwater irrigation economy. Cost-saving agronomic methods are called for, alongside aligned policies, markets, and farmers’ incentives.

A recent study by researchers at the International Maize and Wheat Improvement Center (CIMMYT) examines the different institutions and water-pricing methods for irrigation services that have emerged in Bangladesh, each of which varies in their incentive structure for water conservation, and the level of economic risk involved for farmers and service providers.

Using primary data collected from 139 irrigation service providers and 556 client-farmers, the authors assessed the structure of irrigation service types as well as the associated market and institutional dimensions. They found that competition between pump owners, social capital, and social relationship between of pump owners and client farmers, significantly influence the structure of irrigation services and irrigation water pricing methods. Greater competition between pump owners, for instance, increases the likelihood of pay-per-hour services while reducing that of crop sharing arrangements.

Based on these and other findings, authors made policy recommendations for enhancing irrigation services and sustainability in Bangladesh. As Bangladesh is already highly successful in terms of the conventional irrigation system, the authors urge taking it to the next level for sustainability and efficiency.

Currently Bangladesh’s irrigation system is based on centrifugal pumps and diesel engines. The authors suggest scaling out the energy efficient axial flow pump, and the alternate wetting and drying system for water conservation and irrigation efficiency. They also recommend further investment in rural electrification to facilitate the use of electric motors, which can reduce air pollution by curbing dependency on diesel engines.

Read the full article:
Understanding clients, providers and the institutional dimensions of irrigation services in developing countries: A study of water markets in Bangladesh” in Agricultural Water Management, Volume 222, 1 August 2019, pages 242-253.

This study was made possible through the support provided by the United States Agency for International Development (USAID) and the Bill & Melinda Gates Foundation to the Cereal Systems Initiative for South Asia (CSISA). Additional support was provided by the CGIAR Research Programs on Maize (MAIZE) and Wheat (WHEAT).

Local irrigation service providers in southern Bangladesh demonstrate the use of a two-wheeled tractor to power an axial flow pump to provide fuel-efficient surface water irrigation. (Photo: Tim Krupnik/CIMMYT)
Local irrigation service providers in southern Bangladesh demonstrate the use of a two-wheeled tractor to power an axial flow pump to provide fuel-efficient surface water irrigation. (Photo: Tim Krupnik/CIMMYT)

Read more recent publications by CIMMYT researchers:

  1. A spatial framework for ex-ante impact assessment of agricultural technologies. 2019. Andrade, J.F., Rattalino Edreira, J.I., Farrow, A., Loon, M.P. van., Craufurd, P., Rurinda, J., Shamie Zingore, Chamberlin, J., Claessens, L., Adewopo, J., Ittersum, M.K. van, Cassman, K.G., Grassini, P. In: Global Food Security v. 20, p. 72-81.
  2. Assessing genetic diversity to breed competitive biofortified wheat with enhanced grain ZN and FE concentrations. 2019. Velu, G., Crespo-Herrera, L.A., Guzman, C., Huerta-Espino, J., Payne, T.S., Singh, R.P. In: Frontiers in Plant Science v. 9, art. 1971.
  3. Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and flowering time under drought and heat stress conditions in maize. 2019. Yibing Yuan, Cairns, J.E., Babu, R., Gowda, M., Makumbi, D., Magorokosho, C., Ao Zhang, Yubo Liu, Nan Wang, Zhuanfang Hao, San Vicente, F.M., Olsen, M., Prasanna, B.M., Yanli Lu, Zhang, X. In: Plant Breeding v. 9, art. 1919.
  4. Diversifying conservation agriculture and conventional tillage cropping systems to improve the wellbeing of smallholder farmers in Malawi. 2019. TerAvest, D., Wandschneider, P.R., Thierfelder, C., Reganold, J.P. In: Agricultural Systems v. 171, p. 23-35.
  5. Biofortified maize can improve quality protein intakes among young children in southern Ethiopia. 2019. Gunaratna, N.S., Moges, D., De Groote, H. Nutrients v. 11, no. 1, art. 192.

New manual provides quantitative approach to drought stress phenotyping

A researcher uses a vertical probe to measure moisture at different soil depths. (Photo: CIMMYT)
A researcher uses a vertical probe to measure moisture at different soil depths. (Photo: CIMMYT)

Since 1900, more than two billion people have been affected by drought worldwide, according to the Food and Agriculture Organization of the United Nations (FAO). Drought affects crops by limiting the amount of water available for optimal growth and development, thereby lowering productivity. It is one of the major abiotic stresses responsible for variability in crop yield, driving significant economic, environmental and social impacts.

A new technical manual, “Management of drought stress in field phenotyping,” provides a quantitative approach to drought stress phenotyping in crops. Phenotyping is a procedure vital to the success of crop breeding programs that involves physical assessment of plants for desired traits.

The manual provides guidance for crop breeders, crop physiologists, agronomists, students and field technicians who are working on improving crop tolerance to drought stress. It will help ensure drought screening trials yield accurate and precise data for use by breeding programs.

A sprinkler system irrigates a drought phenotyping trial field in Hyderabad, India. (Photo: CIMMYT)
A sprinkler system irrigates a drought phenotyping trial field in Hyderabad, India. (Photo: CIMMYT)

Based on decades of CIMMYT’s research and experience, the manual covers aspects related to field site selection, effects of weather, crop management, maintaining uniform stress in trials, and duration of stress. It focuses on an approach that standardizes the required intensity, timing and uniformity of imposed drought stress during field trials.

Such a rigorous and accurate approach to drought screening allows for precision phenotyping. Careful management of imposed drought stress also allows the full variability in a population’s genotype to be expressed and identified during phenotyping, which means the full potential of the drought tolerance trait can be harnessed.

Variability among maize genotypes for agronomic and yield traits under managed drought stress. (Photo: CIMMYT)
Variability among maize genotypes for agronomic and yield traits under managed drought stress. (Photo: CIMMYT)

“Crop breeding programs using conventional or molecular breeding approaches to develop crops with drought tolerance rely heavily on high-quality phenotypic data generated from drought screening trials,” said author and CIMMYT scientist P.H. Zaidi. “By following the guidance in this manual, users can maximize their quality standards.”

The International Maize and Wheat Improvement Center (CIMMYT) has been a pioneer in developing and deploying protocols for drought stress phenotyping, selection strategy and breeding for drought tolerance. CIMMYT’s research on drought stress in maize began in the 1970s and has since remained a top priority for the organization. Drought-tolerant maize is now one of CIMMYT’s flagship products and is a key component of CIMMYT’s portfolio of products aimed to cope with the effects of climate change in the tropics.

Read the manual:
Pervez H. Zaidi, 2019. Management of drought stress in field phenotyping. CIMMYT, Mexico.

The information presented in the manual is based on the work on quantitative management of drought stress phenotyping under field conditions that received strong and consistent support from several donor agencies, especially Germany’s Federal Ministry for Economic Cooperation and Development (BMZ), Germany’s GIZ and the CGIAR Research Program on Maize (MAIZE). The manual itself was funded by the CGIAR Excellence in Breeding (EiB) platform.

New association formed to support smallholder native maize farmers in Mexico

Expert Mexican scientists and farmer cooperatives have formed a non-profit organization to support small-scale landrace maize farmers who continue to conserve and plant seeds of their own native heirloom varieties. The civil association, known as ProMaíz Nativo, intends to work collaboratively on projects to improve the lives of native maize and milpa farm families. Group members include national and internationally recognized maize experts, ethnobotanists, socioeconomists, food and nutrition scientists, marketing experts, maize farmers and farmer groups.

The civil association has also created a collective trademark, Milpaiz, which can be used by farmers to demonstrate the authenticity of the native maize varieties they grow and sell. This trademark will certify that a farmer’s maize is native to their community and derived from their continuous selection of seed. It will also certify that it is grown by small farmers and that they are selling only the surplus of their crops after feeding their own family. The trademark will also make a transparent effort to connect these farmers to a culinary market which values the quality, rarity and history of their production.

“Mexico is the center of origin of maize, and home to much of its genetic diversity. This initiative will allow us to certify that products are truly landrace maize from smallholder farmers, so that the benefits reach the smallholder farmers that have provided us with this biodiversity,” said Flavio Aragón, a genetic resources researcher with Mexico’s National Institute for Forestry, Agriculture and Livestock Research (INIFAP).

Members of the association gather for a photo at the launch event. (Photo: ProMaíz Nativo)
Members of the association gather for a photo at the launch event. (Photo: ProMaíz Nativo)

Researchers like Aragon, members of farmer groups and local chefs attended the official launch of ProMaíz Nativo on June 14, 2019, at the World Trade Center in Mexico City, during restaurant trade fair ExpoRestaurantes.

Edelmira Linares, ethnobotanist at the National Autonomous University of Mexico (UNAM) and member of the association, emphasized that the collective trademark Milpaiz covers all crops grown in the traditional milpa intercrop farming system in Mexico: maize, beans, squash, edible greens, amaranth, pumpkin seeds, and certain vegetables.

“The trademark will make it easier for income to reach the farmers, will allow smallholder farmers to sell their products in supermarkets and to have a legal presence,” said Amanda Galvez, a food chemist at UNAM and president of ProMaíz Nativo.

Traditional milpa products: native maize, beans, squash, chilies and other local fruits and vegetables. (Photo: Martha Willcox/CIMMYT)
Traditional milpa products: native maize, beans, squash, chilies and other local fruits and vegetables. (Photo: Martha Willcox/CIMMYT)

Fair and sustainable market growth

Many smallholder farmers continue to plant the same native maize varieties that their parents and grandparents planted, developed in their villages and regions and improved by farmer selection dating back to their ancestors. These varieties are prized by their local communities for their unique flavors, colors, texture and use in special dishes — and the global culinary community is catching on. Native maize, or landraces, have become extremely popular with chefs and consumers in the past few years, drawing attention and imports from across the world. However, increased demand can mean increased vulnerability for farmers.

Many maize experts in Mexico were concerned with how to best support and protect smallholder farmers navigating this increase in demand. Without guidelines and transparency, it is difficult to ensure that farmers are being fairly compensated for their traditional maize, or that they are able to save enough to feed their own families.

In a discerning culinary market, a symbol of certification such as the collective trademark could serve to differentiate the families who have long been the guardians of these native varieties from larger commercial farmers who acquire these heirloom seeds. But there was no pre-existing space for these guidelines to be determined and developed.

Martha Willcox (left) with farmers and their milpa products in Santa María Yavesía, Oaxaca state, México. (Photo: Arturo Silva/CIMMYT)
Martha Willcox (left) with farmers and their milpa products in Santa María Yavesía, Oaxaca state, México. (Photo: Arturo Silva/CIMMYT)

“There is a depth of expertise on maize in Mexico, but these experts all work at different institutions, making it more difficult for all of them to collaborate on a project like this,” said Martha Willcox, landrace improvement coordinator at the International Maize and Wheat Improvement Center (CIMMYT).

“The formation of this civil association is truly novel in the history of native maize in Mexico, and its strength comes from the expertise of its members, made up entirely of Mexican scientists and Mexican farmer co-ops,” Willcox explained.

She initiated and facilitated the formation of this group of scientists and continues to work closely with them as an advisor. “This association will help provide a space and network where these experts can work together and speak in one voice to support maize and maize farmers.”

CIMMYT does not have a seat in the association but has played a key role in its facilitation and has provided funding to cover logistics and fees related to the formation of the organization, through the CGIAR Research Program on Maize (MAIZE). Mexico’s National Commission for the Knowledge and Use of Biodiversity (CONABIO) has also participated in the logistics and facilitation of the formation of the organization.

Members of the association pose with CIMMYT staff that helped facilitate the creation of the group. (Photo: ProMaíz Nativo)
Members of the association pose with CIMMYT staff that helped facilitate the creation of the group. (Photo: ProMaíz Nativo)

Call for Nominees for the 2019 Maize Youth Innovators Awards – Latin America

Nominations are now open for the 2019 MAIZE Youth Innovators Awards – Latin America!

These awards are part of the efforts that the CGIAR Research Program on Maize (MAIZE) is undertaking to promote youth participation in maize agri-food systems. These awards recognize the contributions of young women and men under 35 who are implementing innovations in Latin American maize-based agri-food systems, including research for development, seed systems, agribusiness, and sustainable intensification.

Latin America is the birthplace of maize and home to much of its genetic diversity. Maize is a main staple food across the continent and plays an important role in local culture and gastronomy. However, maize faces many challenges, from climate change-related stresses such as drought and heat to emerging pests and diseases. These challenges cannot be solved without the participation of young people at all levels of the maize value chain, from farmers to researchers and change agents. Over one-fourth of Latin America’s total population is between the ages of 15 and 29 – approximately 156 million people, the largest proportion of young people ever in the region’s history. By encouraging and empowering young people to develop innovative solutions to these challenges we can strengthen maize agri-food systems and improve food security in Latin America and across the world.

The MAIZE Youth Innovators Awards aim to identify young innovators who can serve to inspire other young people to get involved in maize-based agri-food systems. Part of the vision is to create a global network of young innovators in maize-based systems from around the world.

Award recipients will be invited to attend the 23rd Latin American Maize Reunion (XXIII Reunión Latinoamericana del Maíz) in Monteria, Colombia October 7-10 where they will receive their awards and be given the opportunity to present their work. The project meeting and award ceremony will also allow these young innovators to network and exchange experiences with MAIZE researchers and partners. Award recipients may also get the opportunity to collaborate with MAIZE and its partner scientists in Latin America on implementing or furthering their innovations.

MAIZE invites young innovators to apply and CGIAR researchers and partners to nominate eligible applicants for any of the following three categories:

  • Researcher: Maize research for development (in any discipline)
  • Farmer: Maize farming systems in Latin America
  • Change agent: Maize value chains (i.e., extension agents, input and service suppliers, transformation agents).

We ask nominators/applicants to take into account the following criteria and related questions:

  1. Novelty and Innovative Spirit: To which specific novel findings or innovation(s) has this young person contributed? (in any of the three categories mentioned above)
  2. Present/Potential Impact: What is the present/potential benefit or impact of the innovation(s) in maize-based agri-food systems?

To apply:

Applications should be submitted online, through the Application Form by July 22, 2019.

Key dates:

Opening date for nominations: June 19, 2019

Closing date for nominations: July 22, 2019

Notification of winners: August 6, 2019

NOTE:  Nominations received after the closing date will not be considered.

Additional information:

A PDF version of this Call for Nominees is available here.

Nomination/Application Guidelines can be found here.

The Application Form can be found here and is also available on the MAIZE and YPARD websites.

For any questions or issues, contact us at maizecrp@cgiar.org

This award is sponsored by the CGIAR Research Program on Maize (MAIZE) in collaboration with YPARD (Young Professionals for Agricultural Development).

Are high land rental costs pricing African youth out of agriculture?

A farm worker carrying her baby on her back weeds maize in Tanzania. (Photo: Peter Lowe/CIMMYT)
A farm worker carrying her baby on her back weeds maize in Tanzania. (Photo: Peter Lowe/CIMMYT)

A new study shows that youth can face higher land rental prices than older farmers in Tanzania and other parts of sub-Saharan Africa.

“The rising importance of land rental markets reflects increasing rural population densities in many parts of the continent,” said Jordan Chamberlin, an agricultural economist with the International Maize and Wheat Improvement Center (CIMMYT) and study co-author.

“Evidence that the effective costs of rental market participation are relatively higher for younger farmers suggests that the markets are not yet mature,” Chamberlin explained. “This appears to stem partly from weak contract enforcement norms that make land rental arrangements more sensitive to trust and reputation. That puts younger farmers, who have not yet built up such social capital stocks, at a disadvantage.”

As many as three-quarters of Tanzanian youth are employed in agriculture, and with rural populations in Africa expected to rise over the next several decades, the region will experience an increasing scarcity of land relative to labor.

Young people today are already inheriting less land than previous generations and waiting longer to obtain the land they do inherit, according to the authors, who observe as one result a rising dependence on labor markets.

“Wage income’s importance will continue to rise in rural areas of sub-Saharan Africa, but policymakers should also foster equitable access to land for young agricultural entrepreneurs,” said Chamberlin.

The authors recommend measures such as tenant-landlord “matchmaking” programs, arrangements that encourage land sales by older farmers to younger farmers, and clarifying and simplifying regulations and procedures for title conversions and land purchases.

“Local governments may also share information about land rental rates for different areas, to provide a reference for rental negotiations,” added Chamberlain.

Read the study:
“Transaction Costs, Land Rental Markets, and Their Impact on Youth Access to Agriculture in Tanzania”

Bird’s-eye view

Francelino Rodrigues prepares an UAV for radiometric calibration for multispectral flight over a maize tar spot complex screening trial at CIMMYT’s Agua Fría experimental station, Mexico. (Photo: Alexander Loladze/CIMMYT)
Francelino Rodrigues prepares an UAV for radiometric calibration for multispectral flight over a maize tar spot complex screening trial at CIMMYT’s Agua Fría experimental station, Mexico. (Photo: Alexander Loladze/CIMMYT)

A new study from researchers at the International Maize and Wheat Improvement Center (CIMMYT) shows that remote sensing can speed up and improve the effectiveness of disease assessment in experimental maize plots, a process known as phenotyping.

The study constitutes the first time that unmanned aerial vehicles (UAVs, commonly known as drones) with cameras that capture non-visible electromagnetic radiation were used to assess tar spot complex on maize.

The interdisciplinary team found among other things that potential yield losses under heavy tar spot complex infections could reach 58% — more than 10% greater than reported in previous studies.

Caused by the interaction of two fungal pathogens that thrive in warm, humid conditions, tar spot complex is diagnosed by the telltale black spots that cover infected plants. (Photo: Alexander Loladze/CIMMYT)
Caused by the interaction of two fungal pathogens that thrive in warm, humid conditions, tar spot complex is diagnosed by the telltale black spots that cover infected plants. (Photo: Alexander Loladze/CIMMYT)

“Plant disease resistance assessment in the field is becoming difficult because breeders’ trials are larger, are conducted at multiple locations, and there is a lack of personnel trained to evaluate diseases,” said Francelino Rodrigues, CIMMYT precision agriculture specialist and co-lead author of the study. “In addition, disease scoring based on visual assessments can vary from person to person.”

A major foliar disease that affects maize throughout Latin America, tar spot complex results from the interaction of two species of fungus that thrive in warm, humid conditions. The disease causes telltale black spots on infected plants, killing leaves, weakening the plant, and impairing ear development.

Phenotyping has traditionally involved breeders walking through crop plots and visually assessing each plant, a labor-intensive and time-consuming process. As remote sensing technologies become more accessible and affordable, scientists are applying them more often to assess experimental plants for desired agronomic or physical traits, according to Rodrigues, who said they can facilitate accurate, high-throughput phenotyping for resistance to foliar diseases in maize and help reduce the cost and time of developing improved maize germplasm.

“To phenotype maize for resistance to foliar diseases, highly trained personnel must spend hours in the field to complete visual crop evaluations, which requires substantial time and resources and may result in biased or inaccurate results between surveyors,” said Rodrigues. “The use of UAVs to gather multispectral and thermal images allows researchers to cut down the time and expenses of evaluations, and perhaps in the future it could also improve accuracy.”

Color-infrared image of maize hybrids in the experimental trials under fungicide treatment (A1) and non-fungicide treatment (A2) of tar spot complex of maize. Image data were extracted from two polygons from the two central rows in each plot (B).
Color-infrared image of maize hybrids in the experimental trials under fungicide treatment (A1) and non-fungicide treatment (A2) of tar spot complex of maize. Image data were extracted from two polygons from the two central rows in each plot (B).

Technology sheds new light on phenotyping

Receptors in the human eye detect a limited range of wavelengths in the electromagnetic spectrum — the area we call visible light — consisting of three bands that our eyes perceive as red, green and blue. The colors we see are the combination of the three bands of visible light that an object reflects.

Remote sensing takes advantage of how the surface of a leaf differentially absorbs, transmits and reflects light or other electromagnetic radiation, depending on its composition and condition. The reflectance of diseased plant tissue is different from that of healthy ones, provided the plants are not stressed by other factors, such as heat, drought or nutrient deficiencies.

In this study, researchers planted 25 tropical and subtropical maize hybrids of known agronomic performance and resistance to tar spot complex at CIMMYT’s experimental station in Agua Fría, central Mexico. They then carried out disease assessments by eye and gathered multispectral and thermal imagery of the plots.

This allowed them to compare remote sensing with traditional phenotyping methods. Calculations revealed a strong relationship between grain yield, canopy temperature, vegetation indices and the visual assessment.

Future applications

“The results of the study suggest that remote sensing could be used as an alternative method for assessment of disease resistance in large-scale maize trials,” said Rodrigues. “It could also be used to calculate potential losses due to tar spot complex.”

Accelerated breeding for agriculturally relevant crop traits is fundamental to the development of improved varieties that can face mounting global agricultural threats. It is likely that remote sensing technologies will have a critical role to play in overcoming these challenges.

“An important future area of research encompasses pre-symptomatic detection of diseases in maize,” explained Rodrigues. “If successful, such early detection would allow appropriate disease management interventions before the development of severe epidemics. Nevertheless, we still have a lot of work to do to fully integrate remote sensing into the breeding process and to transfer the technology into farmers’ fields.”

Funding for this research was provided by the CGIAR Research Program on Maize (MAIZE).  

Read the full article:
Loladze A, Rodrigues FA Jr, Toledo F, San Vicente F, Gérard B and Boddupalli MP (2019) Application of Remote Sensing for Phenotyping Tar Spot Complex Resistance in Maize. Front. Plant Sci. 10:552. doi: 10.3389/fpls.2019.00552

Research, innovation, partnerships, impact

On May 15, 2019, as part of the CGIAR System Council meeting held at the ILRI campus in Addis Ababa, Ethiopia, around 200 Ethiopian and international research and development stakeholders convened for the CGIAR Agriculture Research for Development Knowledge Share Fair. This exhibition offered a rare opportunity to bring the country’s major development investors together to learn and exchange about how CGIAR investments in Ethiopia help farmers and food systems be more productive, sustainable, climate resilient, nutritious, and inclusive.

Under the title One CGIAR — greater than the sum of its parts — the event offered the opportunity to highlight close partnerships between CGIAR centers, the Ethiopian government and key partners including private companies, civil society organizations and funding partners. The fair was organized around the five global challenges from CGIAR’s business plan: planetary boundaries, sustaining food availability, promoting equality of opportunity, securing public health, and creating jobs and growth. CGIAR and its partners exhibited collaborative work documenting the successes and lessons in working through an integrated approach.

There were 36 displays in total, 5 of which were presented by CIMMYT team members. Below are the five posters presented.

How can the data revolution help deliver better agronomy to African smallholder farmers?

This sustainability display showed scalable approaches and tools to generate site-specific agronomic advice, developed through the Taking Maize Agronomy to Scale in Africa (TAMASA) project in Nigeria, Tanzania and Ethiopia.

Maize and wheat: Strategic crops to fill Ethiopia’s food basket

This poster describes how CGIAR works with Ethiopia’s research & development sector to support national food security priorities.

Addressing gender norms in Ethiopia’s wheat sector

Research shows that restrictive gender norms prevent women’s ability to innovate and become productive. This significantly impacts Ethiopia’s economy (over 1% GDP) and family welfare and food security.

Quality Protein Maize (QPM) for better nutrition in Ethiopia

With the financial support of the government of Canada, CIMMYT together with national partners tested and validated Quality Protein Maize as an alternative to protein intake among poor consumers.

Appropriate small-scale mechanization

The introduction of small-scale mechanization into the Ethiopian agriculture sector has the potential to create thousands of jobs in machinery service provision along the farming value chain.

About the CGIAR System Council

The CGIAR System Council is the strategic decision-making body of the CGIAR System that keeps under review the strategy, mission, impact and continued relevancy of the System as a whole. The Council meets face-to-face not less than twice per year and conducts business electronically between sessions. Additional meetings can be held if necessary.

Related outputs from the Share Fair 2019

The fall armyworm, explained

As part of the Cereal Systems Initiative for South Asia (CSISA), the International Maize and Wheat Improvement Center (CIMMYT) has created a series of infographics explaining key information about fall armyworm.

These infographics will be translated and used to reach out to farmers in Bangladesh, through agrodealers and public sector partners. The principles and concepts presented in them — which champion the use of integrated pest management strategies — are relevant to countries across the region.

If you would like to use these infographics in other countries or translate them to other languages, please contact Tim Krupnik.

Fall armyworm is an invasive insect pest that can eat 80 different types of plants, but prefers maize. It spread throughout Africa in just two years, and was found in India in late 2018. Since then it has spread across South and South East Asia, where it presents a serious threat to food and income security for millions of smallholder farmers.

The infographics are designed to be printed as foldable cards that farmers can carry in their pocket for easy reference. The graphics provide an overview of fall armyworm biology as well as the insect’s ecology and lifecycle. They also describe how to identify and scout maize fields for fall armyworm and provide easy-to-follow recommendations for what to do if thresholds for damage are found. One of the infographics provides farmers with ideas on how to manage fall armyworm in their field and village, including recommendations for agronomic, agroecological, mechanical and biological pest management. In addition, chemical pest management is presented in a way that informs farmers about appropriate safety precautions if insecticide use is justified.

Download the infographics:

How can I identify fall armyworm?

Shifting to a demand-led maize improvement agenda

Partners of the Stress Tolerant Maize for Africa (STMA) project held their annual meeting May 7–9, 2019, in Lusaka, Zambia, to review the achievements of the past year and to discuss the priorities going forward. Launched in 2016, the STMA project aims to develop multiple stress-tolerant maize varieties for diverse agro-ecologies in sub-Saharan Africa, increase genetic gains for key traits preferred by the smallholders, and make these improved seeds available at scale in the target countries in partnership with local public and private seed sector partners.

The project, funded by the Bill & Melinda Gates Foundation and the United States Agency for International Development (USAID), is led by the International Maize and Wheat Improvement Center (CIMMYT), and implemented together with the International Institute for Tropical Agriculture (IITA), national agricultural research systems and seed company partners in 13 countries in sub-Saharan Africa.

The meeting was officially opened by the Deputy Director of the Zambia Agriculture Research Institute (ZARI), Monde Zulu. “Maize in Africa faces numerous challenges such as drought, heat, pests and disease. Thankfully, these challenges can be addressed through research. I would like to take this opportunity to thank CIMMYT and IITA. Your presence here is a testament of your commitment to improve the livelihoods of farmers in sub-Saharan Africa,” she said.

The International Maize and Wheat Improvement Center (CIMMYT) and its partners are working together in the fight against challenges such as drought, maize lethal necrosis and fall armyworm. The STMA project applies innovative technologies such as high-throughput phenotyping, doubled haploids, marker-assisted breeding and intensive germplasm screening to develop improved stress-tolerant maize varieties for smallholder farmers. The project team is also strengthening maize seed systems in sub-Saharan Africa through public-private partnerships.

The efforts are paying off: in 2018, 3.5 million smallholder farmers planted stress-tolerant maize varieties in 10 African countries.

The deputy director of the Zambia Agriculture Research Institute (ZARI), Monde Zulu (fourth from left), gives the opening address of the STMA Annual Meeting 2019. Left to right: Mick Mwala, University of Zambia; Tony Cavalieri, Bill & Melinda Gates Foundation; B.M. Prasanna, CIMMYT; Monde Zulu, ZARI; Mwansa Kabamba, ZARI; Cosmos Magorokosho, CIMMYT; and Abebe Menkir, IITA.
The deputy director of the Zambia Agriculture Research Institute (ZARI), Monde Zulu (fourth from left), gives the opening address of the STMA Annual Meeting 2019. Left to right: Mick Mwala, University of Zambia; Tony Cavalieri, Bill & Melinda Gates Foundation; B.M. Prasanna, CIMMYT; Monde Zulu, ZARI; Mwansa Kabamba, ZARI; Cosmos Magorokosho, CIMMYT; and Abebe Menkir, IITA.

Yielding results

CIMMYT researcher and STMA project leader Cosmos Magorokosho reminded the importance of maize in the region. “Maize is grown on over 35 million hectares in sub-Saharan Africa, and more than 208 million farmers depend on it as a staple crop. However, average maize yields in sub-Saharan Africa are among the lowest in the world.” Magorokosho pointed out that the improved maize varieties developed through the project “provide not only increased yields but also yield stability even under challenging conditions like drought, poor soil fertility, pests and diseases.”

“STMA has proved that it is possible to combine multiple stress tolerance and still get good yields,” explained B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize (MAIZE). “One of the important aspects of STMA are the partnerships which have only grown stronger through the years. We are the proud partners of national agricultural research systems and over 100 seed companies across sub-Saharan Africa.”

Keynote speaker Hambulo Ngoma of the Indaba Agricultural Policy Research Institute (IAPRI) addressed the current situation of maize in Zambia, where farmers are currently reeling from recent drought. “Maize is grown by 89% of smallholder farmers in Zambia, on 54% of the country’s cultivable land, but productivity remains low. This problem will be exacerbated by expected population growth, as the population of Zambia is projected to grow from over 17 million to 42 million by 2050,” he said.

STMA meeting participants pose for a group photo during the field visit to QualiBasic Seed. (Photo: Jennifer Johnson/CIMMYT)
STMA meeting participants pose for a group photo during the field visit to QualiBasic Seed. (Photo: Jennifer Johnson/CIMMYT)

Down to business

On May 8, participants visited three partner local seed companies to learn more about the opportunities and challenges of producing improved maize seed for smallholder farmers.

Afriseed CEO Stephanie Angomwile discussed her business strategy and passion for agriculture with participants. She expressed her gratitude for the support CIMMYT has provided to the company, including access to drought-tolerant maize varieties as well as capacity development opportunities for her staff.

Bhola Nath Verma, principal crop breeder at Zamseed, explained how climate change has a visible impact on the Zambian maize sector, as the main maize growing basket moved 500 km North due to increased drought. Verma deeply values the partnership with the STMA project, as he can source drought-tolerant breeding materials from CIMMYT and IITA, allowing him to develop early-maturing improved maize varieties that escape drought and bring much needed yield stability to farmers in Angola, Botswana, the Democratic Republic of the Congo, Tanzania and Zambia.

At QualiBasic Seed, STMA partners were given the opportunity to learn and ask questions about the company’s operations, including the seed multiplication process in Zambia and the importance of high-quality, genetically pure foundation seed for seed companies.

Emmanuel Angomwile (left) and Stephanie Angomwile (center) answer visitors’ questions at their seed company, Afriseed. (Photo: Jennifer Johnson/CIMMYT)
Emmanuel Angomwile (left) and Stephanie Angomwile (center) answer visitors’ questions at their seed company, Afriseed. (Photo: Jennifer Johnson/CIMMYT)

Young ideas

The meeting concluded with an awards ceremony for the winners of the 2019 MAIZE Youth Innovators Awards – Africa, established by MAIZE in collaboration with the Young Professionals for Agricultural Development (YPARD). These awards recognize the contributions of young women and men under 35 who are implementing innovations in African maize-based agri-food systems, including research-for-development, seed systems, agribusiness, and sustainable intensification. This is the second year of the MAIZE Youth Awards, and the first time it has been held in Africa. Winners include Hildegarde Dukunde of Rwanda and Mila Lokwa Giresse of the Democratic Republic of the Congo in the change agent category, Admire Shayanowako of the Republic of South Africa and Ismael Mayanja of Uganda in the research category, and Blessings Likagwa of Malawi in the farmer category.

Winners of the 2019 MAIZE Youth Innovators Awards – Africa receive their awards at the STMA meeting in Lusaka, Zambia. From left to right: Admire Shayanowako, Blessings Likagwa, Ismael Mayanja and Hildegarde Dukunde. Fifth awardee Mila Lokwa Giresse not pictured. (Photo: J.Bossuet/CIMMYT)
Winners of the 2019 MAIZE Youth Innovators Awards – Africa receive their awards at the STMA meeting in Lusaka, Zambia. From left to right: Admire Shayanowako, Blessings Likagwa, Ismael Mayanja and Hildegarde Dukunde. Fifth awardee Mila Lokwa Giresse not pictured. (Photo: J.Bossuet/CIMMYT)