Skip to main content

funder_partner: CGIAR

Global Conference on Sustainable Agricultural Mechanization: efficiency, inclusiveness, and resilience

CIMMYT participated in the inaugural Global Conference on Sustainable Agricultural Mechanization, organized by the Food and Agriculture Organization of the United Nations (FAO) from September 27-29, 2023. The gathering provided space for focused dialogues to prioritize actions and strengthen technical networks for sustainable development of agricultural mechanization.

Bram Govaerts, CIMMYT director general, presented a keynote address on September 27 regarding climate change and mechanization. As a global thought leader and change agent for climate resilient, sustainable and inclusive agricultural development, CIMMYT has many specific initiatives centered on mechanization for facilitating machine innovations and scaling-up improved farming practices for sustainability and farmer competitiveness.

Bram Govaerts delivered a keynote address. (Photo: CIMMYT)

Collaboration is a hallmark of CIMMYT’s endeavors in mechanization, including a strong partnership with local governments across Latin America, Africa and Asia, and international cooperation agencies, supporting the Green Innovations Centers installed by GIZ-BMZ and working on accelerated delivery models together with USAID, in Malawi, Zimbabwe and Bangladesh, to name only a few. Further, local value chain actor engagement is crucial and necessary in this work to connect farmers with viable solutions.

CIMMYT has a long history of leading projects aimed at mechanizing the agricultural efforts of smallholder farmers, including the successful MasAgro Productor in Mexico and FACASI (farm mechanization and conservation agriculture for sustainable intensification) in East and South Africa. At present, the Harnessing Appropriate-Scale Farm Mechanization in Zimbabwe (HAFIZ) project is working towards to improve access to mechanization and reduce labor drudgery while stimulating the adoption of climate-smart/sustainable intensification technologies. The project engages deeply with the private sector in Zimbabwe and South Africa to ensure long-term efficacy.

The Scaling Out Small Mechanization in the Ethiopian Highlands project was active from 2017 to 2022 and increased access for smallholder farmers to planting and harvesting machines. Farmers using two-wheel tractors furnished by the project reduced the time needed to establish a wheat crop from 100 hours per hectare to fewer than 10 hours. CIMMYT’s work was in partnership with the Africa-RISING program led by the International Livestock Research Institute (ILRI) in Ethiopia.

“At CIMMYT, we work knowing that mechanization is a system, not only a technology,” said Govaerts. “Sustainable mechanization efforts require infrastructure like delivery networks, spare parts and capacity development. Working with local partners is the best way to ensure that any mechanization effort reaches the right people with the right support.”

Read these stories about CIMMYT’s efforts to support equal access to agricultural mechanization and scaling up within local contexts.

One-minute science: Mechanization for agriculture

Mechanization is a process of introducing technology or farm equipment to increase field efficiency. CIMMYT’s mechanization work is context specific, to help farmers have access to the appropriate tools that are new, smart and ideal for their unique farming conditions.

New generation of farmers adopts mechanization, making farming more productive and profitable

Working with the Cereal Systems Initiative for South Asia (CSISA), CIMMYT is leading mechanization efforts in Northern India. Combined with sustainable agriculture, the next generation of farmers now have access to tractors, seeders and other tools that are increasing yield and reducing back-breaking labor.

Gangesh Pathak with his father at the custom hiring center which provides custom hiring services to smallholder farmers in the region. (Photo: Vijay K. Srivastava/CIMMYT)

A promising partnership

The delivery of row seeders from India to Benin demonstrates a new path to sustainable South-South business relationships. Developed in India in an iterative design process with farmers, portable row seeders have been a great success. Working with GIC, CIMMYT facilitated a technology and materiel transfer of the portable row seeders to Benin.

A farmer pulls a row seeder in Benin, West Africa. (Photo: CIMMYT)

Solar powered dryers boost peanut production in Togo

Peanuts thrive as a crop in Togo and other West Africa countries, but post-harvest is threatened by aflatoxins, so the entire crop needs to dry. Traditionally, farmers, often women, have dried the peanuts in the open air, subject to weather and other pests. However, CIMMYT, working with GIC, has introduced solar-powered dryers, which speeds up the drying process by a factor of four.

Smallholding peanut farmers Aicha Gaba and Aïssetou Koura lay peanuts into a solar dryer in Koumonde, Togo. (Photo: Laré B. Penn/University of Lome)

A business model for mechanization is providing hope in Burkina Faso

Working with partners in Burkina Faso, CIMMYT is facilitating smallholder mechanization with a model of cascading effects: one farmer mechanizing can then use their skills and eqBMZuipment to help their neighbors, leading to community-wide benefits.

Pinnot Karwizi fills a mechanized sheller with dried maize cobs. (Photo: Matthew O’Leary/CIMMYT)

Visit our mechanization page to read stories about ongoing mechanization initiatives.

Conservation agriculture helps smallholder farmers to be more resource efficient

Millions of rural Indians, mostly farmers, are at the mercy of changing weather and climate change. Rising temperature and heat stress, unpredictable rainfall patterns, increasing drought-like situations, soil erosion and depleting water tables are leading to poorer yields and reduced income for farmers. While the agricultural sector and farmers are most affected by the adverse impacts of climate change, it is also one of the sectors significantly responsible for greenhouse gas emissions, contributing about 14% of the total greenhouse gas emissions in the country.

Farmer Rahul Rai prepares his field for wheat plantation with zero tillage – Buxar, Bihar (photo: Deepak K. Singh/CIMMYT)

Good agronomy and soil management through conservation agriculture practices such as no-till farming, crop rotation, and in-situ crop harvest residue management are resource efficient and help reduce greenhouse gas emissions significantly. The intensification of these conservation agriculture practices by the Cereal Systems Initiative for South Asia (CSISA)—a regional project led by CIMMYT to sustainably enhance cereal crop productivity and improve smallholder farmers’ livelihoods in Bangladesh, India, and Nepal—and partners is helping smallholder farmers to improve their yield and income with less input costs.

Climate smart agriculture

Over 70% of Bihar’s population is engaged in agriculture production, with wheat and rice as the two major crops grown in the state. Bordering Uttar Pradesh, Buxar, is one of the many rural districts in Bihar, with over 108,000 hectares of land used for agriculture. The area is plain, fertile and has good irrigation facilities. The rice-wheat cropping system forms the dominant practice here, and pulses and other non-cereal crops are grown additionally during winters.

CSISA began promoting zero tillage in wheat cultivation in the area in 2010. Along with Krishi Vigyan Kendras (KVKs), and local agriculture departments, awareness and frontline demonstrations on different best management practices were conducted to inform farmers of alternative approaches to cultivating wheat and rice sustainably. Farmers were used to conventional farming methods, with more input costs and labor-intensive practices. In addition, as farmers were growing long-duration rice varieties, they typically sowed wheat in late November to early December, which meant harvesting in late April/May. Harvesting wheat this late caused yield losses due to terminal heat stress at the grain filling stage. With increasingly hot temperatures in recent years due to climate change, yield loss in wheat is imminent.

To help curb these yield losses, researchers and officials began promoting early sowing of wheat through a technology called zero tillage in the region, with sowing recommended before mid-November. As expected, this helped farmers to escape high temperature stress at the time of the dough stage, thus, saving grain shrinkage and yield loss at harvest. Zero tillage technology is a tested method with the potential to increase crop productivity through better time management and reduced input cost.

Deepak Kumar Singh, scientist at CSISA who has been supporting agri-extension efforts in the region for nearly a decade recalled how CSISA and partners were able to get more farmers on board with zero tillage and early wheat sowing:

“The best practices of zero till technology and early wheat sowing were encouraged widely through exposure visits, demonstration trials on progressive farmers’ fields, and providing support from local KVKs for machines and quality seeds, including the promotion of private service providers,” he said.

As more farmers were reached through field events, with visible on-field results during public harvest activities held at demonstration fields by CSISA and KVKs, the region gradually adopted early wheat sowing, zero tillage and direct seeded rice technologies. Currently, in the district, it is estimated that over 40% of wheat cultivation under the rice-wheat system is through zero till, helping farmers obtain better yield and profits.

Rice-wheat cropping systems, resilient and sustainable in increasingly changing climate

Rajapur, a small village in Buxar district, boasts 100% adoption of zero tillage in wheat cropping. We met farmer Rahul Rai whose family has been involved in farming for generations. The family owns over thirty acres of land with agriculture as the primary source of income. His father and his siblings were used to conventional farming methods. The produce from their farm was sufficient for household consumption and with the little extra left, they sold and made some income. On the significance of agriculture and farming for his family, Rahul Rai says, “this farmland has been feeding and supporting 17 members in our joint household.”

When young Rahul Rai got down to work in the family fields in the early 2000s, he was keen to explore possibilities to improve the income generated from the farm. Initially, like many others, he was engaged in intensive farming. According to Rai, “with the input costs rising daily, including scarce labor and soil health deterioration, bringing in some extra income seemed unsustainable”.

He first met researchers from the CSISA project and local KVK scientists in early 2011 in the neighboring village. The team was there to inform farmers about conservation agriculture practices and how to better manage yield and maintain soil health. Rai soon became more curious about the benefits of adopting these new methods over conventional practices. He started with a few acres with zero tillage and began sowing wheat by early November, as recommended by the scientists. In Rabi 2022-23, his wheat fields were sown by November 11, compared to the early years when the sowing date was around December.

Wheat yield data gathered meticulously over a decade from Rahul Rai’s fields (Data: CSISA MEL team)

With more participation and engagement with CSISA, in 2017, he joined other farmers from the region on an exposure visit to Patna organized by the CSISA-KVK network. In Patna, at the Indian Council of Agri Research – Research Complex for Eastern Region (ICAR-RCER), Rai and the visiting farmers were introduced to conservation agri-technologies for rice-wheat and other cropping systems. During the visit, they were informed about crop rotation and diversification, new seed varieties that are resilient and adaptable to changing climates, efficient use of plant protection chemicals and fertilizer and various subsidies from the center/state government to farmers. He later accompanied other progressive farmers on a CSISA-led travel seminar to Gorakhpur in 2017, where he observed acres and acres of wheat fields cultivated through zero tillage and early sowing that had yielded 6-7 tons per hectare (t/ha) on average.

At present, Rai’s family cultivates only zero till wheat in their fields and direct seeded rice on a few acres where irrigation facilities are well established. Rai asserts that until 2014, the wheat yield was about 10-15 quintals per acre (3.5-4 t/ha), rising to around 20-25 quintals per acre on average (5.5 t/ha in 2023) in recent years, thanks to conservation agriculture practices.

Today, the CSISA team has system optimization and demonstration trials on fields owned by Rai’s family where they conduct trials to demonstrate the importance and feasibility of different agri-practices and compare yields at harvest. Rai, a champion farmer who has been involved with CSISA for nearly a decade, said, “I am a collaborator with CSISA now. The data gathered from my fields on the compounding benefits of conservation agriculture technologies is used to promote the best practices and technology adoption across our district and state.”

One village at a time

Presently, Rajapur village has 100% zero tillage adoption. Despite most farmers being smallholders, this level of zero tillage adoption in wheat is impressive. Zero-till-based crop establishment, with appropriate diversification in crops grown, is economically beneficial and improves soil health. All these practices and technologies ensure lower greenhouse emissions and support climate change mitigation efforts. Above all, smallholder farmers are food secure and contributing in their small way to national and global food security.

To scale the adoption of conservation agriculture practices, CSISA and partners are collaborating with farmers in the district/state – many of whom are already 50-80% in zero tillage adoption. The team on the ground are conducting system optimization trials on farmers’ fields to generate data and evidence to support and strengthen policies and assist in integrating market intelligence to support access and availability of technology to all smallholders. Every year steadily, through a smallholder farmer, a village, a district, the effort is to slowly expand the area under conservation agriculture across the state and region and ensure increased system productivity and sustainability of agriculture.

Harnessing new high-resolution satellite imagery to plant breeding

In plant breeding, efforts to increase the rate of genetic gains and enhance crop resilience to the effects of climate change are often limited by the inaccessibility and costs of phenotyping methods. The recent rapid development of sensors, image-processing technology and data analysis has provided new opportunities for multiple scales phenotyping methods and systems. Among these, satellite imagery may represent one of the best ways to remotely monitor trials and nurseries planted in multiple locations, while standardizing protocols and reducing costs.

This is because relevant data collected as part of crop phenotyping can be generated from satellite images. For instance, the sensors onboard the SkySat satellite constellation of Planet Labs have four spectral bands—blue, green, red, and infrared—which can be used to calculate the normalized difference vegetation index (NDVI), which is a measure of vegetation and its greenness, and various canopy traits like ground cover, leaf area index and chlorosis. It can also be used to monitor plot establishment and phenological parameters.

High-resolution RGB orthomosaic of wheat experiments, assessing the effect of plot size and spacing in the spectral signature, collected from SkySat satellite images. (Photo: Gilberto Thompson)

The use of satellite-based phenotyping in breeding trials has typically been restricted by low resolution, high cost and long intervals between fly-overs. However, the advent of a new generation of high-resolution satellites—such as the SkySat constellation—now offers multispectral images at a 0.5m resolution with close to daily acquisition attempts on any place on Earth. This could be a game changer in terms of the scale at which yield trials can be conducted, enabling more precise variety placement and thereby increasing genetic diversity across farmer’s fields and reducing the probability of disease epidemics. It could also revolutionize the capacity for research in realistic field conditions, since traits can be measured throughout the cycle in a highly standardized way, over multiple sites at low cost. For example, an image which covers 25 km2 can monitor an entire research station at a cost of about US$300.

To test the suitability of this technology, a team of researchers from CIMMYT set out to evaluate the reliability of SkySat NDVI estimates for maize and wheat breeding plots of different sizes and spacing, as well as testing its capacity for detecting seasonal changes and genotypic differences.

Both their initial findings, recently published in Frontiers in Plant Science, and more recently acquired data, show that the SkySat satellites can be used to monitor plots commonly used in wheat and maize nurseries. While wheat yield plots usually are 1.2m wide, maize plots tend to consist of at least two rows, resulting in a width of 1.5m. Plot length ranges from 2-4m. The authors also discuss on other factors to be considered when extracting and interpreting satellite data from yield trials, such as plot spacing.

Through the successful collection of six satellite images in Central Mexico during the rainy season and parallel monitoring of a maize trial in Zimbabwe, the researchers demonstrate the flexibility of this tool. Beyond the improvement of spatial resolution, the researchers suggest that the next challenge will be the development and fine-tuning of operational procedures that ensure high quality, standardized data, allowing them to harness the benefits of the modern breeding triangle, which calls for the integration of phenomics, enviromics and genomics, to accelerate breeding gains.

Read the full study: Satellite imagery for high-throughput phenotyping in breeding plots

This research was supported by the Foundation for Food and Agriculture Research, the CGIAR Research Program on Maize, the CGIAR Research Program on Wheat, and the One CGIAR Initiatives on Digital Innovation, F2R-CWANA, and Accelerated Breeding.

Steering towards success

The inaugural Rwanda National Seed Congress, which took place in Kigali on July 31 and August 1, 2023, marked a significant milestone for the country’s seed industry. Themed “Private Sector Strategic Roadmap for the Seed Industry 2030”, the event brought together key stakeholders from the government, public, and private sectors to address challenges and opportunities in the national seed value chain.

Discussions centered around pertinent issues concerning the seed sector in general, with a particular focus on the Rwandan National Seed Strategic Roadmap. This document, which was developed through consultations with various stakeholders, provides a comprehensive plan to steer the industry towards success and sustainable growth.

“Enhancing and managing the seed system is a complex endeavor that requires the collaboration of various stakeholders,” said Chris Ojiewo, CGIAR Seed Equal Initiative lead. “This is where public-private partnerships come in as a valuable tool for nurturing the growth and expansion of the seed industry.”

Chris Ojiewo, CGIAR Seed Equal Initiative lead, presented at the inaugural National Seed Congress in Rwanda. (Photo: NSAR Congress)

During a presentation entitled Public-private Partnership: A Tool for Development and Strengthening of the Seed Sector, Ojiewo highlighted the growing importance of collaboration and partnerships in the current seed system. He emphasized that the processes and elements that shape the seed sector are complex and extensive, making it too much for any one organization—whether public or private—to handle alone.

The way forward

During the congress, several key recommendations were proposed  to increase the potential of the seed industry. The government was encouraged to seek accreditation with major seed industry quality organizations, such as the International Seed Testing Association (ISTA) and Organization for Economic Co-operation and Development (OECD) certification schemes, while adopting International Union for the Protection of New Varieties of Plants (UPOV) to establish an improved regulatory environment conducive to industry growth.

The empowerment of the National Seed Association of Rwanda (NSAR) as an advocate and facilitator for the seed industry was also highlighted as an essential measure. The government’s support in enabling the seed association to become increasingly self-regulatory is seen as crucial to the industry’s growth over the next seven years, with private seed industry players developing internal systems to ensure compliance with rules and regulations.

Another key recommendation for increasing sustainable improved seed use in Rwanda was the use of Public-Private Partnerships (PPPs), which will play a critical role in promoting the country as a seed production and trade investment destination.

Ojiewo emphasized the importance of such partnerships, noting that “PPPs have the potential to transform the seed industry by leveraging the strengths of different organizations.” He further highlighted that in addressing the challenges of global food security and sustainable development, the way forward becomes clear through collaboration, innovation, and a shared commitment to advancing agricultural progress through collaborative efforts.

The congress also focused on attracting affordable financing to scale up investments throughout the seed value chain. It was considered essential to involve industry financial players in the development of optimal financing structures to support the expansion of the industry.

As a result of the successful event, plans have already been made for the second National Seed Congress in 2024. Scheduled to take place in Kigali on July 29 and 30, 2024, the next event aims to build on the achievements of the first congress and further drive the growth of Rwanda’s seed industry.

CGIAR’s Seed Equal Initiative helps farmers by providing them with better seeds that are nutritious, preferred in the market, and that can withstand climate change. These varieties have been carefully developed to exhibit significant genetic advancements, ultimately benefiting farmers. It also makes sure that women and other marginalized groups have fair access to these seeds.

Moben Ignatius

Moben Ignatius is the Agriculture Research Associate in the SAS program at CIMMYT. His role revolves around fostering sustainable agricultural practices and innovative technologies and methods that cater to Rice-Wheat cropping systems.

His previous work role extended to forging alliances with diverse organizations and governmental bodies to advocate for the expansion of these beneficial agricultural techniques. Employing meticulous monitoring, evaluation, and data-driven surveys, ensuring the successful execution and scalability of projects.

Smallholder Mexican farmers adopt resource-conserving innovations: slowly and in bits

Small-scale farmers in Mexico often adopt conservation agriculture innovations gradually and piecemeal, to fit their diverse agroecological and socioeconomic contexts and risk appetites, according to studies and the on-farm experience of CIMMYT.

Research and extension efforts need to consider this in work with smallholders, said Santiago Lopez-Ridaura, a CIMMYT specialist in agricultural systems and climate change adaptation.

“Farmer practices typically involve heavy tillage before seeding, growing maize as a monocrop, and removing crop residues after harvest for use as forage,” explained Lopez-Ridaura. “Full-on conservation agriculture (CA) is a radical shift, requiring farmers to reduce or eliminate tillage, keep a permanent cover of crop residues on the soil, and diversify the crops they grow. It can support more intense yet environmentally friendly farming, reducing erosion, improving soil fertility and water filtration, boosting crop yields, and saving farmers money. However, it also requires purchasing or contracting specialized sowing implements and fencing fields or agreeing with neighbors to keep livestock from eating all the residues, to name just a few changes.”

Conserving crop residues favors production systems and provides various benefits. (Photo: Simon Fonteyne/CIMMYT)

Lopez-Ridaura and colleagues published a 2021 analysis involving farmers who grew maize and sorghum and keep a few livestock on small landholdings (less than 4 hectares), with limited mechanization and irrigation, in the state of Guanajuato, Central Mexico.

They found that scenarios involving hybrid maize plus a legume crop with zero-tillage or keeping a residue mulch on the soil provided an average net profit of some US $1,600 (MXP 29,000) per year, in addition to ecological benefits, added forage, and more stable output under climate stress.

“Using a modeling framework from Australia’s Commonwealth Scientific and Industrial Research Organization (CSIRO) that combines bioeconomic simulation, risk analysis, adoption theory, and impact assessment, we not only confirmed the worth of conservation agriculture but found that disaggregating CA into smaller component packages and including a more productive crop and variety were likely to increase farmers’ adoption, in riskier settings.”

Advancing more sustainable farming in Mexico

Conservation agriculture can generate substantial economic and environmental benefits under marginal conditions, particularly by enhancing climate change resilience, increasing soil organic matter, and retaining soil moisture. In Central Mexico dryland maize yields rose by 38-48%, after 10 years of implementing CA.

CIMMYT’s multi-crop, multi-use zero tillage seeder at work on a long-term conservation agriculture (CA) trial plot, left, at the center’s headquarters at El BatĂĄn, Mexico. (Photo credit: CIMMYT)

CIMMYT has studied and promoted zero-tillage for maize and other resource-conserving practices in Mexico for more than three decades, but efforts to spread sustainable farming and use of improved maize and wheat varieties redoubled thanks to MasAgro, a research initiative led by the Center and supported by the government of Mexico during 2010-21. Testimonials such abound of Mexican smallholder farmers who have adopted and benefited from CA practices through CIMMYT and national partners’ efforts in MasAgro and other initiatives.

  • Looking to lower his farm costs without losing output, wheat and oil crop farmer Alfonso Romo of Valle de Mayo, state of Sonora, began practicing CA in 2010. “We’ve learned a lot and this year (2022) we obtained the same yields as we used to get through conventional practices but, following more sustainable farming methods, with a 30 and even 40% savings in fertilizer.”
  • With CA practices he adopted in 2018 through MasAgro, maize farmer Rafael Jacobo of Salvatierra, state of Guanajuato, obtained a good crop despite the late dispersal of irrigation water. Seeing his success and that of other nearby farmers, neighbor Jorge Luis Rosillo began using CA techniques and has noticed yearly improvements in his soil and yields. “I did everything the technicians recommended: keeping the residues on the soil and renewing only the sowing line on soil beds
. There are lots of advantages but above all the (cost) savings in land preparation.”
The Milpa Sustentable project in the Yucatan Peninsula is recognized by the UN as a world example of sustainable development. (Photo: CIMMYT)
  • Farmers in the Milpa Sustentable project in the YucatĂĄn Peninsula have improved maize yields using locally adapted CA methods, in collaboration with the Autonomous University of YucatĂĄn. Former project participant Viridiana Sei said she particularly liked the respectful knowledge sharing between farmers and project technicians.
  • CA practices have allowed more than 320 women farmers in the Mixteca Region of the state of Oaxaca to provide more and better forage for the farm animals they depend on, despite drought conditions, through the Crop and Livestock Conservation Agriculture (CLCA) project supported by the International Fund for Agricultural Development (IFAD). According to farmer MarĂ­a MartĂ­nez Cruz, “… it hasn’t rained much and everything’s dry, but our verdant oat crop is allowing us to keep our farm animals fed.”
  • With CLCA support and facing Mexico’s increasingly fickle rainy season, farmer Mario GuzmĂĄn Manuel of San Francisco ChindĂșa village in Oaxaca began using CA and says he’ll never go back to the old practices. “We used to do as many as two harrow plowings to break up the soil, but if we leave the residues from the previous crop, they hold in the soil moisture more effectively. People hang onto the old ways, preferring to burn crop residues, but we should understand that this practice only deprives the soil of its capacity to produce.”

A Mexican farm research program gains praise and interest for use abroad

Leveraging the leadership, science, and partnerships of the Mexico-based CIMMYT and the funding and research capacity of Mexico’s Secretariat of Agriculture and Rural Development (SADER) during 2010-21, the program known as “MasAgro” has helped up to 500,000 participating farmers to adopt improved maize and wheat varieties and resource-conserving practices on more than 1 million hectares of farmland in 30 states of Mexico.

Tlaltizapan Experimental Station in Morelos, Mexico is used through the winter for drought and heat trials and through the summer for yield-trials and biofortification. (Photo: Alfonso Cortés/CIMMYT)

As a result of MasAgro research hubs operating across Mexico’s multiple and diverse agroecologies to promote the sustainable intensification of maize and wheat farming systems — including improved varieties and resource-conserving, climate-smart practices — yields of project participants for maize were 20% higher and for wheat 3% higher than local averages. Similarly, average net incomes for participating maize farmers were 23% greater and 4% greater for wheat farmers, compared to local averages.

The MasAgro biodiversity component gathered and analyzed one of the world’s largest-ever samplings of maize and wheat genetic diversity, including CIMMYT’s own vast seed bank collections, to help identify and characterize new genes of interest for breeding. As one result, more than 2 billion genetic data points and over 870,000 data entries from associated field trials are freely available to the scientific community, via the project’s online repository.

MasAgro has involved national and local research organizations, universities, companies, and non-government organizations working through more than 40 research platforms and 1,000 demonstration modules, while building the capacity of thousands of farmers and hundreds of technical and extension experts who serve them.

State-level partners sign on to MasAgro

Through MasAgro, CIMMYT entered into research and development partnerships with 12 Mexican states. An example is the mountainous, central Mexican state of Guanajuato, home to the El Bajío region, one of Mexico’s most productive farm areas but which also suffers from soil degradation, water scarcity, and climate change effects — challenges faced by farmers throughout Mexico. The governor of Guanajuato visited CIMMYT headquarters in Mexico in June 2023 to review progress and agree on follow-up activities.

MasAgro generated more sustainable production and irrigation systems in Guanajuato, Mexico. (Photo: ACCIMMYT)

CIMMYT has worked with Guanajuato state and local experts and farmers themselves to test and promote innovations through 7 research platforms reaching nearly 150,000 hectares. As of 2020, new crop varieties and resource-conserving, climate-smart management practices had helped underpin increases of 14% in irrigated wheat production and, under rainfed farming systems, improved outputs of 28% for beans, 150% for local maize varieties and 190% for hybrid maize, over state averages.

An integral soil fertility initiative has included the analysis and mapping of more than 100,000 hectares of farmland, helping Guanajuato farmers to cut costs, use fertilizer more effectively, and reduce the burning of crop residues and associated air pollution.

Service centers for the rental and repair of conservation agriculture machinery are helping to spread practices such as zero tillage and residue mulches. Supported by CIMMYT advisors, Guanajuato farmers are entering into equitable and ecologically friendly production agreements with companies such as Nestle, Kellogg’s, and Heineken, among other profitable and responsible public-private arrangements.

Acclaim and interest abroad for MasAgro

MasAgro has received numerous awards and mentions as a model for sustainable agricultural development. A few examples:

Dignitaries applaud MasAgro launch at CIMMYT. (Photo: Xochiquetzal Fonseca/CIMMYT)
  • The Inter-American Development Bank (IDB) mentioned the program as an example of successful extension.
  • The Organization for Economic Cooperation and Development (OECD) cited MasAgro for promoting productive and sustainable agriculture.
  • The United Nations Development Program (UNDP) lauded MasAgro for promoting climate-resilient agriculture.
  • During the 2018 G20 summit in Argentina, MasAgro was considered a model for coordinating agricultural research, development, innovation, technology transfer, and public-private partnerships.
  • Bram Govaerts, now Director General of CIMMYT, received the 2014 Norman Borlaug Field Award for his work at the time as leader of MasAgro’s farmer outreach component.
  • MasAgro research hubs were recently used as a guide by USAID for efforts in Sudan and Eastern Africa. They have also been replicated in Guatemala and Honduras.

Moving out and beyond

In Central America and Mexico, the inter-connected crises of weak agri-food systems, climate change, conflict, and migration have worsened, while small-scale farmers and marginalized sectors remain mired in poverty.

Capitalizing on its experience in MasAgro, CIMMYT is a major partner in the recently launched CGIAR initiative, AgriLAC Resiliente, which aims to build the resilience, sustainability, and competitiveness of agrifood systems and actors in Latin America and the Caribbean, helping them to meet urgent food security needs, mitigate climate hazards, stabilize vulnerable communities, and reduce forced migration. The effort will focus on farmers in Colombia, El Salvador, Honduras, Mexico, Nicaragua, and Peru.

Farmer Marilu Meza Morales harvests her maize in ComitĂĄn, Mexico. (Photo: Peter Lowe/CIMMYT)

As described in a 2021 science journal article, CIMMYT also helped create the integrated agri-food system initiative (IASI), a methodology that was developed and validated through case studies in Mexico and Colombia, and leverages situation analysis, model predictions, and scenarios to synchronize public and private action toward sustainable, equitable, and inclusive agri-food systems.

“CIMMYT’s integrated development approach to maize system transformation in Mexico and Colombia laid the foundations for the IASI methodology by overcoming government transitions, annual budget constraints, and win-or-lose rivalries between stakeholders, in favor of equity, profitability, resilience and sustainability,” said Govaerts.

The 2021 Global Agricultural Productivity (GAP) report “Strengthening the Climate for Sustainable Agricultural Growth” endorsed IASI, saying it “
is designed to generate strategies, actions and quantitative, Sustainable-Development-Goals-aligned targets that have a significant likelihood of supportive public and private investment.”

SPG Coalition: CIMMYT is a leading organization for climate-smart agriculture, nutrient-use efficiency, and pest and fertilizer management

The Coalition on Sustainable Productivity Growth for Food Security and Resource Conservation (SPG Coalition) brings together researchers, non-governmental organizations, and private sector partners to advance a world with greater access to nutritious food and affordable diets. The Coalition recognizes that increasing the productivity of natural resources through climate adaptation and mitigation is instrumental to reaching this goal.

In a recent report, the SPG Coalition provides a path forward for NGOs, research institutions, and government agencies to strengthen agrifood and climate policies. The report contains real-life, evidence-based examples to further the sustainable production and conservation of natural resources, detailing the potential impacts on social, economic, and environmental conditions.

CIMMYT features prominently in the report as a leading organization focused on 4 main areas: climate-smart agriculture, nutrient-use efficiency (NUE), and pest and fertilizer management.

Nutrient-use efficiency and fertilizer management

While chemical fertilizers increase crop yields, excessive or improper use of fertilizers contributes to greenhouse gas emissions (GHG) and increases labor costs for smallholders. Efficient NUE is central to nutrient management and climate change mitigation and adaptation.

Women using spreader for fertilizer application. (Photo: Wasim Iftikar/CSISA)

In India, CIMMYT, along with the Borlaug Institute for South Asia (BISA), CGIAR Research Centers, and regional partners, tested digital tools like the Nutrient Expert (NE) decision support tool which measures proper fertilizer use for optimized yields and provides nutrient recommendations based on local soil conditions.

The majority of smallholders who applied the NE tool reported higher yields while emitting less GHG emissions by 12-20% in wheat and by around 2.5% in rice as compared with conventional fertilization practices. Farmers also recorded double economic gains: increased yields and reduced fertilizer costs. Wider government scaling of NE could enhance regional food security and mitigate GHG emissions.

The Feed the Future Nepal Seed and Fertilizer (NSAF) project, led by CIMMYT and USAID, advocates for climate-smart agriculture by linking smallholders with improved seed, providing capacity-building programs, and promoting efficient fertilizer use. With a vast network established with the support from the Government of Nepal, NSAF successfully provides smallholders with expanded market access and nutritious and climate-resilient crop varieties.

Climate-smart maize breeding 

Since its arrival to sub-Saharan Africa (SSA) in 2016, fall armyworm (FAW) has devastated maize harvests for countless smallholders on the continent. Economic uncertainty caused by unstable yields and climate stressors like drought coupled with this endemic pest risk aggravating food insecurity.

Fall armyworm. (Photo: Jennifer Johnson/CIMMYT)

CIMMYT and NARES Partner Institutions in Eastern and Southern Africa are spearheading a robust pest management project to develop, screen, and introduce genetically resistant elite maize hybrids across SSA. South Sudan, Zambia, Kenya, and Malawi have already deployed resistant maize varieties, and eight other countries in the region are projected to release their own in 2023. These countries are also conducting National Performance Trials (NPTs) to increase awareness of host plant resistance for the sustainable control of FAW and to sensitize policymakers on accelerating the delivery of FAW-tolerant maize varieties.

The establishment of FAW screening facilities in Africa permits more rapid detection and breeding of maize varieties with native genetic resistance to FAW, facilitating increased deployment of these varieties across Africa. The sustainable control of FAW demands a rapid-response effort, overseen by research organizations and governments, to further develop and validate genetic resistance to fall armyworms. Achieving greater impact for maize smallholders is critical to ensuring improved income and food security in Africa. It is also paramount for biodiversity conservation and removing labor burden on farmers applying additional synthetic pesticides to prevent further losses by the pest.

“The SPG Coalition report emphasizes the power of partnership to enhance financial and food security for smallholder communities in the Global South. This is fully in line with the recently launched CIMMYT 2030 strategy. It’s also an important reminder to assess our strong points and where more investment and collaboration is needed,” said Bram Govaerts, CIMMYT director general.

Building technical capacity for emerging agri-research science and big data management

CSISA collaborates with Chaudhury Charan Singh Haryana Agriculture University to provide students with opportunities to engage in the latest agri-research and big data management. (Photo: CIMMYT)

Working alongside smallholder farmers, the Cereal Systems Initiative for South Asia (CSISA) project, has forged partnerships at the state and center levels to bridge the gap between innovation and the adoption of sustainable agricultural systems. In its current phase (2022-2025) in India, CSISA is helping mainstream innovation processes into the programing of national and state institutes through joint extension and research activities, including capacity building initiatives. Chaudhury Charan Singh Haryana Agriculture University (CCSHAU) is one of Asia’s biggest agricultural universities, located at Hisar in state of Haryana, India. Initially a campus of Punjab Agricultural University, Ludhiana, it became an autonomous institution in 1970 and contributed significantly to both the Green and White Revolutions in India.

Together with CCSHAU, CSISA recently initiated a landscape diagnostic survey (LDS) under the university’s rural agricultural work experience (RAWE) program for students graduating with an honors Bachelor of Science in agriculture. The twin objectives of this initiative were to gain an understanding of the existing challenges and opportunities for different cropping systems in Haryana through a bottom-up approach and to prepare students for careers in agriculture by building their practical skills in digital agriculture and big data management. This, explained CCSHAU Vice Chancellor B.R. Kamboj, who led the collaboration with CSISA, would provide recent graduates with the opportunity to “design a survey schedule, collect data in digital format, understand how farmers are adopting new technologies, and the learnings and challenges associated with each cropping system.”

Developing solutions for tomorrow’s problems

The predominant cropping systems practiced within the three ecologies of Haryana state are: the rice-wheat cropping system (RWCS); the cotton-wheat cropping system (CWCS); and the pearl millet-mustard cropping system (PMCS). The landscape diagnostic survey was carried out in parts of Sirsa and Hisar districts (for CWCS), Rewari and Mahendergarh districts (for PMCS) and Panipat, Yamunanagar, and Kurukshetra districts (for RWCS). The entire survey design was based on farmers’ participatory engagement and the cropping system framework.

A thorough process of survey design, including the training of master trainers, followed by orientation for students, was undertaken by the university’s RAWE faculty with support from CSISA’s technical team and participating KVKs. Students collected data from farming households using questionnaires and analyzed them using different analytical tools and techniques. Based on farmers’ responses, important data points about the region’s three crucial cropping systems were recorded and a book entitled Cropping Systems of Haryana – Challenges and Opportunities was published earlier this year, documenting the research process, data generated, results, and conclusions.

This has been a unique experience for both students and faculty that culminated in a research program with hands-on training. In the long run, this approach to capacity building for students is expected to support fieldwork and studies that help develop solutions to tomorrow’s problems in agricultural development. “The commitment of CCSHAU to implement a strong RAWE program under the technical guidance of CSISA, with support from the district KVKs, and student participation made this publication a strong endorsement and reference for similar RAWE programs across states and central universities,” acknowledged Peter Craufurd, CSISA project lead for India.

Lessons from the field

The survey helped build students’ capacity to design and understand data collection methods, analysis, and management with actual field exposure. Additionally, the qualitative data-gathering experience allowed them to develop their understanding of farmers’ perspectives in adopting or rejecting a particular technology or recommendation. Sharing her experience of the field sessions, RAWE student Muskan– group leader for the rice-wheat cropping system survey, said, “This process of data gathering, and field exposure is very motivating. I have a better understanding of our farmers’ practices and challenges.”

Another participating RAWE student and group leader for the cotton-wheat cropping system survey, Nilanchal Nishan said, “this exposure has helped me understand how policies and technology advancements affect farmers and their interaction with these changes over the years”.

“The entire process, from training to data management and curation, was fascinating for us,” said Aman Kumar, who led the pearl millet-mustard cropping system (PMCS) survey. He added that such field exposure will make students more aware of the trends and prevalent practices in the agricultural sector and help them choose their future field of research and study in a way that is in sync with real-time developments. These sentiments were echoed by RC Aggarwal, deputy director general for education at the Indian Council of Agricultural Research (ICAR), who called for more collaborations and capacity development exercises of this nature to be initiated in other state agriculture universities.

Read the full publication: Cropping Systems of Haryana – Challenges and Opportunities

Atlas of Climate Adaptation in South Asian Agriculture (ACASA)

About ACASA

Increasing climatic risks make it imperative to identify spatial and temporal risks that are likely to impact agriculture. Adaptation options are thus needed to mitigate the negative impacts. Considering this, with support from the Bill & Melinda Gates Foundation (BMGF), the Borlaug Institute for South Asia (BISA) is working with national agriculture research systems in South Asia to develop the Atlas of Climate Adaptation in South Asian Agriculture (ACASA).

This comprehensive Atlas aims to provide granular-scale information for South Asian countries at the village scale by integrating various spatially explicit data sets together. It covers climate hazards, and the exposure of smallholder populations, farms, and crop and livestock enterprises to hazards. It will also look into the vulnerability of these populations to climatic risks, impacts on critical commodities in the region, and evidence of the effectiveness of different climate adaptation interventions.

The ACASA offers a unique set of tools that can facilitate improved investment targeting and priority setting, and support stakeholders’ decision-making and investments in agricultural technologies, climate information services, and policies. The intended beneficiaries of this Atlas include governments, insurance and agri-food industries, international and national donors, and adaptation-focused entities.

Driven by science and data, explore ACASA’s approach to safeguard South Asian Agriculture

P. Malathy, Director General of Agriculture, Department of Agriculture, Sri Lanka, delivering keynote address during ACASA Project Inception Meeting.

ACASA Objectives

  1. Increase the quality, availability, and utility of data and evidence.
  2. Improve climate adaptive capacity of agricultural systems and guide stakeholders on location-specific adaptation options, including gender-informed technologies, practices, and climate information services to address risks.
  3. Increase the resilience of small-scale producers to climate variability and change.

ACASA Workstreams

Climate Risk Assessment

Gridded risk analysis using historical crop yield data and satellite signatures; indicators of current and future hazards, exposure, and vulnerabilities.

 Assessment of Climate Impact on Commodities

Climate impact on commodities under current and future climate

 Portfolio of Adaptation Options

Decision trees, crop/livestock models, statistical and econometric models, and expert consultations

 UI/UX Development

An open-source, web-enabled, interactive, and dynamic Atlas development

 Capacity Strengthening of Stakeholders

Training materials, tools, tutorials, and country/regional level workshops

ACASA Advisory Panel

The advisory panel established under ACASA will identify potential users, use cases in different countries, and guide and review Atlas’ progress. The constituted panel will have the scientific advisory committee (SAC) and South Asia’s country team leaders, who will be instrumental in hosting and adapting the Atlas. Explore the dynamic team of ACASA’s advisory panel.

Reports

ACASA Project Inception Report

To discuss ACASA and its development, a 3-day inception meeting was held in Delhi, India, from 25th to 27th April 2023, marked by 70 distinguished guests from Nepal, Sri Lanka, Bangladesh, and India discussing the various aspects of Atlas. The inception meeting provided some valuable recommendations/highlights that will be instrumental in building the Atlas.

ACASA Use Case Report

The ACASA project places significant importance on the practical applications of the Atlas. Various stakeholders could utilise Atlas to enhance investment in agricultural adaptation technologies and climate information services. Drawing from the diverse perspectives of the panellists during the inception meeting, a consolidated report was prepared on how ACASA team and its partners will be prioritising and developing use cases based on geographical and thematic considerations.

 

 

 

 

 

 

CIMMYT releases 32 new elite maize lines

Maize ears of the newly released set of CIMMYT maize lines. (Photo: CIMMYT)

CIMMYT is pleased to announce the release of a set of 32 new CIMMYT maize lines (CMLs). These maize lines have been developed by CIMMYT’s Global Maize Program by a multi-disciplinary team of scientists in sub-Saharan Africa, Latin America, and Asia. The lines have diverse trait combinations and are suitable for the tropical/subtropical maize production environments targeted by CIMMYT and partner institutions.

CMLs are freely available to both public and private sector breeders worldwide under the standard material transfer agreement (SMTA).

CIMMYT seeks to develop improved maize inbred lines for different product profiles, with superior yield performance, multiple stress tolerance, and enhanced nutritional quality. CMLs are released after intensive evaluation in hybrid combinations under various abiotic and biotic stresses, besides optimum (non-stress) conditions in the target population of environments. Suitability as either female (seed) or male (pollen) parent is also evaluated. As done in the last announcement of CMLs in 2021, to increase the utilization of the CMLs in the maize breeding programs of the partner institutions, all the new CMLs are tested for their heterotic behavior and assigned to specific heterotic groups of CIMMYT: A and B.

The release of a CML does not guarantee high combining ability or per se performance in all the environments; rather, it indicates that the line is promising or useful as a parent for pedigree breeding or as a potential parent of hybrid combinations for specific mega-environments. The description of the lines includes heterotic group classification, along with information on their specific strengths and their general combining ability with some of the widely used CMLs or CIMMYT coded lines under different environments.

More information:

Summary of the characteristics: CIMMYT maize lines CML616A to CML647A (PDF)

Pedigree and characterization data of all the CMLs released to date, including the latest set (CIMMYT Research Data repository).

Seed for these new set of CMLs will be available from November 1, 2023.  A limited quantity of seed of the CMLs can be obtained by sending a request to the CIMMYT germplasm bank via this link: https://staging.cimmyt.org/resources/seed-request/ or contact, a.chassaigne@cgiar.org.

Please contact for any further details regarding the released CMLs: 

Dr B.M. Prasanna, Global Maize Program Director, CIMMYT & OneCGIAR Maize Breeding Lead (b.m.prasanna@cgiar.org)

Appropriate farm scale mechanization can aid in agroecological transformation

A bale of grass and maize stalks made in a bailer. (Photo: CGIAR Initiative on Agroecology)

A case of the CGIAR Initiative on Agroecology in Zimbabwe

Authors: Vimbayi Chimonyo (CIMMYT – scientist, crop modeler); FrĂ©dĂ©ric Baudron (CIMMYT – cropping systems agronomist); Dorcas Matangi (CIMMYT – assistant research associate)

Food systems in marginal areas of Zimbabwe are vulnerable to climate variability and economic shocks. During the COVID-19 outbreak, governments imposed strict lockdowns that adversely affected local food systems and supply chains. Rural communities that already had difficulty feeding their families found themselves in a more desperate situation. The recurring challenges and the COVID-19 outbreak made it clear that there is a need to transform local food systems to achieve sustainable food and nutrition security. The transition is even more urgent owing to the acute labor shortages due to the accelerated trend of rural labor outmigration and an aging population in smallholder farming communities of the country. Agroecology has emerged as an approach to facilitate and champion a transformative shift to sustainable local food systems.

Mower cutting grass. (Photo: CGIAR Initiative on Agroecology)

The Agroecological Initiative is at the forefront of providing science-based evidence for the transformative nature of agroecology and its potential to bring about positive changes in food, land, and water systems, including identifying institutional innovations to promote uptake. Agroecology is a holistic approach to agriculture that emphasizes integrating ecological principles and practices into farming systems. The 13 principles of agroecology guide sustainable and regenerative agricultural practices.

 

Thirteen consolidated agroecology principles (Wezel et al. 2020)

The initiative employs a multi-disciplinary approach, integrating ecological and social methods to co-create and manage localized food systems and monitor the 13 interconnected principles. While agroecological methods hold promise, the transition process is labor and knowledge-intensive and requires addressing power dynamics within and beyond households to address food and nutrition security. Building on the findings of the completed ACIAR-funded project Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) and Harnessing Appropriate-scale Farm Mechanization in Zimbabwe (HAFIZ), CIMMYT is working in Zimbabwe with 200+ farmers and four service providers in Murehwa and Mbire districts as ambassadors of the community through Agroecological Living Landscapes (ALLs).

Trailer for transportation. (Photo: CGIAR Initiative on Agroecology)

Mechanization plays a crucial role in the initiative implementation in Zimbabwe, covering a wide range of farming and processing equipment. The equipment ranges from simple and basic hand tools to more sophisticated and motorized tools. The machinery eases and reduces drudgery associated with agricultural practices, relieves labor shortages, improves productivity and timeliness of agricultural operations, optimizes resource utilization, enhances market access, and helps mitigate climate-related hazards.

“Machinery supports synergies, reduces labor, and reduces human and wildlife conflict as it reduces livestock grazing time because you can now make feed for your cattle and cutting grass reduces veld fires,” said Musandaire.

Within the Agroecology Initiative, CIMMYT considers mechanization in its technological, economic, social, environmental and cultural dimensions when contributing to the sustainable development of localized food systems and actors. In Mbire and Murehwa, a service provider model was adopted to introduce appropriate scale machinery within the respective communities. The service providers were equipped with a two-wheel tractor, ripper, mower, chopper grinder, and bailer. Training was offered on equipment operation, repair, and maintenance.

The business aspects were also discussed to broaden the participants’ knowledge of service provision. Important aspects covered include business model, entrepreneurship, record keeping, cost and profit calculations, customer care, target setting, and machinery operation planning.

To date, the service providers offer services including ripping, transportation, chopper grinding for livestock feeds and humans, and baling and mower for grass cutting at a fee.

“Mechanization has proven efficient and relevant in our district since livestock is one of our main value chains. Our service providers make hay bales for us, which we buy to feed our livestock. They also grind feed which is good for pen-fattening,” said Chimukoro, councilor in Mbire.

Preliminary findings indicate that appropriate scale mechanization enhances synergies in smallholder farming systems by facilitating more efficient and integrated agricultural practices.

“Our trailer reduces labor and saves time better than scotch carts. We used to leave much biomass in the fields because we didn’t know how to transport and process it after aggregation. But now we can recycle our biomass,” mentioned Mushaninga, local leadership in Murehwa.

By streamlining labor-intensive tasks and promoting holistic farm management, mechanization encourages complementarity among various elements of agroecosystems, contributing to more sustainable and productive smallholder farming. Target communities can pave the way for a more resilient and sustainable food system through the Agroecological Initiative.

Unveiling the Nexus between Agrifood Systems and Climate Change: Harvesting insights from latest IPCC report

August 2 is Earth Overshoot Day 2023, which marks the date when humanity’s demand for ecological resources and services in a given year exceeds what Earth can regenerate in that year.

Wheat harvest in Juchitepec, State of Mexico. (Photo: Peter Lowe/CIMMYT)

“Climate change is already affecting agrifood systems,” said the director general of the International Maize and Wheat Improvement Center (CIMMYT), Bram Govaerts. “Efforts to protect food and crop systems from things like rising temperatures and drought are part of the overall solution to reverse ecological overshoot; however, we must work hard to ensure these efforts are collaborative, inclusive and sustainable. We want to reach climate goals without compromising food security.”

To harmonize climate change mitigation efforts, CIMMYT and the CGIAR Climate Impact Platform jointly hosted a webinar on July 11, 2023, for relevant stakeholders to discuss the latest findings from the Intergovernmental Panel on Climate Change (IPCC).

The IPCC is an organization of governments that are members of the United Nations and provides regular assessments of the risks of climate change and options for mitigation.

“Climate change in agrifood systems presents special challenges. There are adaptation challenges, but even more importantly, reducing emissions while also protecting the lives and livelihoods of smallholder farmers is a huge challenge that requires scientists and practitioners working together,” said Aditi Mukherji, director of the CGIAR Climate Impact Platform. “Action based on science is needed and IPCC and CGIAR came together in this webinar to present those challenges and solutions.”

The webinar summarized key findings from the IPCC on how climate change effects agrifood systems, including potential adaptation measures and strategies for mitigating the effects of climate change on agri-food systems, how food system management can be part of the solutions to mitigate climate change without compromising food security. Participants also identified potential collaborations and partnerships to implement IPCC recommendations.

“On this acknowledgement of Earth Overshoot Day, the IPCC report is an important milestone as we enact sustainable solutions to protect against climate change and work toward pulling back overshoot,” said Claudia Sadoff, the executive managing director of CGIAR. “All strategies must be under-pinned with reliable data to let us know what is happening now and also in the future.”

The webinar kicked off with presentations from Alex Ruane, co-Director of the GISS Climate Impacts Group, NASA Goddard Institute for Space Studies and IPCC author, Mukherji, and Jim Skea, IPCC Co-Chair.

Challenges Ahead

Ruane examined the current impacts of climate change on agrifood systems and presented findings regarding future effects; knowledge that can help guide priority-setting among relevant stakeholders.

Alex Ruane presented on the current and future impacts of climate change on agrifood systems. (Photo: CIMMYT)

He detailed the perilous state of agrifood systems, as they need to sustainably increase production to provide healthy food for growing populations, adapt to climate change and ongoing climate extremes, mitigate emissions from agricultural lands and maintain financial incentives for agriculture.

Answering those challenges requires the development of models that can track all potential climate drivers. A co-development process with robust data-sharing is vital to provide context for risk management and planning for climate adaptation and mitigation.

Adaptation

Mukherji examined current adaptation efforts within agrifood systems. The IPCC data showed that the people and regions seeing the most adverse effects of climate change have also emitted the fewest amount of greenhouse gases.

Aditi Mukherji delivered a talk on climate change adaptation in the agrifood sector. (Photo: CIMMYT)

There are multiple opportunities for scaling up climate action. CGIAR is working on such responses in the areas of efficient livestock systems, improved cropland management, water use, agroforestry, sustainable aquaculture and more.

Maladaptation can be avoided by flexible, inclusive, long-term planning and implementation of adaptation actions, with benefits shared by many sectors and systems.

Mitigation

Skea investigated the demand and supply side synthesis: land use change and rapid land use intensification have supported increased food production and food demand has increased as well.

He also summarized the IPCC findings regarding land use mitigation efforts, like reforestation (restoring trees in an area where their population has been reduced), afforestation (establishing trees in an area where there has not been recent tree cover) and improved overall forest management, quantifying each action on agrifood systems.

Panel discussion

Moderated by Tek Sapkota, CIMMYT/ CGIAR and IPCC scientist, with panelists Kaveh Zahedi, director of the Office of Climate Change, Biodiversity and Environment, FAO; Jyotsna Puri, associate vice-president, International Fund for Agricultural Development; Jacobo Arango, thematic leader, Alliance of Bioversity and CIAT/CGIAR and IPCC author; Louis Verchot, principal scientist, Alliance of Bioversity and CIAT/CGIAR and IPCC author, and Jim Skea, the panel discussed the IPCC findings and examined crucial areas for targeted development.

Earth Overshoot Day is hosted and calculated by the Global Footprint Network, an international research organization that provides decision-makers with a menu of tools to help the human economy operate within Earth’s ecological limits.

ASEAN – CGIAR Innovate for Food Regional Program

The primary focus of this project is on regenerative agriculture practices, including circular economy principles, co-identified and digital decision-support tools co-designed for at least two priority production systems (one upland and lowland rice-fish production system and another upland system), enabled by policymakers, and used by scaling partners in at least three Association of Southeast Asian Nations member states.

The project aims to align with the Sustainable Development Goals: SDG 5 – Gender Equality; SDG 13 – Climate Action; SGD 17 – Partnerships for the Goals.

Bram Govaerts appointed as CIMMYT Director General

Bram Govaerts, renowned scientist and leader, has been appointed as CIMMYT’s Director General for the period 2023-2028 as of July 1, 2023, after holding the position on an interim basis for two years and steering the organization through the unprecedented global challenges of the pandemic and ongoing food insecurity.

Under Govaerts’ leadership, CIMMYT has expanded its research portfolio and strengthened its work in key regions. Govaerts has also started an effort to streamline internal processes and operations to speed up CIMMYT’s response capacity and impact across the world.

Bram with Zamseed staff holding pro-vitamin A orange maize (Photo: Katebe Mapipo/CIMMYT)

Govaerts holds a PhD in Bioscience Engineering – Soil Science, a master’s degree in Soil Conservation and Tropical Agriculture, and a bachelor’s degree in Bioscience Engineering, all from Katholieke Universiteit Leuven, Belgium. He has also received multiple awards during his career: the Development Cooperation Prize from the Belgian Federal Government in 2003, the Norman Borlaug Award for Field Research and Application in 2014, the Premio Tecnoagro, awarded by an organization of 2,500 Mexican farmers in 2018, and Fellow of The American Society of Agronomy (ASA). In addition to leading CIMMYT, Govaerts is an A.D. White Professor-at-Large at Cornell University.

“With Bram’s appointment, I am excited and confident about CIMMYT’s future,” said Margaret Bath, Chair of CIMMYT’s Board of Trustees. “We look forward to many great days ahead for CIMMYT staff across the globe, who lift smallholder farmers and their communities to achieve better and more sustainable livelihoods and to ensure that food security is delivered, and human potential maximized.”