Connecting rural Nepalese farmers to the market through Interactive Voice Response (IVR) service
Read the full story.
Read the full story.
East and Southern Africa is a climate hotspot, with more than US$45 billion in agricultural production at risk from higher temperatures, shorter growing seasons and more extreme droughts and floods. Maize, a staple crop covering up to 75% of cropland in parts of the region, is particularly vulnerable and is projected to face yield declines of 15%, among other climate impacts if no adaptation measures are taken. Many of the affected areas already have serious levels of hunger and malnutrition, with the highest burden experienced by women and youth from marginalized and vulnerable communities. If these systems are sustainably diversified, they can contribute to stabilizing regional and global agrifood systems.
The next decade will be critical for strengthening food, land and water systems in East and Southern Africa. The agribusiness ecosystem for both regions has been identified as a critical engine for agricultural and economic development, climate change adaptation and gender and youth empowerment. Investment in innovation, capabilities and supportive environments will be essential for driving sustainable growth.
Objective
This Initiative aims to support climate-resilient agriculture and livelihoods in 12 countries in East and Southern Africa by helping millions of smallholders intensify, diversify and reduce the risks in maize-based farming through improved extension services, small and medium enterprise development, supporting governance frameworks and increased investment with a gender and social inclusion lens.
Activities
This objective will be achieved through:
Since 2021, CIMMYT, in partnership with the International Livestock Research Institute (ILRI), the French Agricultural Research Centre for International Development (CIRAD), and the University of Zimbabweâs Department of Veterinary, has been working in rural communities of Zimbabwe, as part of the Livestock Production Systems in Zimbabwe (LIPS-Zim) project. The activity is led by Zimbabwe’s Department of Research and Specialist Services and is at the forefront of introducing new agricultural innovations to local farmers.
One of their most impactful initiatives has been the intercropping trials involving maize and various legumes including jack bean, mucuna, lablab, and pigeon pea. This groundbreaking approach has not only transformed the lives of farmers but has also had a positive impact on the overall health of livestock.
Various leguminous fodder crops have been promoted widely as sources of high-quality protein feed in mixed crop-livestock systems of Zimbabwe. However, to diversify and increase the options for the drier regions, the LIPS-Zim project is testing new leguminous crops such as jack bean and pigeon pea, which are well-adapted to dry conditions.
Netsai Musekiwa, a farmer in the town of Mutoko, has been part of the LIPS-Zim project for the past two seasons, and is currently conducting intercrop trials with jack bean. âSince I started intercropping maize with jack bean, I have been amazed by the results and will continue on this path. The jack bean plants have shown strong tolerance to prolonged dry spells and heat stress,â she said. âNext season, I plan to extend my plot to harvest more jack bean.â These words of encouragement on intercropping maize with jack bean have also been largely echoed by many other farmers in Mutoko and Buhera during the feedback meetings held in October 2023.
What is intercropping and how beneficial is it to farmers?
Intercropping is an agricultural practice of growing two or more crops together on the same field simultaneously to maximize land use and enhance productivity. As different crops have different growth patterns and nutrient requirements, intercropping can help optimize resource utilization and boost overall crop output.
In addition, intercropping reduces the risk of climate induced crop failure as well as minimizing pest damage, enhances soil fertility by diversifying the root system, and can provide additional income streams to farmers.
The science behind jack bean and pigeon pea
Jack bean (canavalia ensiformis) and pigeon pea (cajanus cajan) are leguminous crops valued for their nitrogen-fixing abilities which aides in improving soil fertility. Both jack bean and pigeon pea have deep root systems, making them ideal candidates for the dry semi-arid conditions in Zimbabwe.
Pigeon pea is known for its drought-tolerance and produces edible seeds used in various culinary dishes and is a source of both food and feed. Jack bean is used as a forage crop for livestock, providing nutritious feed.
âJack bean seeds contain a toxic compound called canavanine, which can be harmful when consumed in large quantities or not properly processed. To make jack beans safe for consumption, it must be boiled, soaked, or fermented,â said Isaiah Nyagumbo, cropping systems agronomist at CIMMYT. âWe have introduced many farmers to the best practices for handling jack beans and have opened up new possibilities for its utilization in sustainable farming practices.â
While some farmers were intercropping with jack bean, others explored pigeon pea as an alternative. âI liked the intercropping of maize and pigeon pea on my plot. I am assured of getting nutritious food both for my family and livestock. After harvesting, I usually take the branches, then put them in the shade and dry them to retain the nutritional value. I occasionally give some to my goats during the dry season when feed from natural pastures is scarce, and my goat herd has risen to 12 goats,â said Fungai Kativu, a farmer in Mutoko.
Building capacity of local farmers
To narrow the knowledge gap and highlight the potential of such feed options, LIPS-Zim has also been spearheading the establishment of community level learning centers. These centers are a knowledge hub to local farmers, providing practical knowledge, facilitating the sharing of different perspectives while nurturing working as groups with a common vision. This âfarmer learns by seeingâ approach has been a success in the community.
Through this initiative, farmers have not only witnessed increased productivity but have also gained the necessary skills and knowledge to adapt to the changing agricultural landscape. âIntercropping leguminous crops with maize has shown great potential in improving food security and livestock feed production in Zimbabwe’s farming communities, especially in areas prone to heat and drought,â said Nyagumbo.
CIMMYT is happy to announce five new, improved tropical and subtropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across Latin America and similar agro-ecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.
Newly available CIMMYT hybrids | Key traits | Target Agro-ecology |
CIM21LAPP1A-12 | Intermediate maturing, white, high yielding, and resistant to TSC, MLB, and Ear rots | Lowland tropics |
CIM21LAPP1C-10 | Intermediate maturing, yellow, high yielding, and resistant to TSC, MLB and Ear rots | |
CIM21LAPP2A-4 | Intermediate-maturing, white, high-yielding, FSR, GLS, and Ear rots. | Mid-altitudes/
Spring-Summer season |
CIM21LAPP2A-8 | ||
CIM20LAPP2B-12 | Intermediate-maturing, yellow, high-yielding, resistant to GLS, and Ear rots. |
The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the 03-22LTHTWM4M, 04-22LTHTYM4M, 01-22MASTCHSTW and 02-22MASTCHSTY Stage 5 Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYTâs breeding pipelines that are designed to generate products tailored in particular for smallholder farmers in stress-prone agroecologies of Latin America.
Performance data | Download the CIMMYT LATAM Maize Regional (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2020 -2021 and 2022 Seasons and Product Announcement from Dataverse. |
How to apply | Visit CIMMYTâs maize product allocation page for details |
Application deadline | The deadline to submit applications to be considered during the first round of allocations is December 1st, 2023. Applications received after that deadline will be considered during subsequent rounds of product allocations. |
Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYTâs Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Debora EscandĂłn, Project Administrator, Global Maize Program, CIMMYT.
The Seed Production Technology for Africa (SPTA) project, led by CIMMYT, has been selected by the CGIAR Gender Impact Platform as a successful case study of integrating gender into crop breeding.
The case study, published in Frontiers in Sociology, is one of fourteen that the CGIAR Genetic Innovation Gender strategy is drawing on to showcase lessons learned from practical experience. These case studies form a critical part of the efforts to pursue gender responsive or gender-intentional breeding and explore how these can inform larger breeding pipelines.
Maize is widely grown by both women and men in Africa. Evidence of gender-differentiated preferences for maize varieties remains inconclusive; however, there is evidence of gendered differences in management practices. Hybrids produced using SPTA segregate 1:1 for pollen producing and non-pollen producing plants referred to as 50% non-pollen producing (FNP) varieties. Previous research showed FNP offered a yield benefit under low input conditions. In the early stage of its inception, the project quickly recognized the potential implications of hybrids produced using SPTA for women and other resource-constrained smallholders in Africa.
Understanding gender-based differences
From the start, the SPTA team conducted a gender review that underscored the fact that women in the region often use less fertilizer than men, a challenge that is further compounded by cultivation of smaller plots and lower quality soils. This review led the breeding team to explicitly target women and resource-poor farmers with an ambition to increase yields on womenâs fields. From here henceforth, SPTA made it a priority to understand gender-based differences in performance and preference for new FNP maize varieties. This process involved ensuring both women and men farmers host trials to evaluate and attest to the performance of the FNP hybrids.
But these efforts were not without challenges. The team also found significant gender differences, particularly among women farmers in crop management practices and between farmersâ stated preferences during participatory varietal selection exercises and the varieties they used at home. This suggested that initial on-farm evaluations were not adequate for predicting real world demand for varieties. Moving forward, the evaluation strategy of SPTA evolved to enable variety evaluations under farmersâ preferred management practices.
The success of the SPTA team in ensuring that gender considerations were strongly embedded into the breeding program is attributed to strong collaboration across disciplines that included social scientists and gender researchers working closely with breeders, allocating funding to allow exploration, testing of gender topics and responsive variety evaluation tools and strong buy-in from leadership and donors. As the SPTA case highlights, there is value in starting small, building productive partnerships and collaborating to pilot and develop proof of concept for new models.
It is a winter morning in Ward 12 of Mutare Rural district in Zimbabwe. Farmers brave the cold weather to gather around several tents lined with a range of new agricultural machinery. The number of farmers increases, and the excited chatter gets louder as they attempt to identify the different machines on display. âThat is a tractor, but it just has two wheels,â says one farmer. With enthusiasm, another identifies a multi-crop thresher and peanut butter machine and asks for the prices.
The scene typifies one of several settings for an awareness meeting conducted under the Feed the Future Zimbabwe Mechanization and Extension (Mechanization) Activity, funded by the United States Agency for International Development (USAID). The project operates in Zimbabweâs Manicaland and Masvingo provinces and addresses the pressing need to improve farm power and machinery access for smallholder farmers in ten districts: Buhera, Chimanimani, Chipinge, Mutare rural, Bikita, Chiredzi, Chivi, Masvingo rural, Mwenezi and Zaka.
In recent years, farmers in the region have faced a decline in cattle populations due to tick-borne diseasesâthe devastating âJanuary diseaseâ (Theileriosis) hitting hardestâcausing significant draft power losses. In addition, on-farm and off-farm activities have notoriously been identified as labor-intensive, time consuming and back-breaking due to the level of effort required to execute certain tasks. Activities such as post-harvest processing have also been traditionally carried out by women, who are thus disproportionally affected by drudgery. Collectively, these challenges have affected not only food production and the quality of farm yields, but also drastically impacted farming familiesâ potential to realize sufficient household food and income security.
âFinding the best model of extension of appropriate machinery and developing financing mechanisms for smallholder farmers has been the work of previous projects on appropriate-scale mechanization,â says Christian Thierfelder, research director for the Mechanization Activity. âIn this activity, we are implementing a service provider model in Zimbabwe and are aiming to reach 150 service providers and 22,500 users of these machines in the next two years.â
Despite previous successes under initiatives such as FACASI and R4/ZAMBUKO, there remains a huge demand for affordable machines that improve farm labor and generate income for smallholder farmers. âWe already see hundreds of farmers demanding to mechanize agricultural activities in our intervention areas,â explains Leon Jamann, chief of party for the project. âThat is why our activity aims to collaborate with banks and microfinance institutions to bank these farmers at fair rates so that they can buy the machinery that they need and want.â
A launchpad for success
The awareness meetings have served as launchpads to acquaint farmers with appropriate machinery right at the âfarm gateâ while affording them a chance to explore the full range on offer. Since its inception, the Mechanization Activity has showcased through live demonstrations the operation and performance of machinery including the two-wheel tractor and trailer, ripper, basin digger, boom sprayer, multi-crop thresher, feed chopper-grinder, groundnut sheller and peanut butter machine. Each machine harmonizes with on-farm and off-farm activities, easing the labor burden and improving efficiency in land preparation, harvesting and post-harvest tasks. The aim is to create demand for and trigger business interest in the machinery through a service provision model.
The model centers on the service provider, typically an individual who owns machinery and extends their services to others for a fee. In some cases, organized Internal Savings and Lending (ISAL) and Production, Productivity Lending and Savings (PPL) groups have expressed, through the awareness meetings, interest in procuring a machine for use within the group. This symbiotic relationship empowers service providers economically, while granting communities access to crucial services that improve their land and labor productivity.
In the next step, service providers are then linked with banks to finance their machinery. This ensures a sustainable approach, as the mechanization solutions are locally produced, financed and used. Enhancing these local capacities and linkages is at the core of the activity and ensures impact beyond the project life cycle.
From awareness to demand
So far, a total of 32 awareness meetings have been held across three operational hubs in Masvingo and Manicaland provinces reaching 1,637 farmersâ843 females and 794 males. The impact is evident, with 475 service providers identified across 20 implementation wards.
232 participants are keen to acquire a two-wheel tractor, with a further 191 opting for trailers, 63 for rippers, 125 for multi-crop threshers, 166 for chopper grinders, 178 for peanut butter machines and 31 for groundnut shellers. Among the prospective service providers are those opting to purchase a single unit while others are choosing two, three or more units from the machinery on offer.
Beyond the numbers, the Mechanization and Extension Activity continues to appeal to women and youth through sustainable and climate-smart intensification of crop production using conservation agriculture practices, opportunities for employment creation and enhancing profitability.
âI enjoyed learning about the service provider approach and learning about the machinery on display,â reflected Nyarai Mutsetse, a female farmer from Ward 12. âOther women even got the chance to try out the two-wheel tractor. From now on, we are going to save money in our groups and purchase some of these machines.â
Echoing the same sentiments, Patience Chadambuka was fascinated by the two-wheel tractor demonstration, and impressed that it could serve multiple purposes. âI can use it for different tasksâferrying wood, land preparation and it can also help us raise money to take our children to school through service provision,â she said. âWe are beginning to save the money, together with my husband because we would like to purchase the tractor and use it for our business.â
The Mechanization Activity awareness meetings paint a vivid picture of collaboration with other Feed the Future Zimbabwe Activities such as the Fostering Agribusiness for Resilient Markets (FARM), Resilience Anchors and Farmer to Farmer, among others. The activity harmonizes smallholder farmers with private sector enterprises, including machinery manufacturers, local mechanics, financial institutions and the Government of Zimbabwe. This collective cooperation is pivotal in helping smallholder farmers realize their mechanization business goals.
One of the worldâs largest crop pathogen surveillance systems is set to expand its analytic and knowledge systems capacity to protect wheat productivity in food vulnerable areas of East Africa and South Asia.
Researchers announced the Wheat Disease Early Warning Advisory System (Wheat DEWAS), funded through a $7.3 million grant from the Bill & Melinda Gates Foundation and the United Kingdomâs Foreign, Commonwealth & Development Office, to enhance crop resilience to wheat diseases.
The project is led by David Hodson, principal scientist at CIMMYT, and Maricelis Acevedo, research professor of global development and plant pathology at Cornell Universityâs College of Agriculture and Life Sciences. This initiative brings together research expertise from 23 research and academic organizations from sub-Saharan Africa, South Asia, Europe, the United States and Mexico.
Wheat DEWAS aims to be an open and scalable system capable of tracking important pathogen strains. The system builds on existing capabilities developed by the research team to provide near-real-time model-based risk forecasts and resulting in accurate, timely and actionable advice to farmers. As plant pathogens continue to evolve and threaten global food production, the system strengthens the capacity of countries to respond in a proactive manner to transboundary wheat diseases.
The system focuses on the two major fungal pathogens of wheat known as rust and blast diseases. Rust diseases, named for a rust-like appearance on infected plants, are hyper-variable and can significantly reduce crop yields when they attack. The fungus releases trillions of spores that can ride wind currents across national borders and continents and spread devastating epidemics quickly over vast areas.
Wheat blast, caused by the fungus Magnaporte oryzae Tritici, is an increasing threat to wheat production, following detection in both Bangladesh and Zambia. The fungus spreads over short distances and through the planting of infected seeds. Grains of infected plants shrivel within a week of first symptoms, providing little time for farmers to take preventative actions. Most wheat grown in the world has limited resistance to wheat blast.
âNew wheat pathogen variants are constantly evolving and are spreading rapidly on a global scale,â said Hodson, principal investigator for Wheat DEWAS. âComplete crop losses in some of the most food vulnerable areas of the world are possible under favorable epidemiological conditions. Vigilance coupled with pathogen-informed breeding strategies are essential to prevent wheat disease epidemics. Improved monitoring, early warning and advisory approaches are an important component for safeguarding food supplies.â
Previous long-term investments in rust pathogen surveillance, modelling, and diagnostics built one of the largest operational global surveillance and monitoring system for any crop disease. The research permitted the development of functioning prototypes of advanced early warning advisory systems (EWAS) in East Africa and South Asia. Wheat DEWAS seeks to improve on that foundation to build a scalable, integrated, and sustainable solution that can provide improved advanced timely warning of vulnerability to emerging and migrating wheat diseases.
âThe impact of these diseases is greatest on small-scale producers, negatively affecting livelihoods, income, and food security,â Acevedo said. âUltimately, with this project we aim to maximize opportunities for smallholder farmers to benefit from hyper-local analytic and knowledge systems to protect wheat productivity.â
The system has already proven successful, contributing to prevention of a potential rust outbreak in Ethiopia in 2021. At that time, the early warning and global monitoring detected a new yellow rust strain with high epidemic potential. Risk mapping and real-time early forecasting identified the risk and allowed a timely and effective response by farmers and officials. That growing season ended up being a production record-breaker for Ethiopian wheat farmers.
While wheat is the major focus of the system, pathogens with similar biology and dispersal modes exist for all major crops. Discoveries made in the wheat system could provide essential infrastructure, methods for data collection and analysis to aid interventions that will be relevant to other crops.
India can applaud a hallmark in national food production: in 2023, the harvest of wheatâIndiaâs second most important food cropâwill surpass 110 million tons for the first time.
This maintains India as the worldâs number-two wheat producer after China, as has been the case since the early 2000s. It also extends the wheat productivity jumpstart that begun in the Green Revolutionâthe modernization of Indiaâs agriculture during the 1960s-70s that allowed the country to put behind it the recurrent grain shortages and extreme hunger of preceding decades.
âNewer and superior wheat varieties in India continually provide higher yields and genetic resistance to the rusts and other deadly diseases,â said Distinguished Scientist Emeritus at CIMMYT, Ravi Singh. âMore than 90 percent of spring bread wheat varieties released in South Asia in the last three decades carry CIMMYT breeding contributions for those or other valued traits, selected directly from the Centerâs international yield trials and nurseries or developed locally using CIMMYT parents.â
Wheat grain yield in Indian farmersâ fields rose yearly by more than 1.8 percentâsome 54 kilograms per hectareâin the last decade, a remarkable achievement and significantly above the global average of 1.3 percent. New and better wheat varieties also reach farmers much sooner, due to better policies and strategies that speed seed multiplication, along with greater involvement of private seed producers.
âThe emergence of Ug99 stem rust disease from eastern Africa in the early 2000s and its ability to overcome the genetic resistance of older varieties drove major global and national initiatives to quickly spread the seed of newer, resistant wheat and to encourage farmers to grow it,â Singh explained. âThis both protected their crops and delivered breeding gains for yield and climate resilience.â
CIMMYT has recently adopted an accelerated breeding approach that has reduced the breeding cycle to three years and is expected to fast-track genetic gains in breeding populations and hasten delivery of improvements to farmers. The scheme builds on strong field selection and testing in Mexico, integrates genomic selection, and features expanded yield assays with partner institutions. To stimulate adoption of newer varieties, the Indian Institute of Wheat and Barley Research (IIWBR, of the Indian Council of Agricultural Research, ICAR) operates a seed portal that offers farmers advanced booking for seed of recently released and other wheat varieties.
Private providers constitute another key seed source. In particular, small-scale seed producers linked to the IIWBR/ICAR network have found a profitable business in multiplying and marketing new wheat seed, thus supporting the replacement of older, less productive or disease susceptible varieties.
Farm innovations for changing climates and resource scarcities
Following findings from longstanding CIMMYT and national studies, more Indian wheat farmers are sowing their crops weeks earlier so that the plants mature before the extreme high temperatures that precede the monsoon season, thus ensuring better yields.
New varieties DBW187, DBW303, DBW327, DBW332 and WH1270 can be planted as early as the last half of October, in the northwestern plain zone. Recent research by Indian and CIMMYT scientists has identified well-adapted wheat lines for use in breeding additional varieties for early sowing.
Resource-conserving practices promoted by CIMMYT and partners, such as planting wheat seed directly into the unplowed fields and residues from a preceding rice crop, shave off as much as two weeks of laborious plowing and planking.
âThis âzero tillageâ and other forms of reduced tillage, as well as straw management systems, save the time, labor, irrigation water and fuel needed to plant wheat, which in traditional plowing and sowing requires many tractor passes,â said Arun Joshi, CIMMYT wheat breeder and regional representative for Asia and managing director of the Borlaug Institute for South Asia (BISA). âAlso, letting rice residues decompose on the surface, rather than burning them, enriches the soil and reduces seasonal air pollution that harms human health in farm communities and cities such as New Delhi.â
Sustainable practices include precision levelling of farmland for more efficient irrigation and the precise use of nitrogen fertilizer to save money and the environment.
Science and policies ensure future wheat harvests and better nutrition
Joshi mentioned that increased use of combines has sped up wheat harvesting and cut post-harvest grain losses from untimely rains caused by climate change. âAdded to this, policies such as guaranteed purchase prices for grain and subsidies for fertilizers have boosted productivity, and recent high market prices for wheat are convincing farmers to invest in their operations and adopt improved practices.â
To safeguard Indiaâs wheat crops from the fearsome disease wheat blast, native to the Americas but which struck Bangladeshâs wheat fields in 2016, CIMMYT and partners from Bangladesh and Bolivia have quickly identified and cross-bred resistance genes into wheat and launched wheat disease monitoring and early warning systems in South Asia.
âMore than a dozen wheat blast resistant varieties have been deployed in eastern India to block the diseaseâs entry and farmers in areas adjoining Bangladesh have temporarily stopped growing wheat,â said Pawan Singh, head of wheat pathology at CIMMYT.
Building on wheatâs use in many Indian foods, under the HarvestPlus program CIMMYT and Indian researchers applied cross-breeding and specialized selection to develop improved wheats featuring grain with enhanced levels of zinc, a micronutrient whose lack in Indian diets can stunt the growth of young children and make them more vulnerable to diarrhea and pneumonia.
âAt least 10 such âbiofortifiedâ wheat varieties have been released and are grown on over 2 million hectares in India,â said Velu Govindan, CIMMYT breeder who leads the Centerâs wheat biofortification research. âIt is now standard practice to label all new varieties for biofortified traits to raise awareness and adoption, and CIMMYT has included high grain zinc content among its primary breeding objectives, so we expect that nearly all wheat lines distributed by CIMMYT in the next 5-8 years will have this trait.â
A rigorous study published in 2018 showed that, when vulnerable young children in India ate foods prepared with such zinc-biofortified wheat, they experienced significantly fewer days of pneumonia and vomiting than would normally be the case.
Celebrating joint achievements and committing for continued success
The April-June 2018 edition of the âICAR Reporterâ newsletter called the five-decade ICAR-CIMMYT partnership in agricultural research ââŠone of the longest and most productive in the worldâŠâ and mentioned mutually beneficial research in the development and delivery of stress resilient and nutritionally enriched wheat, impact-oriented sustainable and climate-smart farming practices, socioeconomic analyses, and policy recommendations.
Speaking during an August 2022 visit to India by CIMMYT Director General Bram Govaerts, Himanshu Pathak, secretary of the Department of Agricultural Research and Education (DARE) of Indiaâs Ministry of Agriculture and Farmers Welfare and Director General of ICAR, âreaffirmed the commitment to closely work with CIMMYT and BISA to address the current challenges in the field of agricultural research, education and extension in the country.â
âThe ICAR-CIMMYT collaboration is revolutionizing wheat research and technology deployment for global food security,â said Gyanendra Singh, director, ICAR-IIWBR. âThis in turn advances global peace and prosperity.â
According to Govaerts, CIMMYT has concentrated on strategies that foster collaboration to deliver greater value for the communities both ICAR and the Center serve. âThe way forward to the next milestone â say, harvesting 125 million tons of wheat from the same or less land area â is through our jointly developing and making available new, cost effective, sustainable technologies for smallholder farmers,â he said.
Wheat research and development results to date, challenges, and future initiatives occupied the table at the 28th All India Wheat & Barley Research Workersâ Meeting, which took place in Udaipur, state of Rajasthan, August 28-30, 2023, and which ICAR and CIMMYT wheat scientists attended.
Generous funding from various agencies, including the following, have supported the work described: The Australian Centre for International Agricultural Research (ACIAR), the Bill & Melinda Gates Foundation, the Federal Ministry for Economic Cooperation and Development of Germany (BMZ), the Foreign, Commonwealth & Development Office of UKâs Government (FCDO), the Foundation for Food & Agricultural Research (FFAR), HarvestPlus, ICAR, the United States Agency for International Development (USAID), funders of the One CGIAR Accelerated Breeding Initiative (ABI), and the Plant Health Initiative (PHI).
Intention, collaboration and commitment are critical to bridging the research and practice gap. Gender development practitioners and researchers from CGIAR centers, universities, national agricultural research and extension systems (NARES), civil society, and donor representatives this week shared insights from their research and work at the gender conference in New Delhi, India.
The discussion and exchange promises to create collaborations and opportunities devoted to improving the conditions and agency of women, youth and Indigenous communities in the Global South. âTransformative research can lead to meaningful impact,â said Angela Meentzen, senior gender researcher at CIMMYT. âWe have been looking forward to this conference because coming together as researchers, scientists and development practitioners, we can discuss and share insights from each otherâs practices and experiences from the field.â
Leading researchers and scientists from CIMMYT Asia and Africa presented their research and enriched the gender discussions at the conference. Meentzen said that CIMMYT is proud to support gender research that contributes meaningfully to transformative change and impact.
Below are highlights of four research poster presentations by our researchers (of the six presented by CIMMYT) at the conference:
Scientist Vijayalaxmi Khed examined how women manage excess workload (working inside and outside the house), a clear trade-off between productive and leisure time without change in domestic responsibilities. Due to domestic workload, she found that womenâs time away from farms does not translate into leisure. Another important finding was that women with more agency had less time for leisure, unlike for men.
In her poster presentation, she concluded that rural womenâs nexus of time poverty and decision-making has âclear implications for the development and diffusion of laborsaving technologies in agriculture.â
Working on the same study with Khed, Vijesh Krishna explored the relationship between womenâs involvement in agricultural activities and decision-making. His presentation, âFarm managers or unpaid laborers?â, from the study covering 347 wheat-farming households across two years, concludes that âdespite playing a crucial role in wheat farming in central India, most women lacked the ability to influence decisions.â
Gender-intentional maize breeding for better adoption and productivity in sub-Saharan Africa
Michael Euler, agriculture and resource economist, in his poster presentation explained how an on-farm trial to improve gender-intentional breeding and varietal adoption in maize was designed by CIMMYT breeders and researchers.
The study hypothesized that gender dynamics in household labor allocation and decision-making in maize systems influence trait preferences and farmersâ adoption of varieties. So, researchers conducted on-farm trials and household surveys with individual women and men household members to capture differences in their trait preferences in maize cultivationâproduction systems, seed demand and seed accessâwith 800 smallholder farmers in Zimbabwe and Kenya.
Euler emphasized the influence of socioeconomic and agroecological factors, including bioticâabiotic stress, in the household decisions on maize varietal adoption.
He concluded that the study results will help âguide the product development of regional maize breeding programs and strengthen communitiesâ adaptation to the changing environmental conditions for maize cultivation.â
Adoption of a weeding technology may lead to labor displacement of marginalized women laborers
Presenting a poster for the same session as Euler, Maxwell Mkondiwaâin a study coauthored with colleagues Khed and Krishnaâhighlighted how rapid diffusion of a laborsaving technology like herbicides could exclude the marginalized further. The study occurred in Indiaâs state of Bihar, looking at nonfarming rural poor, primarily women, from socially marginalized groups.
From data on chemical weeding, the study analyzed the technologyâs impact on inequalityâ highlighting how marginalized women laborers who work on manual weeding are then replaced by men who apply herbicides.
He stressed that not enough research is devoted to understanding whether farmer adoption of laborsaving technologies worsens economic inequalities or reinstates labor into better tasks. âWe hope the evidence we generated will help researchers and policymakers develop relevant actions toward more inclusive innovations, and support laborers with new skills for the transitions,â said Mkondiwa.
Women exhibit limited technical knowledge and experience social benefits differently in male-headed households of CASI technology adoption
Emma Karki, in her poster, explained that there is limited knowledge of the impact of technology adoption on women in a male-headed household in South Asiaâwith decision powers generally resting with male household members. The research tried to understand the gendered differences in the evaluation of technology adoption in male-headed households using conservation agriculture-based sustainable intensification (CASI) technology as a case study.
The study focused on identifying the commonalities and differences in the experiences and evaluation of CASI technology. Results indicated that âdespite technology adoption, women had limited mechanistic understanding compared to men, with similar limitations on womenâs time use and capacity development,” said Karki.
For future CASI promotion, Karki concluded: âReducing information gaps and incorporating technological preferences of women needs prioritizing, including creating opportunities for them to access knowledge and engage both men and women in critical discussions surrounding gender norms.â
Similarly, Moti Jaletaâs research presentation highlighted the challenges of mechanization adoption for smallholder farmers in Ethiopia, primarily women. âIntentional research, whether in gender or social development, helps identify problems and opportunities for change,â endorsed Jaleta.
Meaningful research helps achieve gender and social inclusion goals
The âFrom Research to Impact: CGIAR GENDER Impact Platform and ICAR Conference 2023â, between October 9-12, 2023, in New Delhi, gathered researchers from 68 countries. In her inaugural address at the conferenceâs opening, the President of India Smt. Draupadi Murmu affirmed, âFor ecologically sustainable, ethically desirable, economically affordable and socially justifiable production, we need research which can enable conditions to reach these goals.â
At the end of the four-day conferenceâwith 60 research presentations and six plenary sessionsâthe organizers and participants reflected on their resolve âFrom Research To Impact,â and the promise to recognize and collectively address the gender and social inequities in agrifood systems development.
Are agroecological approaches, based for example on the use of legumes and manure, enough by themselves to ensure a long-term increase in annual crop yields in sub-Saharan Africa (SSA), without using more mineral fertilizer?
The answer is no, according to a team of agronomists who have published an in-depth analysis of 150 scientific articles on annual crops (maize, sorghum, millet, rice, cassava, etc.) and tropical legumes, both annual grain legumes (cowpea, groundnut) and legume trees (acacia, sesbania) in tropical environments.
These publications collate 50 years of knowledge on nutrient balances in sub-Saharan Africa, biological nitrogen fixation by tropical legumes, manure use in smallholder farming systems and the environmental impact of mineral fertilizer.
âWhen we look at comparable climate conditions and physical soil constraints, yields of maize â the main source of calories for people â in sub-Saharan Africa are three to four times lower than elsewhere in the world. This is largely due to the fact that mineral fertilizer use (nitrogen, potassium) is on average four times lower thereâ, says Gatien Falconnier, a researcher at CIRAD based in Zimbabwe and lead author of the article. âOn average, 13 kg of nitrogen are used per hectare and per year in sub-Saharan Africa, for all crops, bearing in mind that the poorest farmers have no access to nitrogen fertilizers and therefore do not use them. It is mainly agri-business and vegetable farmers that have access to fertilizersâ, adds François Affholder, an agronomist at CIRAD based in Mozambique and co-author of the article.
âOur objective is not to produce like Europe or North America, but to produce more and more regularly according to the seasons and the years, and thus to increase the economic sustainability of our farming systems. To do so, we must ensure a minimum level of nutrients for crops, which require essential mineral elements for efficient photosynthesis, and therefore growth. Soils are typically lacking in mineral elements in sub-Saharan Africa, and the largely insufficient organic inputs lead to nutrient deficiencies in crops. This is the main limiting factor for crop yields, excluding drought situationsâ, says Pauline Chivenge of the African Plant Nutrition Institute (APNI). âThe work by Christian Pieri showed as early as 1989 that it is possible to restore high levels of fertility to African soils through a balanced approach to organic and mineral nutrient inputsâ, says François Affholder.
The article highlights five reasons why more mineral fertilizer is needed in sub-Saharan Africa:
âIf we take account of biophysical production factors, such as climate and soil, and shortages of land and agricultural workers, it will be impossible to reach a satisfactory production level by fertilizing soils only with manure and using legumesâ, says Leonard Rusinamhodzi, an agricultural researcher at the Ghana International Institute of Tropical Agriculture.
However, âagroecological principles linked directly to improving soil fertility, such as recycling of mineral and organic elements, crop efficiency and diversity, with for example agroforestry practices and cereal-legume intercropping, remain essential to improve soil health. Soil fertility is based on its organic matter content, provided by plant growth that determines the biomass that is returned to the soil in the form of roots and plant residues. Efficient mineral fertilizer use starts a virtuous circle. These nutrients are crucial for the sustainability of agricultural productivityâ, says Gatien Falconnier.
The researchers therefore argue for a nuanced position that recognizes the need to increase mineral fertilizer use in sub-Saharan Africa, in a moderate manner based on efficient practices, in conjunction with the use of agroecological practices and appropriate policy support. This balanced approach is aimed at ensuring long-term food security while preserving ecosystems and preventing soil degradation.
Référence
Falconnier, G. N., Cardinael, R., Corbeels, M., Baudron, F., Chivenge, P., Couëdel, A., Ripoche, A., Affholder, F., Naudin, K., Benaillon, E., Rusinamhodzi, L., Leroux, L., Vanlauwe, B., & Giller, K. E. (2023).
The input reduction principle of agroecology is wrong when it comes to mineral fertilizer use in sub-Saharan Africa. Outlook on Agriculture, 0(0). https://doi.org/10.1177/00307270231199795
*CIRAD, CIMMYT, International Institute of Tropical Agriculture (IITA), Wageningen University and the African Plant Nutrition Institute (APNI)
Contact: presse@cirad.fr
Scientists:Â
Gatien Falconnier
gatien.falconnier@cirad.fr
Pauline Chivenge
P.CHIVENGE@apni.net
Leonard Rusinamhodzi
L.Rusinamhodzi@cgiar.org
AÂ recent webinar organized by CIMMYT brought together three experts to discuss the importance of millets as key contributors to improving food and nutrition security and resilience to climate change. Offering a wealth of knowledge and insights, the panel discussion was moderated by Kevin Pixley, director of the Dryland Crops Program (DCP), who led a dynamic and engaging discussion highlighting CIMMYT’s work on dryland crops, the climate resiliency and versatility of millets, and biofortification initiatives.
“Millet improvement programs are central to regional dryland crop improvement networksâ, stated Harish Gandhi, breeding lead for DCP. Providing a comprehensive overview of the program, Gandhi emphasized its significance in addressing food and nutrition security as well as climate resilience. “With partners, we are co-designing and co-implementing crop improvement strategies, catalyzing the development of effective and sustainable crop improvement networks”, he said. The dryland crop improvement networks bring together 17 National Agricultural Research and Extension Systems (NARES) in Western, Central, Eastern and Southern Africa working jointly to cultivate the potential and impacts of sorghum, pearl millet, groundnut, cowpea, bean, pigeon pea and chickpea. The program is aligned with CGIAR and the CIMMYT 2030 Strategy to transform agrifood systems through a dense network of impactful partnerships for enhanced sustainability, productivity and profitability.
The climate resiliency and adaptability of millets to arid and semi-arid regions make them a staple for smallholder farmers in Africa. “Millet is a drought-tolerant, climate-resilient crop with profound nutritional benefits. It’s rich in iron, zinc and other essential nutrients, making it a promising food against malnutrition and diet-related diseases”, emphasized Maryam Dawud, project lead at the Lake Chad Research Institute in Nigeria. Highlighting the significance of millets in building resilient agricultural systems, Dawud also explored innovations in millet consumption in diverse food products, including gluten-free options.
Mahalingam Govindaraj, senior scientist at HarvestPlus-Alliance Bioversity and CIAT, gave insights into crop biofortification, underlining the pressing need for crop nutritional enhancement due to widespread deficiencies, especially in the Global South. He introduced the HarvestPlus developed Biofortification Priority Index (BPI) which enables decision makers to make informed decisions about crop selection, target nutrients and countries. Additionally, Govindaraj highlighted the success of biofortification in enhancing essential micronutrients, especially in pearl millet, and discussed the science, technology and innovations that help to drive the mainstreaming of biofortification within CGIAR and NARES breeding and testing programs.
During the Q&A session, the speakers addressed questions from the audience of more than 150 participants, clarifying misconceptions and expanding on their subjects. Questions from the engaging audience span a wide range of themes and included the significance of different millet types and why they are frequently grouped together; the correlation between zinc and iron content in pearl millets, particularly in relation to their high fiber content; and the strategic approach of dryland crops in supporting capacity building for the NARES, among many other topics.
As the webinar came to a close, it was evident that millets are more than just cereals; they offer a promising solution to a variety of global food system challenges. From their resilience in harsh climates to their rich nutritional value and potential for innovation in various food products, millets stand as a beacon of hope in developing climate-resilient agriculture for a sustainable future.
The webinar is also accessible in Spanish, French and Hindi.
CIMMYT participated in the inaugural Global Conference on Sustainable Agricultural Mechanization, organized by the Food and Agriculture Organization of the United Nations (FAO) from September 27-29, 2023. The gathering provided space for focused dialogues to prioritize actions and strengthen technical networks for sustainable development of agricultural mechanization.
Bram Govaerts, CIMMYT director general, presented a keynote address on September 27 regarding climate change and mechanization. As a global thought leader and change agent for climate resilient, sustainable and inclusive agricultural development, CIMMYT has many specific initiatives centered on mechanization for facilitating machine innovations and scaling-up improved farming practices for sustainability and farmer competitiveness.
Collaboration is a hallmark of CIMMYTâs endeavors in mechanization, including a strong partnership with local governments across Latin America, Africa and Asia, and international cooperation agencies, supporting the Green Innovations Centers installed by GIZ-BMZ and working on accelerated delivery models together with USAID, in Malawi, Zimbabwe and Bangladesh, to name only a few. Further, local value chain actor engagement is crucial and necessary in this work to connect farmers with viable solutions.
CIMMYT has a long history of leading projects aimed at mechanizing the agricultural efforts of smallholder farmers, including the successful MasAgro Productor in Mexico and FACASI (farm mechanization and conservation agriculture for sustainable intensification) in East and South Africa. At present, the Harnessing Appropriate-Scale Farm Mechanization in Zimbabwe (HAFIZ) project is working towards to improve access to mechanization and reduce labor drudgery while stimulating the adoption of climate-smart/sustainable intensification technologies. The project engages deeply with the private sector in Zimbabwe and South Africa to ensure long-term efficacy.
The Scaling Out Small Mechanization in the Ethiopian Highlands project was active from 2017 to 2022 and increased access for smallholder farmers to planting and harvesting machines. Farmers using two-wheel tractors furnished by the project reduced the time needed to establish a wheat crop from 100 hours per hectare to fewer than 10 hours. CIMMYTâs work was in partnership with the Africa-RISING program led by the International Livestock Research Institute (ILRI) in Ethiopia.
âAt CIMMYT, we work knowing that mechanization is a system, not only a technology,â said Govaerts. âSustainable mechanization efforts require infrastructure like delivery networks, spare parts and capacity development. Working with local partners is the best way to ensure that any mechanization effort reaches the right people with the right support.â
Read these stories about CIMMYTâs efforts to support equal access to agricultural mechanization and scaling up within local contexts.
Mechanization is a process of introducing technology or farm equipment to increase field efficiency. CIMMYTâs mechanization work is context specific, to help farmers have access to the appropriate tools that are new, smart and ideal for their unique farming conditions.
Working with the Cereal Systems Initiative for South Asia (CSISA), CIMMYT is leading mechanization efforts in Northern India. Combined with sustainable agriculture, the next generation of farmers now have access to tractors, seeders and other tools that are increasing yield and reducing back-breaking labor.
The delivery of row seeders from India to Benin demonstrates a new path to sustainable South-South business relationships. Developed in India in an iterative design process with farmers, portable row seeders have been a great success. Working with GIC, CIMMYT facilitated a technology and materiel transfer of the portable row seeders to Benin.
Peanuts thrive as a crop in Togo and other West Africa countries, but post-harvest is threatened by aflatoxins, so the entire crop needs to dry. Traditionally, farmers, often women, have dried the peanuts in the open air, subject to weather and other pests. However, CIMMYT, working with GIC, has introduced solar-powered dryers, which speeds up the drying process by a factor of four.
Working with partners in Burkina Faso, CIMMYT is facilitating smallholder mechanization with a model of cascading effects: one farmer mechanizing can then use their skills and eqBMZuipment to help their neighbors, leading to community-wide benefits.
Visit our mechanization page to read stories about ongoing mechanization initiatives.
Millions of rural Indians, mostly farmers, are at the mercy of changing weather and climate change. Rising temperature and heat stress, unpredictable rainfall patterns, increasing drought-like situations, soil erosion and depleting water tables are leading to poorer yields and reduced income for farmers. While the agricultural sector and farmers are most affected by the adverse impacts of climate change, it is also one of the sectors significantly responsible for greenhouse gas emissions, contributing about 14% of the total greenhouse gas emissions in the country.
Good agronomy and soil management through conservation agriculture practices such as no-till farming, crop rotation, and in-situ crop harvest residue management are resource efficient and help reduce greenhouse gas emissions significantly. The intensification of these conservation agriculture practices by the Cereal Systems Initiative for South Asia (CSISA)âa regional project led by CIMMYT to sustainably enhance cereal crop productivity and improve smallholder farmersâ livelihoods in Bangladesh, India, and Nepalâand partners is helping smallholder farmers to improve their yield and income with less input costs.
Climate smart agriculture
Over 70% of Bihar’s population is engaged in agriculture production, with wheat and rice as the two major crops grown in the state. Bordering Uttar Pradesh, Buxar, is one of the many rural districts in Bihar, with over 108,000 hectares of land used for agriculture. The area is plain, fertile and has good irrigation facilities. The rice-wheat cropping system forms the dominant practice here, and pulses and other non-cereal crops are grown additionally during winters.
CSISA began promoting zero tillage in wheat cultivation in the area in 2010. Along with Krishi Vigyan Kendras (KVKs), and local agriculture departments, awareness and frontline demonstrations on different best management practices were conducted to inform farmers of alternative approaches to cultivating wheat and rice sustainably. Farmers were used to conventional farming methods, with more input costs and labor-intensive practices. In addition, as farmers were growing long-duration rice varieties, they typically sowed wheat in late November to early December, which meant harvesting in late April/May. Harvesting wheat this late caused yield losses due to terminal heat stress at the grain filling stage. With increasingly hot temperatures in recent years due to climate change, yield loss in wheat is imminent.
To help curb these yield losses, researchers and officials began promoting early sowing of wheat through a technology called zero tillage in the region, with sowing recommended before mid-November. As expected, this helped farmers to escape high temperature stress at the time of the dough stage, thus, saving grain shrinkage and yield loss at harvest. Zero tillage technology is a tested method with the potential to increase crop productivity through better time management and reduced input cost.
Deepak Kumar Singh, scientist at CSISA who has been supporting agri-extension efforts in the region for nearly a decade recalled how CSISA and partners were able to get more farmers on board with zero tillage and early wheat sowing:
“The best practices of zero till technology and early wheat sowing were encouraged widely through exposure visits, demonstration trials on progressive farmers’ fields, and providing support from local KVKs for machines and quality seeds, including the promotion of private service providers,” he said.
As more farmers were reached through field events, with visible on-field results during public harvest activities held at demonstration fields by CSISA and KVKs, the region gradually adopted early wheat sowing, zero tillage and direct seeded rice technologies. Currently, in the district, it is estimated that over 40% of wheat cultivation under the rice-wheat system is through zero till, helping farmers obtain better yield and profits.
Rice-wheat cropping systems, resilient and sustainable in increasingly changing climate
Rajapur, a small village in Buxar district, boasts 100% adoption of zero tillage in wheat cropping. We met farmer Rahul Rai whose family has been involved in farming for generations. The family owns over thirty acres of land with agriculture as the primary source of income. His father and his siblings were used to conventional farming methods. The produce from their farm was sufficient for household consumption and with the little extra left, they sold and made some income. On the significance of agriculture and farming for his family, Rahul Rai says, “this farmland has been feeding and supporting 17 members in our joint household.”
When young Rahul Rai got down to work in the family fields in the early 2000s, he was keen to explore possibilities to improve the income generated from the farm. Initially, like many others, he was engaged in intensive farming. According to Rai, “with the input costs rising daily, including scarce labor and soil health deterioration, bringing in some extra income seemed unsustainable”.
He first met researchers from the CSISA project and local KVK scientists in early 2011 in the neighboring village. The team was there to inform farmers about conservation agriculture practices and how to better manage yield and maintain soil health. Rai soon became more curious about the benefits of adopting these new methods over conventional practices. He started with a few acres with zero tillage and began sowing wheat by early November, as recommended by the scientists. In Rabi 2022-23, his wheat fields were sown by November 11, compared to the early years when the sowing date was around December.
With more participation and engagement with CSISA, in 2017, he joined other farmers from the region on an exposure visit to Patna organized by the CSISA-KVK network. In Patna, at the Indian Council of Agri Research – Research Complex for Eastern Region (ICAR-RCER), Rai and the visiting farmers were introduced to conservation agri-technologies for rice-wheat and other cropping systems. During the visit, they were informed about crop rotation and diversification, new seed varieties that are resilient and adaptable to changing climates, efficient use of plant protection chemicals and fertilizer and various subsidies from the center/state government to farmers. He later accompanied other progressive farmers on a CSISA-led travel seminar to Gorakhpur in 2017, where he observed acres and acres of wheat fields cultivated through zero tillage and early sowing that had yielded 6-7 tons per hectare (t/ha) on average.
At present, Rai’s family cultivates only zero till wheat in their fields and direct seeded rice on a few acres where irrigation facilities are well established. Rai asserts that until 2014, the wheat yield was about 10-15 quintals per acre (3.5-4 t/ha), rising to around 20-25 quintals per acre on average (5.5 t/ha in 2023) in recent years, thanks to conservation agriculture practices.
Today, the CSISA team has system optimization and demonstration trials on fields owned by Rai’s family where they conduct trials to demonstrate the importance and feasibility of different agri-practices and compare yields at harvest. Rai, a champion farmer who has been involved with CSISA for nearly a decade, said, “I am a collaborator with CSISA now. The data gathered from my fields on the compounding benefits of conservation agriculture technologies is used to promote the best practices and technology adoption across our district and state.”
One village at a time
Presently, Rajapur village has 100% zero tillage adoption. Despite most farmers being smallholders, this level of zero tillage adoption in wheat is impressive. Zero-till-based crop establishment, with appropriate diversification in crops grown, is economically beneficial and improves soil health. All these practices and technologies ensure lower greenhouse emissions and support climate change mitigation efforts. Above all, smallholder farmers are food secure and contributing in their small way to national and global food security.
To scale the adoption of conservation agriculture practices, CSISA and partners are collaborating with farmers in the district/state â many of whom are already 50-80% in zero tillage adoption. The team on the ground are conducting system optimization trials on farmers’ fields to generate data and evidence to support and strengthen policies and assist in integrating market intelligence to support access and availability of technology to all smallholders. Every year steadily, through a smallholder farmer, a village, a district, the effort is to slowly expand the area under conservation agriculture across the state and region and ensure increased system productivity and sustainability of agriculture.
In plant breeding, efforts to increase the rate of genetic gains and enhance crop resilience to the effects of climate change are often limited by the inaccessibility and costs of phenotyping methods. The recent rapid development of sensors, image-processing technology and data analysis has provided new opportunities for multiple scales phenotyping methods and systems. Among these, satellite imagery may represent one of the best ways to remotely monitor trials and nurseries planted in multiple locations, while standardizing protocols and reducing costs.
This is because relevant data collected as part of crop phenotyping can be generated from satellite images. For instance, the sensors onboard the SkySat satellite constellation of Planet Labs have four spectral bandsâblue, green, red, and infraredâwhich can be used to calculate the normalized difference vegetation index (NDVI), which is a measure of vegetation and its greenness, and various canopy traits like ground cover, leaf area index and chlorosis. It can also be used to monitor plot establishment and phenological parameters.
The use of satellite-based phenotyping in breeding trials has typically been restricted by low resolution, high cost and long intervals between fly-overs. However, the advent of a new generation of high-resolution satellitesâsuch as the SkySat constellationânow offers multispectral images at a 0.5m resolution with close to daily acquisition attempts on any place on Earth. This could be a game changer in terms of the scale at which yield trials can be conducted, enabling more precise variety placement and thereby increasing genetic diversity across farmerâs fields and reducing the probability of disease epidemics. It could also revolutionize the capacity for research in realistic field conditions, since traits can be measured throughout the cycle in a highly standardized way, over multiple sites at low cost. For example, an image which covers 25 km2 can monitor an entire research station at a cost of about US$300.
To test the suitability of this technology, a team of researchers from CIMMYT set out to evaluate the reliability of SkySat NDVI estimates for maize and wheat breeding plots of different sizes and spacing, as well as testing its capacity for detecting seasonal changes and genotypic differences.
Both their initial findings, recently published in Frontiers in Plant Science, and more recently acquired data, show that the SkySat satellites can be used to monitor plots commonly used in wheat and maize nurseries. While wheat yield plots usually are 1.2m wide, maize plots tend to consist of at least two rows, resulting in a width of 1.5m. Plot length ranges from 2-4m. The authors also discuss on other factors to be considered when extracting and interpreting satellite data from yield trials, such as plot spacing.
Through the successful collection of six satellite images in Central Mexico during the rainy season and parallel monitoring of a maize trial in Zimbabwe, the researchers demonstrate the flexibility of this tool. Beyond the improvement of spatial resolution, the researchers suggest that the next challenge will be the development and fine-tuning of operational procedures that ensure high quality, standardized data, allowing them to harness the benefits of the modern breeding triangle, which calls for the integration of phenomics, enviromics and genomics, to accelerate breeding gains.
Read the full study: Satellite imagery for high-throughput phenotyping in breeding plots
This research was supported by the Foundation for Food and Agriculture Research, the CGIAR Research Program on Maize, the CGIAR Research Program on Wheat, and the One CGIAR Initiatives on Digital Innovation, F2R-CWANA, and Accelerated Breeding.
The inaugural Rwanda National Seed Congress, which took place in Kigali on July 31 and August 1, 2023, marked a significant milestone for the country’s seed industry. Themed âPrivate Sector Strategic Roadmap for the Seed Industry 2030â, the event brought together key stakeholders from the government, public, and private sectors to address challenges and opportunities in the national seed value chain.
Discussions centered around pertinent issues concerning the seed sector in general, with a particular focus on the Rwandan National Seed Strategic Roadmap. This document, which was developed through consultations with various stakeholders, provides a comprehensive plan to steer the industry towards success and sustainable growth.
âEnhancing and managing the seed system is a complex endeavor that requires the collaboration of various stakeholders,â said Chris Ojiewo, CGIAR Seed Equal Initiative lead. âThis is where public-private partnerships come in as a valuable tool for nurturing the growth and expansion of the seed industry.â
During a presentation entitled Public-private Partnership: A Tool for Development and Strengthening of the Seed Sector, Ojiewo highlighted the growing importance of collaboration and partnerships in the current seed system. He emphasized that the processes and elements that shape the seed sector are complex and extensive, making it too much for any one organizationâwhether public or privateâto handle alone.
The way forward
During the congress, several key recommendations were proposed  to increase the potential of the seed industry. The government was encouraged to seek accreditation with major seed industry quality organizations, such as the International Seed Testing Association (ISTA) and Organization for Economic Co-operation and Development (OECD) certification schemes, while adopting International Union for the Protection of New Varieties of Plants (UPOV) to establish an improved regulatory environment conducive to industry growth.
The empowerment of the National Seed Association of Rwanda (NSAR) as an advocate and facilitator for the seed industry was also highlighted as an essential measure. The government’s support in enabling the seed association to become increasingly self-regulatory is seen as crucial to the industry’s growth over the next seven years, with private seed industry players developing internal systems to ensure compliance with rules and regulations.
Another key recommendation for increasing sustainable improved seed use in Rwanda was the use of Public-Private Partnerships (PPPs), which will play a critical role in promoting the country as a seed production and trade investment destination.
Ojiewo emphasized the importance of such partnerships, noting that âPPPs have the potential to transform the seed industry by leveraging the strengths of different organizations.â He further highlighted that in addressing the challenges of global food security and sustainable development, the way forward becomes clear through collaboration, innovation, and a shared commitment to advancing agricultural progress through collaborative efforts.
The congress also focused on attracting affordable financing to scale up investments throughout the seed value chain. It was considered essential to involve industry financial players in the development of optimal financing structures to support the expansion of the industry.
As a result of the successful event, plans have already been made for the second National Seed Congress in 2024. Scheduled to take place in Kigali on July 29 and 30, 2024, the next event aims to build on the achievements of the first congress and further drive the growth of Rwanda’s seed industry.
CGIARâs Seed Equal Initiative helps farmers by providing them with better seeds that are nutritious, preferred in the market, and that can withstand climate change. These varieties have been carefully developed to exhibit significant genetic advancements, ultimately benefiting farmers. It also makes sure that women and other marginalized groups have fair access to these seeds.