Skip to main content

funder_partner: CGIAR

New greenhouse supports research on yellow rust in Nepal

December, 2004

On December 1, CIMMYT handed over a greenhouse to the Plant Pathology Division of the Nepal Agricultural Research Council (NARC). Built with the support of CIMMYT’s project on foliar pathogens and funded by Belgian Development Cooperation (DGCD), this greenhouse will help sustain research on wheat diseases, despite Nepal’s current social conflict.

At a ceremony in Khumaltar, CIMMYT regional pathologist Etienne Duveiller delivered the greenhouse keys to T.K. Lama, Chief of the Plant Pathology Division. The new facility will help NARC scientists screen for resistance in wheat against yellow rust, a potentially devastating disease in the hill areas of Nepal. Grain losses can soar to 30% when early outbreaks occur, as demonstrated by last year’s severe epidemic in parts of the Kathmandu Valley.

Replacing Outmoded Resistance

Due to the breakdown of resistance in popular varieties like Sonalika, which date back to the Green Revolution, yellow rust epidemics have occurred in Nepal since the mid-1980s. In 1997, a new strain of the rust pathogen became prevalent in the Nepal hills—a strain that is virulent against Yr9, a gene from rye that has conferred resistance to yellow rust in many improved wheats.

To develop disease resistant plants, breeders artificially inoculate fields of experimental varieties and select the individuals or families that survive and produce grain. With help from CIMMYT, advanced lines from Nepal are tested annually in Pakistan to ensure that promising genotypes are exposed to new pathotypes of yellow rust from western Asia. But research of this type in Nepal has suffered in recent years, mainly from a lack of inoculum to apply to experimental plants. First, insecurity in Nepal has caused severe financial constraints and reduced operations for national agricultural research scientists. Second, there is a lack of proper facilities to produce rust inoculum for the timely inoculation of breeders’ fields. An alternate approach used—collecting natural inoculum that survives in off-season wheat crops—became nearly impossible after a series of dry years eliminated this source of the pathogen and security restrictions made travel impossible in remote hilly regions. Finally, less than optimal moisture in the screening fields of Khumaltar, where the Plant Pathology Division is located, has necessitated repeated applications of fresh inoculum.

The timely production of inoculum in the new greenhouse will improve this situation. This greenhouse has a robust and simple cooling system to control temperature, as well as a misting system that guarantees proper humidity. It will allow both screening against yellow rust under optimal conditions and the multiplication of inoculum. Since the wheat season is just starting, researchers working on other diseases and crops will benefit from having inoculum ready for breeders’ plots in January.

Preserving Spores and Global Partnerships

In an important recent accomplishment, according to Duveiller, Senior Wheat Pathologist Sarala Sharma was able to produce fresh inoculum directly from leaf samples collected last season, using local methods and dried leaves. “This is the first time that she was able to preserve inoculum from last March,” says Duveiller. “Yellow rust must be kept alive for multiplication in the greenhouse and cannot be grown on artificial media. The main problem is that it is very sensitive to high temperatures. In Nepal, power failures, poor refrigeration, and no possibilities of vacuum preservation make it hard to keep spores.”

During the greenhouse opening ceremony, Sharma underlined the importance of the long-standing collaboration between NARC and CIMMYT. She acknowledged CIMMYT’s continuous support, initiated by former CIMMYT wheat pathologists Jesse Dubin and the late Eugene Saari, who encouraged scientists to collect inoculum from rust-prone areas as a way to record the disease’s incidence and spread. These surveys had continued with support from Duveiller until recently, when traveling by road became difficult. Also recognized at the ceremony were the benefits of training on yellow rust pathotyping that Nepali scientists had received at IPO-Wageningen, the Netherlands, and Shimla, India.

CIMMYT wheat pathologist, Etienne Duveiller, with colleagues in Nepal.

Similar work may become possible now in Nepal, according to Duveiller. “This greenhouse, built with Indian technology and including inexpensive but sturdy polyethylene sheets for siding, is another example of the importance CIMMYT ascribes to rust diseases on wheat in Nepal and south Asia,” says Duveiller. The center recently funded the installation of a sprinkler system for use in disease resistance experiments at Bhairhawa farm in the Tarai Plains, where the Nepal Wheat Research Program is based.

The greenhouse handover ceremony was combined with the farewell party for two NARC pathologists who retired recently, K. Shrestha and C.B. Karki. A recognized rust pathologist and longtime CIMMYT friend, Karki received his Ph.D. from Montana State University and attended the second Regional Yellow Rust Conference in Islamabad, Pakistan, in March 2004. Dr. K. Shrestha attended CIMMYT’s conference on helminthosporium blight in Mexico.

For more information: e.duveiller@cgiar.org

Safe in the Bank?

CIMMYT E-News, vol 3 no. 5, May 2006

may04Keepers of worldwide maize germplasm collections meet at CIMMYT to see how they can work together to protect and conserve these resources.

Farmers know you protect and save your seed corn (maize) to ensure the next harvest. It’s a lesson the world apparently has not learned as gene banks, which could host tomorrow’s harvest of research breakthroughs and unique traits, find themselves nearly as endangered as the maize varieties and wild relatives they seek to conserve.

The meeting of the Maize Germplasm Network, sponsored by the Global Crop Diversity Trust, the World Bank, and CIMMYT, was called to initiate a global response to this growing crisis. Experts from around the world met at CIMMYT in Mexico in early May to begin hammering out a strategy for the long-term conservation of maize genetic diversity. Neither national nor international maize collections have fared well of late, as investments in public sector agricultural research have steadily declined and fierce competition for dwindling resources in the agricultural sciences has risen.

“People recognize that these collections have unique materials and are valuable,” says meeting co-organizer Major Goodman of North Carolina State University, “but donors simply do not like to get involved with a commitment that lasts forever, and that is what we are talking about with crop genetic resources collections.”

Ironically, the reluctance to invest in these operations comes at a time when molecular genetics opens new opportunities daily to exploit genetic resources carrying resistance to plant diseases, insect pests, and threats such as drought, soil salinity, and heat stress. Collecting and preserving the basic sources of resistance traits takes on added importance.

may05

Meeting participants found “remarkable agreement” on top priorities, says Suketoshi Taba, head of the CIMMYT maize gene bank and co-organizer of the meeting. At the top of the list, he says, is rescuing landraces and adapted germplasm identified as being endangered—both of maize and its wild relative, teosinte. Also urgent is the need to create proper documentation for all collections, both from the Americas (considered “primary” diversity, being from the crop’s center of origin) and from other continents (known as “secondary” diversity). The ultimate aim is to facilitate use of the collections while reducing redundancies and their costs. Once proper documentation is achieved, it was proposed that partners would work to establish a “meta-database” of existing maize genetic databases. The essential but perpetually under-funded activities of seed regeneration and recollection must also be considered. Finally, participants agreed that CIMMYT should serve as the coordinating institution for advancing the identified priorities forward on the international scientific agenda.

The meeting co-organizers expressed the consensus of the group in stating that the challenges they face are beyond the capacity of any single institution or nation—thus the need for a broad-based solution. They also observed that clearly there are roles, such as the costly long-term maintenance of collections and distribution of seed for research, that are better assumed by large gene banks, such as those at CIMMYT or the USDA maize collection at Ames, Iowa. These banks, however, find it difficult to regenerate varieties that originated in tropical or highland areas, a role better played by national gene banks. Furthermore, the national banks, when properly resourced, can more efficiently collect new seed and distribute seed from collections to local plant breeders and biologists. But those wishing to implement such a division of tasks must first overcome barriers of plant ownership rights, nationalism, phytosanitary regulations, and a tower of database babble that hampers effective documentation and use of collections.

“I am sure that there is a role for the Trust in this work, particularly in securing unique materials, securing landraces, and helping with the backlog of materials that urgently need regeneration,” says Brigitte LalibertĂ© of the Global Crop Diversity Trust. “But it is critical to the Trust that a global system and strategy is established whereby there are roles for international organizations and good links with national programs. This meeting was a constructive first step.”

For more information contact Suketoshi Taba (s.taba@cgiar.org)

Kernels with a kick: Quality protein maize improves child nutrition

Throughout the developing world, 32% of children under the age of five are stunted and 20% are underweight. Improving the quality of protein in maize can help alleviate this problem in areas where people eat a lot of maize. Here a mother feeds her child QPM during a QPM feeding program hosted by Self-Help International in Ghana.
Throughout the developing world, 32% of children under the age of five are stunted and 20% are underweight. Improving the quality of protein in maize can help alleviate this problem in areas where people eat a lot of maize. Here a mother feeds her child QPM during a QPM feeding program hosted by Self-Help International in Ghana.

It looks and tastes like any other maize, but hidden inside each bite of quality protein maize (QPM) are specialized natural molecules waiting to give the diner an extra boost. A new study evaluates the nutritional impact of QPM on target populations.

Eating quality protein maize (QPM) increases the growth rate of moderately malnourished children who survive on a maize-dominated diet, according to a new study co-authored by five scientists, including two CIMMYT maize experts.

QPM grain is a biofortified, non-transgenic food that provides improved protein quality to consumers. It looks and tastes like normal maize, but QPM contains a naturally-occurring mutant maize gene that increases the amount of two amino acids—lysine and tryptophan—necessary for protein synthesis in humans. The total amount of protein in QPM is not actually increased, but rather the protein is enhanced so that it delivers a higher benefit when consumed by monogastric beings, like humans and pigs. Drawing on three decades of previous studies on QPM and using sophisticated statistical analysis, the paper “A meta-analysis of community-based studies on quality protein maize,” published in Food Policy, shows that when children suffering from malnutrition in maize-dependent areas consume QPM instead of conventional maize, they benefit from a 12% increased growth rate for weight and a 9% increased growth rate for height.

“We tried to bring together all the relevant work we could find on QPM and analyze and discuss it as transparently as possible,” said Nilupa Gunaratna, statistician at the International Nutrition Foundation and the paper’s lead author. “We discussed all the strengths and weaknesses of past studies, and took these into account in our evaluation. We also proceeded very conservatively, trying different methods, studying the effects of individual studies and outliers. In every approach, we came to the same conclusion: QPM has a positive effect on the growth of undernourished infants and young children for whom maize is a staple food.”

Scientists use a light box to select maize seed expressing the quality protein trait. Light is projected through the seed, and kernels that appear dark at the base but translucent elsewhere are prime QPM candidates.
Scientists use a light box to select maize seed expressing the quality protein trait. Light is projected through the seed, and kernels that appear dark at the base but translucent elsewhere are prime QPM candidates.

Give the people what they eat
Maize is the third-most important cereal crop for direct consumption (after rice and wheat), and is particularly significant in developing areas, such as Africa, where it is the main food source for more than 300 million people. In 12 developing countries, it accounts for more than 30% of total dietary protein. And though maize alone cannot provide all the nutrients needed for a healthy diet, maize with extra essential nutrients can go a long way toward helping the nearly 200 million children in poor nations who suffer stunted growth from malnutrition and for whom a diversified diet is currently unattainable.

“Staple foods are the cheapest foods, and the poorer you are, the more you depend on them, which often does not provide a balanced diet,” said co-author Kevin Pixley, who divides his time between CIMMYT and HarvestPlus. “We would all prefer to see each and every person eating a healthy and balanced diet, but that isn’t always possible. Biofortification is one part of the strategy to help combat malnutrition.”

QPM complexities
Though QPM is more nutritious than conventional maize and many of its varieties yield as well as or better than popular conventional maize varieties, widespread acceptance of QPM remains elusive. Of the 90 million hectares of maize grown in Mexico, Central America, sub-Saharan Africa, and Asia, only an estimated 1% or less is QPM.

Many seed companies lack interest in QPM because of the research costs and challenges of assuring its superior nutritional quality. If QPM is grown next to fields of conventional maize, cross-pollination will dilute the QPM trait, and QPM also requires separate storage and quality testing/monitoring. This and the fact that the enhanced maize brings no market premium—largely because its quality trait is not visibly distinguishable—have often deterred seed companies from marketing QPM altogether.

Yet in areas where there has been a substantial effort to promote it and make quality seed available, QPM has gained ground. For example, in 1992 Ghana released its first QPM variety, Obatanpa. Obatanpa is an open-pollinated variety, meaning its grain can be saved by farmers and re-sown as seed without any major decline in yield. In 2005, it was calculated that Obatanpa accounted for over 90% of improved seed sales in Ghana. In 2008, Wayne Haag of the Sasakawa Africa Association estimated that 350,000 hectares of QPM were grown in Ghana, making it the world’s largest QPM grower. Strong support and effort by multidisciplinary institutions, including the Ghanaian government, made this possible. Four of the QPM studies used in the meta-analysis were based in Ghana. Obatanpa’s high and stable yields and end-use quality have made it popular not only in Ghana but in several other sub-Saharan African countries, where it has been released under other names.

Nilupa Gunaratna, the paper’s main author, helps a farmer and his daughter fill out a QPM survey in Karatu, Tanzania.
Nilupa Gunaratna, the paper’s main author, helps a farmer and his daughter fill out a QPM survey in Karatu, Tanzania.

Fortifying future research

The authors of the QPM meta-analysis—two statisticians, an economist, a nutritionist, and a plant breeder—hope its clear results will finally dissuade QPM critics, many of whom have questioned whether QPM offers nutritional benefits for humans, and that the paper will lead to renewed efforts to explore improved nutrition through biofortified crops. “While there is still interesting and important nutritional research to be done on QPM, I hope the focus will start to shift from whether QPM has a benefit to how QPM can be promoted, disseminated, and used by farmers and consumers to have the most impact,” said Gunaratna. CIMMYT is currently involved in several QPM projects, including the QPM Development (QPMD) project in Africa, which is funded by the Canadian International Development Agency (CIDA). Launched in 2003, the project uses QPM as a key tool for improving food security, nutrition, and the incomes of resource-poor farming families in four countries (Ethiopia, Kenya, Tanzania, and Uganda). In the project’s first five years, seven new QPM varieties were released (bringing the total in the region to 12) and education efforts resulted in 270 field days attended by over 37,000 farmers, roughly 40% of whom were women. CIDA also funds AgroSalud, a five-year project that started in 2005 to extend the benefits of nutritionally improved staple crops to Latin America and the Caribbean. In 2002, two CIMMYT scientists received the World Food Prize for their work to develop QPM.

Drought wars

CIMMYT E-News, vol 3 no. 6, June 2006

june02In the war against drought each victory is very hard-fought. Stress tolerant maize will make a difference.

For years CIMMYT has been developing maize that is better suited to the harsher, drier weather conditions many Africans face today. Ever more drought-tolerant maize developed by CIMMYT and its partners is a major scientific success. The recent drought that affected Kenya and neighboring countries would seem to be the perfect crucible in which to test the capacity of this maize to make a difference in people’s lives.

That’s what the people of the Wikwatyo Self Help Group, a small farmer’s group in the village of Kaasuvi in Makueni, south-eastern Kenya, thought as well. The region has perennial food shortages which increasing drought has been making worse. The African Medical and Research Foundation (AMREF), an international NGO, provides emergency food relief on a regular basis in the region.

“They always give you less than you need so people still have to go out and work,” says Mrs. Musiawa Kiluva, the chairperson of the 14-member self help group referring to the fact that farmers still try to grow maize in the hostile land. “Furthermore people have wised up. Even if you receive relief food you can sell the maize you harvest and make some money.”

Working with researchers from CIMMYT and the Kenya Agricultural Research Institute (KARI) the group learned community-based seed production, specializing in newly-released, open-pollinated varieties (varieties that let farmers save seed from one season to the next without paying a penalty in yield). Mrs. Kiluva says the group decided to try seed production when the rains failed between 2003 and 2004, resulting in an acute seed shortage throughout the region. This was because farm families had to eat the seed they normally would have saved.

“You can’t save seed when you are hungry,” Wilson Muasya, a KARI maize breeder working with the CIMMYT Africa Maize Stress (AMS) project, points out.

The Wikwatyo group had been exposed to drought-tolerant maize varieties through CIMMYT-coordinated trials and demonstration plots, and the farmers had already decided they wanted to grow them. Muasya was eager to see these new varieties multiplied and in farmers’ fields.

“This shows the natural progression that improved varieties take,” says CIMMYT maize breeder Stephen Mugo, who coordinated the Rockefeller Foundation-funded seed component of the project. “Breeding, participatory evaluation, acceptance by farmers, and then seed production when the demand has been created is what we hope to see.”

Using their training, within four months of planting the Wikwatyo group had harvested, dried, shelled, treated, and bagged 4.2 tons of certified, quality seed of an extra-early, low-nitrogen-tolerant variety. They expected to sell the seed, emulating the success of a similar group in Uganda.

The Bakusekamajja Women’s Group in Uganda, trained by the seed project since 2001 is a great success. Now with a membership of 400 women and 53 men, from 16 members just 10 years ago, Bakusekamajja currently sells 430 tons of certified maize seed each year to a commercial seed company. In 2002 the group registered itself as a fully fledged agricultural NGO. “Our members’ incomes have increased; the women are financially independent,” says the group’s chairperson Grace Bakaira.

Unfortunately, the drought in Makueni region continued into 2006 leaving farmers with few resources at all. They were afraid to spend what little they had on the one technology that might make a huge difference next season. While demeaning, food aid was safer. The Wikwatyo group is going to have to wait a bit, but they know they have a winning technology. It is just a matter of time.

“If we could continue to produce this new seed, the farmers in Makueni would start harvesting maize within 3 months, and very soon people would no longer have to depend on relief food,” says Mrs. Kiluva. “Progressive farmers could lead by example.”

For more information contact Stephen Mugo (s.mugo@cgiar.org)

The Africa Maize Stress project is currently supported by the German Ministry for Economic Cooperation and Development (BMZ), the Rockefeller Foundation and the International Fund for Agricultural Development (IFAD)

New boost for maize-legume cropping in eastern and southern Africa

maize-esaCIMMYT has entered into a collaborative research program to increase household and regional food security and incomes, as well as economic development, in eastern and southern Africa, through improved productivity from more resilient and sustainable maize-legume farming systems. Known as “Sustainable intensification of maize-legume cropping systems for food security in eastern and southern Africa” (SIMLESA), the program aims to increase productivity by 30% and reduce downside risk by 30% within a decade for at least 0.5 million farm households in those countries, with spill-over benefits throughout the region. In addition to CIMMYT, the program involves the Australian Centre for International Agricultural Research (ACIAR), the Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA), the national agricultural research systems of Ethiopia, Kenya, Malawi, Mozambique, and Tanzania, as well as the International Center for Research for the Semi-Arid Tropics (ICRISAT), the Agricultural Research Council (ARC) of South Africa, the Department of Employment, Economic Development and Innovation Queensland, and Murdoch University in Western Australia. “The demand for maize in the region is expected to increase by at least 40% over the next ten years; and the demand for legumes by 50%,” says CIMMYT socioeconomist, Mulugetta Mekuria, who is leading the center’s efforts under the program. “Seasonal variability causes wide swings in food crop yields, including maize and legumes. This program will play a crucial role in reducing farmers’ risk and the vulnerability of farm households.” Work is being funded with Aus$ 20 million from the Australian Government, and forms part of the Government’s new, four-year Food Security through Rural Development Initiative.

For more information: Mulugetta Mekuria, socioeconomist (m.mekuria@cgiar.org)
For interviews and media support: Mike Listman, corporate communications (m.listman@cgiar.org)

See also official announcements from ACIAR and AusAid

Improved maize varieties and partnerships welcomed in Bhutan

CIMMYT E-News, vol 5 no. 11, November 2008

nov02Sandwiched between China and India, the Kingdom of Bhutan is a small country that relies on maize in a big way. But maize yields are typically low due to crop diseases, drought, and poor access to seed of improved varieties, among other reasons. CIMMYT is committed to improving Bhutan’s food security by providing high-yielding, pest-resistant maize varieties to farmers and capacity-building for local scientists.

“If there is no maize there is nothing to eat,” says Mr. S. Naitein, who farms maize on half a hectare of land in Bhutan. But it’s not easy to grow, he says, citing challenges such as animals (monkeys and wild boars), insects, poor soil fertility, drought, poor access to improved seed varieties, and crop diseases like gray leaf spot (GLS) and turcicum leaf blight (TLB).

But since planting Yangtsipa—an improved maize variety derived from Suwan-1, a variety introduced from CIMMYT’s former regional maize program in Thailand—Naitein has seen a real improvement in his maize yields. The local maize variety yielded 1,700 kilograms per hectare, whereas Yangtsipa gave him 2,400 kilograms per hectare, a 40% yield increase.

“It’s no wonder that Yangtsipa is by far the most popular improved variety among Bhutanese farmers,” says Guillermo Ortiz-Ferrara, CIMMYT regional cereal breeder posted in Nepal. “Nonetheless, many local varieties of maize still occupy large areas of the country and don’t yield well.”

Maize is a staple food in Bhutan. Many people eat Tengma (pounded maize) as a snack with a cup of tea and Kharang (maize grits) are also popular. “Among the food crops, maize plays a critical role in household food security, especially for the poor,” says Ortiz-Ferrara. About 38% of the rural Bhutanese population lives below the poverty line and some 37,000 households cultivate maize. It’s estimated that 80% of this maize is consumed at the household level, according to Bhutan’s Renewable Natural Resources Research Center (RNRRC).

Leaf us alone: CIMMYT maize varieties help combat foliar diseases

Many farmers in Bhutan have been struggling with crop diseases that cut maize yields. “The recent outbreak of gray leaf spot and turcicum leaf blight affected 4,193 households and destroyed over 1,940 hectares of maize crop,” says Thakur Prasad Tiwari, agronomist with CIMMYT-Nepal. He estimates that maize is grown on 31,160 hectares in the country.

Gray leaf spot is a devastating leaf disease that is spreading fast in the hills of Bhutan and Nepal. To deal with this threat, CIMMYT sent more than 75 maize varieties with possible resistance to GLS and TLB to Bhutan in 2007. Tapping into the resources of its global network of research stations, CIMMYT sent seed from Colombia, Zimbabwe, and Mexico that was planted in GLS and TLB ‘hot spot’ locations in the country.

Ortiz-Ferrara and Tiwari then worked with Tirtha Katwal, national maize coordinator-Bhutan, and his team to evaluate these materials for their resistance.

“Together we identified the top performing lines for gray leaf spot and turcicum leaf blight which will be excellent candidates for Bhutan’s maize breeding program,” says Ortiz-Ferrara. “We are now combining their disease resistance with Yangtsipa, because we know it is high-yielding and well-adapted to Bhutan.”

Kevin Pixley, associate director of CIMMYT’s Global Maize Program, helped to develop a detailed breeding scheme or work plan for Bhutan’s national GLS breeding program. “We want to provide capacity-building for local maize scientists so they themselves can identify and breed varieties that show resistance to crop diseases,” he says.

“We feel more confident in moving forward with the next steps in our breeding program,” said Katwal. He and his team also attended a training course on seed production, de-tasselling, and pollination given by Dr. K.K. Lal, former CIMMYT maize trainee and former chief of the Seed Quality Control Center at the Ministry of Agriculture and Cooperatives (MoAC) in Nepal.

nov03

That’s what friends are for: CIMMYT, Nepal, and Bhutan collaboration

In 2001, Bhutan began collaborating on maize research with CIMMYT-Nepal, the National Maize Research Program (NMRP) of Nepal, and the Hill Maize Research project (HMRP) funded by the Swiss Agency for Development and Cooperation (SDC) in Nepal. The terrain and agro-climatic conditions of Bhutan and the Nepalese highland are similar, meaning that technologies adapted for Nepal will likely work well in neighboring Bhutan.

CIMMYT aims to facilitate regional and national partnerships that benefit farmers. For instance, during the past 7 years CIMMYT-Nepal has worked with NMRP and RNRRP to introduce 12 open-pollinated varieties (OPVs) to Bhutan. These modern varieties yield more than the local varieties whose seed farmers save to sow from year to year. Included in these 12 OPVs were several quality protein maize (QPM) varieties; these have nearly twice as much usable protein as other traditional varieties of maize.

nov04“Our CIMMYT office in Nepal has assisted Bhutan with maize and wheat genetic material, technical backstopping, training, visiting scientist exchange, and in identifying key consultants on research topics such as grey leaf spot and seed production,” says Tiwari.

Simply put, CIMMYT has useful contacts. For example, at the request of Bhutan’s Renewable Natural Resources Research Center (RNRRC), CIMMYT-Nepal put forward Dr. Carlos De Leon, former CIMMYT regional maize pathologist, to conduct a course on identifying and controlling maize diseases in February 2007. In September 2008, CIMMYT and HMRP also recommended two researchers (Dr. K.B. Koirala and Mr. Govinda K.C.) from Nepal’s NMRP to give a course on farmer participatory research that has been successful in the dissemination of new technologies.

“Ultimately, our goal is to improve the food security and livelihood of rural households through increased productivity and sustainability of the maize-based cropping system,” says Thakur Prasad Tiwari.

For information: Guillermo Ortiz-Ferrara, cereal breeder, CIMMYT-Nepal (g.ortiz-ferrara@cgiar.org) or Thakur Prasad Tiwari, agronomist, CIMMYT-Nepal (tptiwari@mos.com.np)

Diversity recovered

CIMMYT E-News, vol 3 no. 6, June 2006

jun01New study shows genetic diversity in CIMMYT wheat now as high as it was before the Green Revolution.

A study just published in the journal Euphytica, and based on work funded largely by the Eiselen Foundation, shows that modern breeding techniques have restored genetic diversity in CIMMYT’s improved wheat germplasm and brought wheat’s wild relatives back into the family.

The adoption of “Green Revolution” wheats starting in the 1960s had spectacular results, bringing self-sufficiency in wheat to India, Pakistan and other countries. The new, semi-dwarf varieties had higher yields and were resistant to production-limiting diseases. Farmers selected and grew the best-performing varieties and breeding efforts at CIMMYT and other centers continued to build on the strength of those varieties and the valuable traits they exhibited. In fact today varieties based on CIMMYT-derived materials dominate the wheat fields of the developing world and much of the developed world as well.

One result of this selection process by both farmers and breeders has been a narrowing of the genetic base of varieties in farmers’ fields, a decline in the inherent diversity of wheat being grown. If CIMMYT wheats are genetically uniform, the vulnerability of global wheat production to a devastating new disease or insect pest outbreak is high. Increased genetic diversity provides a buffer against such risks and reduces vulnerabilities.

CIMMYT recognized this risk and designed novel breeding strategies to put diversity back into the wheat germplasm it provided. One technique is to use one of wheat’s wild relatives as a parent in the breeding cycle. Wild relatives should bring to the wheat family traits that might have been lost over thousands of years of farmer selection and the last century of more intense breeding. CIMMYT began incorporating materials from the ‘wide crossing’ technique into its wheat breeding fifteen years ago. The first wheat varieties from this technique are now reaching farmers fields but until now CIMMYT could not say for certain whether or not there had been an impact on genetic diversity.

That is what CIMMYT molecular geneticist, Marilyn Warburton and her co-authors set out to measure. By examining the DNA of the landraces of wheat grown by farmers before modern breeding and comparing it with DNA from the most popular modern varieties and the newest materials from CIMMYT, the team was able to confirm the decline in diversity in popular current wheats while at the same time demonstrating that new wheats from CIMMYT had genetic diversity similar to that in the pre-green revolution landraces.

“The study confirms what we had hoped would happen,” says Warburton. “It means that in the future, wheat will carry its historic heritage back into farmers’ fields.”

 

“The successful incorporation and re-mixing of genetic diversity from wheat’s wild relatives has created wheats containing more variation than has ever been available to farmers and breeders, possibly since hexaploid (the complex genetic structure of wheat that arose from the accidental crossing of wild relatives and grasses in the distant past) wheat first appeared 8,000 years ago,” the paper concludes.

For more information contact Marilyn Warburton (m.warburton@cgiar.org)

Metal silos lock out maize pests in Africa

Farmers in developing countries typically lose 20-30% of their crop due to poor grain storage facilities. Through a project with roots in Central America, African maize farmers are adopting metal silos to protect their families’ food supply and source of income.

june07Six mouths are a lot to feed so Pamela Akoth, a 39-year-old Kenyan farmer and mother to half a dozen children, doesn’t want any weevils or borers—two of the most common post-harvest pests—nibbling at her grain supply. Akoth grows maize on 0.7 hectares in Homa Bay, western Kenya. In the past, she stored her grain in a traditional granary: a structure built with mud, branches, and cow dung that allows free entry to the maize weevil and the larger grain borer, the two most damaging pests of stored maize in Africa. Infestation starts in the field and continues after harvest when grain is stored. Losses of 10-20% are reported three months after storage, and this goes up to more than 50% after six months.

On the advice of the Catholic Diocese of Homa Bay and with help from a subsidy program—the Agriculture and Environment Program (AEP) of the Diocese of Homa Bay helps needy farmers to acquire metal silos by providing interest-free loans—Akoth purchased a metal silo able to store 20 bags (1,800 kilograms) of maize; roughly what her land yields. Made of galvanized metal, the silo is airtight, so it keeps out insects and suffocates any that might have snuck in with the stored grain. “I am happy that since I started using the silo I don’t experience any loss of grain,” Akoth says. “I have enough to feed my family and even some left over that I can save and later sell, when there is a shortage in the market.”

Akoth is one of many farmers who has benefited from the Effective Grain Storage Project. Supported by the Swiss Agency for Development and Cooperation (SDC) and the generous unrestricted contributions CIMMYT receives, this effort aims to improve food security in sub-Saharan Africa through effective on-farm storage technologies, like metal silos. Participants are promoting the silos and training artisans who build and sell them. “The focus of the project is to ensure that farmers use only well-fabricated, high-quality metal silos,” says Fred Kanampiu, CIMMYT agronomist and former project head. “We are training artisans who will make and sell these silos.”

jun08Local manufactureres cash in on silo demand
The Effective Grain Storage Project has supported two artisan workshops in Homa Bay and Embu, with a total of 37 artisans trained. One of these is Eric Omulo Omondi, a 23-year-old metal worker based in Homa Bay. Along with 29 other artisans, he attended a free training workshop on metal silo construction in 2009. Since then, Omondi has made 15 metal silos and his average monthly income has tripled.

“I was lucky enough to have been selected by the diocese as one of the artisans to be professionally trained,” Omondi says. The training exercise was facilitated by CIMMYT, who contracted a skilled artisan from Central America. There and in South America and the Caribbean, the POSTCOSECHA program (also funded by SDC) had launched the use of metal silos for storing maize grain, significantly reducing post-harvest losses among more than 300,000 families.

To date, the current project is responsible for the construction of 146 silos across Kenya and Malawi. Two strong local partners, World Vision International in Malawi, and the Catholic Dioceses of Embu and Homa Bay in Kenya, host training sessions and promote metal silo use. In Malawi, metal silos have been used since 2007, initially supplied by a private company contracted by the government to distribute silos throughout the country. “Over the past few years, farmers have recorded high maize harvests, and now even request silos of a 7.5 ton capacity,” says Essau Phiri of World Vision-Malawi.

In Mchinji District, Central Malawi, artisan Douglas Kathakamba has benefited from the CIMMYT-World Vision collaboration. He launched his metal works business making ox-carts, door and window frames, and bicycle ambulances, but has found even greater profit since 2007 by building metal silos. As a result of silo income, he has set up a new workshop, sent his five children to school, and even covers the costs of university studies for two adopted children.

From sacks to sheet metal
Douglas is now an ardent supporter of the metal silo and receives many customers through referrals. He also educates rural farmers. In Kachilika Village of northern Malawi, he has recently worked with a farmers’ club that had never heard of metal silos. The 25 members store their grain communally and, after Douglas constructed and donated a silo to them, commissioned him to build four more. With the proceeds from increased grain sales, the members now pay for children’s schooling and purchase items such as clothing, domestic products, and farm inputs for the next season.

“Before the introduction of silos, we were using sacks and nkhokwe (the traditional granary), but we were not able to save much,” says Andrew Kasalika, the club chairman. “Now, we can say that our lives have changed.”

A particularly dedicated safe storage advocate in Kenya is Sister Barbara Okomo, a former Homa Bay teacher and current principal of St. Theresa’s Girls’ Secondary School in Kisumu, roughly a two hour drive from Homa Bay. Since she started working with the Diocese’s Agriculture and Environment Program (AEP), Okomo has had artisans fabricate 40 metal silos at her schools, which include 10 at her current school. The silos are made on-site to cut costs and make it easier for potential adopters.

jun09“I have used the silos for several years now, and I am convinced that this is the best method to store grain,” Sister Barbara says. “With other storage methods, we would lose up to 90% of our stored grain—now we lose nothing.” Schools have been early adopters of metal silos because many grow and store grain year-long to feed their students.

To save you need to spend
A challenge for African farm households is the initial costs of a silo. They are relatively cheap—in Homa Bay, a three-bag silo costs about USD 74 and a 20-bag silo USD 350—and with an effective lifetime of more than a decade, the silos more than pay for themselves, in terms of food security and surplus grain savings. But the average monthly cash income of a Homa Bay farmer ranges from USD 40 to 130. This means that family heads often have to choose between providing basic needs and investing in the silo. “Without support from the Diocese, I wouldn’t have been able to buy a silo,” says Akoth. Representatives of Equity Bank have met with stakeholders in Homa Bay to discuss micro-finance opportunities that would allow many more farmers to purchase metal silos. Micro-financing would also help more artisans enter the emerging silo industry, as current investment capital costs are high.

“Metal silos bring food security to the poor,” says Tadele Tefera, the current EGS project coordinator. “Not only what farmers harvest, but more importantly, what they store over seasons, could make a difference in their livelihoods.”

A recent (June 2010) news feature on metal silos, aired in Kenya, gives testimonials on the success of the silos from local users.

Further information: Tadele Tefera, Project Coordinator, Effective Grain Storage (t.tefera@cgiar.org)

New maize and new friendships to beat Thai drought

CIMMYT E-News, vol 5 no. 3, March 2008

CIMMYT fosters regional partnerships and provides seed to help researchers in Thailand get drought resistant maize to farmers.

“We are very, very dry,” says farmer Yupin Ruanpeth. “Last year we had a drought at flowering time and we lost a lot of yield.” In fact, she explains, during the last five years, her family’s farm has suffered from severe drought three times in a row. The soil is good and in a year with no drought they can harvest five tons of maize per hectare, but last year they could only harvest three tons per hectare.

Geographically, the Thai province of Nakhon Sawan lies only a short drive from lush lowland paddy fields, but it seems a world away. In this region the rainy season (between May and September) brings enough water for a single crop, usually of maize or cassava, and in the dry season the fields lie fallow. Almost all maize in Thailand is rainfed, grown under similar conditions

mar01At the Thai Department of Agriculture’s Nakhon Sawan Field Crops Research Center, Pichet Grudloyma, senior maize breeder, shows off the drought screening facilities. Screening is carried out in the dry season, so that water availability can be carefully controlled in two comparison plots: one well-watered and one “drought” plot, where watering is stopped for two weeks before and two weeks after flowering. Many of the experimental lines and varieties being tested this year are here as the result of the Asian Maize Network (AMNET). Funded by the Asian Development Bank, this CIMMYT-led project has brought together scientists from the national maize programs of five South East Asian countries to develop drought tolerant maize varieties and deliver them to farmers.

AMNET achievements

“We already have two releases under AMNET,” explains Grudloyma. These are varieties produced by the national maize program, focusing prior to AMNET on resistance to the disease downy mildew, which have also proved themselves under drought screening. The first, Nakhon Sawan 2, was released in 2006. The second, experimental hybrid NSX 042029, has been popular in farmer participatory trials and with local seed companies, and is slated for release in 2008. “This is the best hybrid we have,” says Grudloyma with pride. “It’s drought tolerant, disease resistant, and easy to harvest by hand.” The two hybrids incorporate both CIMMYT and Thai breeding materials, a legacy of Thailand’s long relationship with the Center.

In current work under AMNET, the Thai breeders are crossing lines from the national breeding program with new drought tolerant materials provided each year by CIMMYT. “We screen for drought tolerance in the dry season and downy mildew resistance in the rainy season, and take the best materials forward each year,” explains Grudloyma. “We now have many promising hybrids coming though.”

Funding from the project has also had a big impact on the team’s capacity to screen those hybrids. “We had a small one to two hectare facility before; now we have four hectares with a perfect controlled-irrigation system. Because we’ve been in AMNET, we have good varieties and good fieldwork and screening capacity. This is leading to other projects, for example we’re currently working with GCP [the Generation Challenge Program].” Thailand has also taken on a role in seed distribution, receiving and sharing seed from the AMNET member countries, and testing the varieties on the drought screening plots at the Research Center.

Sharing knowledge across borders

mar02For Grudloyma, this collaborative approach is a big change. “We’ve learned a lot and gained a lot from our friends in different countries. We each have different experiences, and when we share problems we can adapt knowledge from others to our own situations.”

The Thai researchers can come up with many examples of things they have learned from their AMNET partners. “We saw the very friendly relationships between a number of seed companies and the Vietnam team, and we tried to modify the way we worked in Thailand,” says Grudloyma. “This year we shared promising hybrids with seed companies before release. Before that we just worked with farmers and small seed producers, and the seed companies could buy seed after varieties were released.” The result has been wider distribution of new drought tolerant varieties: this year the group received orders for enough parental materials for NSX 042029 to produce 300 tons of seed.

“We learned how to evaluate farmer preferences better from the Philippines team,” adds Amara Traisiri, an entomologist working on responding to these preferences. “We now use their method in all our field trials with farmers and we’re getting a more accurate picture of what farmers want.” This information caused the group to include ease of hand harvest as another trait to consider in their breeding program, after realizing how important it is to farmers. And the learning continued at this month’s annual regional training meeting. “Today, we learned a system for farmer participatory trials,” says Grudloyma, referring to a session on planning and analyzing trial data from CIMMYT maize breeder Gary Atlin. “With these new ideas to direct us we’ll be able to get better results.”

Almost all Thai maize farmers grow improved hybrid varieties, and for Ruanpeth, her priorities are clear. “Drought tolerance is very important”, she says, and dismisses other traits, such as yellow color. “No, I want varieties that are drought tolerant.” She likes to try the latest hybrids and has grown more than 10 commercial varieties. She eagerly accepts the suggestion from Grudloyma’s team to try their new hybrids on a small area this year.

The project has built capacity and relationships that will endure, according to Grudloyma. “Our station is now very good at working with drought,” he says, “and we’ll continue cooperation and providing germplasm. We already have plans for collaboration with China and Vietnam.” CIMMYT’s role in providing germplasm and access to new knowledge and technologies has been vital, as has its leadership. “It’s very hard to get hold of germplasm from anywhere except CIMMYT,” says Grudloyma. “It’s also difficult to come together: we needed an international organization to coordinate and facilitate regional interaction. With CIMMYT everything is easier.”

For more information: Kevin Pixley (k.pixley@cgiar.org)

AMBIONET: A Model for Strengthening National Agricultural Research Systems

CIMMYT E-News, vol 3 no. 6, June 2006

june03A USAID-funded study by Rutgers economist Carl Pray concludes that present and future impacts of the Asian Maize Biotechnology Network (AMBIONET)—a forum that during 1998-2005 fostered the use of biotechnology to boost maize yields in Asia’s developing countries—should produce benefits that far exceed its cost.

Organized by CIMMYT and funded chiefly by the Asian Development Bank (ADB), AMBIONET included public maize research institutions in China, India, Indonesia, the Philippines, Thailand, and Vietnam. “Despite the small investment—about US$ 2.4 million from ADB and US$ 1.3 million from CIMMYT—the network was successful in increasing research capacity, increasing research output, and initiating the development of technology that should benefit small farmers and consumers,” Pray says.

Benefits already seen in the field, with more to come

Pray estimates that farmers in Thailand and Southern China are already gaining nearly US$ 200,000 a year by sowing downy-mildew-resistant hybrids from the project. Pray’s future projections are much more dramatic. An example is drought tolerant maize: if such varieties are adopted on just a third of Asia’s maize area and reduce crop losses by one-third, farmers stand to gain US$ 100 million a year. Furthermore, in India AMBIONET has improved knowledge, capacity, and partnerships with private companies; a 1% increase in yield growth from this improvement would provide US$ 10 million per year, according to Pray.

Emphasis on applied work pays off

AMBIONET’s applied approach stressed formal training and attracted Asian researchers to work on maize germplasm enhancement and breeding. This included graduate students, scientists who switched from an academic to an applied-research focus, and advanced-degree scientists with experience in DNA markers and mapping for maize. Many noted that the partnering of molecular geneticists with breeders strengthened their interactions and the exchange of expertise. The project also boosted funding for maize breeding research. Several AMBIONET labs used project money to leverage significant institutional and government grants. Major research programs emerged from AMBIONET in India and China.

In a 2003 interview, Shihuang Zhang, leader of a project team at the Chinese Academy of Agricultural Sciences’ (CAAS) Institute of Plant Breeding, said: “AMBIONET came along at the ideal time for us. We were able have some of our young people trained and start our lab. Then in 1998 and 1999, China changed the way research was funded. We
were able to get big projects for molecular breeding.” The CAAS group used the initial money, equipment, training, and advice from AMBIONET to start the fingerprinting, mapping, and a markers lab, as well as to hire leading national maize breeding and molecular genetics experts. According to Pray, this eventually converted the group into China’s major maize molecular breeding and enhancement program.

Region-wide sharing

Benefits were not confined just to individual labs, as groups shared knowledge and resources across borders. The Indonesian team, for example, sent two young scientists for extended training in the laboratory of B.M. Prasanna, at the Indian Agricultural Research Institute in New Delhi. Veteran Indonesian maize breeder Firdaus Kasim reported this to be extremely useful: “Prasanna showed our scientists how to do downy mildew and genetic diversity research. He was a very good teacher. After they came back they made a lot of progress.” Prasanna also provided lines that the Indonesian trainees fingerprinted in diversity studies and 400 primers (markers) for downy mildew resistance.

Lines, data, and markers from AMBIONET are in use region-wide. For example, sugarcane mosaic virus was identified as a serious constraint in several countries, and partners are using resistant lines developed under AMBIONET. Based on information from diversity studies conducted under the project, Vietnamese researchers are developing hybrids that resist lodging and are drought tolerant.

A regional program that worked

Research projects provided the focal point for AMBIONET, with training activities, annually meetings, and the technical backstopping contributing to the programs’ success. “The combination of collaboration, cooperation, and competition
was impressive,” says Pray, in the study’s closing statement. “This is the way good, collaborative research is supposed to work.”

For more information contact Jonathan Crouch (j.crouch@cgiar.org)

Nepal-CIMMYT partnerships reach the unreached

nov1More than two decades of joint efforts between researchers from Nepal and CIMMYT have helped boost the country’s maize yields 36% and those of wheat by 85%, according to a report compiled to mark the 25th anniversary of the partnership. As a result, farmers even in the country’s remote, mid hill mountain areas have more food and brighter futures.

Anywhere else, peaks above 3,000 meters would be called “mountains,” but a nation whose collective psyche has been shaped by the towering Himalayas refers to its rugged heartland as merely the “mid-hills.” Comprising deep river valleys and high ridge tops, peppered toward the north with sloping farm terraces, the mid-hills account for more than four-tenths of Nepal’s total land area. They are home to isolated villages whose inhabitants’ lives hold strongly to tradition.

One such villager is Bishnu Maya Nepali, 45 from, Belhara village of Dhankuta district. She is a farmer and a single mother of three. Maya is a “dalit,” one of the poorest castes in the Nepal’s traditional caste hierarchical system.

Up until a few years ago, Maya maintained a hardscrabble existence by planting maize, the region’s main food crop. Like many area farmers, it wasn’t enough. Her farm–which is roughly the size of a soccer field–didn’t produce enough food to feed her family.

Maya’s life began to change in 2006 when she was approached by members of the HMRP. Maya was asked to test maize varieties bred for the mid-hills by the Nepal Agriculture Research Council (NARC) with CIMMYT as one of the partners. She agreed and eventually decided to plant a type of maize, called Manakamana 3, which produced two large ears per plant and which had a shorter, sturdier stalk. To her delight, the new plant thrived. Maya’s maize harvests grew 20-50%. She also discovered the plant stayed green as it matured, providing better forage for her livestock. The project advised Maya to plant vegetables in addition to maize. These intercrops also did well, bringing Maya additional food and income. Maya grew enough food to feed her three children all year long. “Now I have enough food and can sell some surplus to pay for my children’s education,” she said. Maya’s additional income allowed her to put her children into school and even make modest improvements to her homestead.

Support for an agrarian way of life
Nepal is a nation of incredible diversity that depends heavily on agriculture. Of the Nepalese population, 84% live in rural areas and, during the growing season, four of every five adults of the rural population are engaged in agriculture.

In September 2010, Nepal and CIMMYT celebrated 25 years of partnership in developing and spreading improved maize and wheat varieties and cropping practices in benefit of Nepalese farmers and researchers. Given the country’s reliance on agriculture and its financial constraints, the partnership has been invaluable. “Maya’s case is just one example of this,” says Guillermo OrtĂ­z-Ferrara, researcher and liaison officer for CIMMYT’s office in Nepal. The joint efforts have helped raise maize yields 36% and those of wheat by 85%, while 170 Nepali researchers have benefited from CIMMYT training and joint research or fellowships. “The partnership that CIMMYT has maintained over the past 25 years with our research and development institutions in Nepal has been very useful and of significant value to increase maize and wheat production,” says Dr. K.K. Lal, one of the very first CIMMYT maize trainees and former Joint Secretary in the Ministry of Agriculture and Cooperatives of Nepal. “This partnership should continue and be strengthened.”

Fig. 1 Major shift in food security in HMRP collaborating households
Fig. 1 Major shift in food security in HMRP collaborating households

An internal report on HMRP outcomes for 2008-10 by the Swiss Agency for Development and Cooperation showed significant improvements in food security for the more than 21,000 households taking part in the project, with particular focus on women and disadvantaged groups like dalits: the proportion of the population in the groups having food sufficiency throughout most or all of the year (first two sets of bars) grew, while the proportion of the food-insecure—those with enough food for less than six months of the year (last set of bars)—fell.

The Hill Maize Research Program
Begun in 1999 with the cooperation of the National Maize Research Program (NMRP) of the Nepal Agriculture Research Council (NARC), the Hill Maize Research Program (HMRP) promotes the development and adoption of new technologies (improved varieties and crop management) in the hills of Nepal. Funded by the Swiss Agency for Development and Cooperation (SDC), the HMRP works with government, non-government organizations, farmers groups and cooperatives and the private sector to develop and disseminate maize technologies that benefit poor farmers in the Nepali hills. With HMRP-CIMMYT support, NMRP has developed 12 improved maize varieties for commercial production and identified more than 15 promising inbred lines, including 4 QPM lines. These 12 improved maize varieties were released by National Seed Board (NSB) of Government of Nepal. By 2009, 174 farmers groups had produced 664 tons of improved maize seed, increasing maize productivity by at least 30%. A new 2010-14 phase of the HMRP continues the focus on improving the food security and incomes of Nepal hill farm families, especially the poor and disadvantaged. Partners include the Ministry of Agriculture and Cooperatives (MoAC), the Nepal Agricultural Research Council (NARC), the Department of Agriculture (DoA), more than 26 NGOs/CBOs, and thousands of poor farmers. The new phase is jointly funded by SDC and the United States Agency for International Development (USAID).

Winning with wheat
Along with maize, the importance of wheat as a food and cash crop has grown in Nepal. As a result of high-yielding Mexican varieties introduced through CIMMYT during the mid-1960s and intensive research and development efforts by the national partners, Nepal’s wheat area has increased 7-fold, its production 14-fold, and its productivity 2-fold. Overall, yield gains from the release of new varieties in Nepal have averaged 3.5% per year since 1985, which equals or exceeds the yield gains seen in neighboring countries where the Green Revolution began.

nov07During 1997-2008, Nepal’s National Wheat Research Program (NWRP) worked in partnership with CIMMYT, involving farmers in varietal selection and distributing regional nurseries—sets of experimental wheat lines sent out for widespread testing and possible use in breeding programs. Two wheat varieties distributed this way, and bred by the NWRP, have been released in Bangladesh, and a significant number of other Nepali breeding lines have been used in research programs of Nepal and in eastern India.

Farming systems for a tough future
The Nepal-CIMMYT partnership has addressed important farming concerns with research and recommendations on varieties for timely and late sown conditions, appropriate weed management, balanced application of fertilizers, irrigation schedules, and resource-conserving practices such as surface seeding, zero and minimum tillage, and bed planting. The best results have included reduced costs for cropping, greater efficiency of input use, and increases of a ton or more per hectare in grain yields.

“South Asia will suffer particularly harsh effects from climate change, according to experts,” says Mr. Kamal Aryal, Agriculture/Climate Change Researcher, ICIMOD, Kathmandu, Nepal. “More input-efficient cropping systems will help farmers face the challenges expected.”

For more information: Guillermo Ortiz-Ferrara, cereal breeder (g.ortiz-ferrara@cgiar.org)

Body blow to grain borer

CIMMYT E-News, vol 4 no. 9, September 2007

sep04The larger grain borer is taking a beating from CIMMYT breeders in Kenya as new African maize withstands the onslaught of one of the most damaging pests.

Scientists from CIMMYT, working with the Kenya Agricultural Research Institute (KARI), have developed maize with significantly increased resistance to attack in storage bins from a pest called the larger grain borer. In just six months this small beetle can destroy more than a third of the maize farmers have stored. The new maize varieties, which dramatically decrease the damage and increase the storability of the grain, will be nominated by KARI maize breeders to the Kenya national maize performance trials run by the Kenya Plant Health Inspectorate Services (KEPHIS). The same varieties will also be distributed for evaluation by interested parties in other countries through the CIMMYT international maize testing program in 2008.

“This is a major achievement and will be of great help to farmers in Kenya and more than 20 African countries, who have had few options to control this pest for nearly 30 years” says Stephen Mugo, the CIMMYT maize breeder who headed the CIMMYT-KARI collaboration, which has been funded in part by the Syngenta Foundation for Sustainable Agriculture.

The larger grain borer, native to Central America, was first observed in Africa in Tanzania in the late 1970s and early 1980s. A particularly severe drought struck eastern Africa in 1979 and there was little local maize. The world responded with large shipments of maize as aid. The borer may well have been an uninvited guest in a food aid shipment.

sep06Even in Latin America, where it has co-evolved with natural predators, losses are significant. In Africa, where there are no similar predators to control the insect, its spread has been most dramatic. Attempts to introduce some of those predators to Africa to control the borer (a technique called biological control) have met with limited success and regionally concerted action is essential if biological control is to be effective across borer-infested areas. Researchers also studied the habits of the borer, hoping to find ways to reduce the damage it does. They discovered that it needs a solid platform, such as that provided by maize kernels still on the cob, before it will bore into a kernel. Unfortunately African farmers often store maize on the cob, increasing the potential for borer damage. By shelling the maize and storing the kernels off the cob, the damage can be reduced by small amounts, but losses are still very high. This is what makes the development of new varieties, where the resistance lies in the seed, so exciting.

“Having the solution in the seed itself makes adoption much easier for farmers,” says Marianne Banziger, the director of CIMMYT’s Global Maize Program. “There is no added workload or expense to the farmer, no longstanding practices or habits to change.” But Banziger cautions that resistant maize is not a silver bullet solution to the grain borer problem. “We strongly encourage the use of the new varieties in combination with other measures,” she says. “The varieties are more resistant but as time progresses there will still be some damage, though much less than before.”

sep05CIMMYT researchers found resistance to the borer in the Center’s germplasm bank, in maize seed originally from the Caribbean. The bank holds 25,000 unique collections of native maize races. By using conventional plant breeding techniques, crossing those plants with maize already adapted to the conditions found in eastern Africa, Mugo and the breeding team were able to combine the resistance of the Caribbean maize with the key traits valued by Kenyan maize farmers. The maize was tested for resistance at the KARI research station in Kiboko, Kenya. Larger grain borers were placed in glass jars with a known weight of maize. Weight changes to the maize and a visual assessment of damage were recorded, allowing researchers to select the best lines. The result is new maize varieties that will benefit farmers in Kenya and help reduce Kenya’s dependence on imported maize for national food security.

Testing by Kenya Plant Health Inspectorate Services and by national seed authorities in other countries is expected to take 1-3 years, after which seed of the new maize hybrids and open pollinated varieties will be available to seed companies for seed production and sale to farmers.

For more information: Stephen Mugo, Maize breeder (s.mugo@cgiar.org)

Steady as she goes: Improved maize and wheat varieties actually lower farmers’ risks

CIMMYT E-News, vol 3 no. 7, July 2006

jul04A USAID-funded study by Williams College economist Douglas Gollin shows that modern maize and wheat varieties not only increase maximum yields in developing countries, but add hundreds of millions of dollars each year to farmers’ incomes by guaranteeing more reliable yields than traditional varieties.

Modern crop varieties developed through scientific crop breeding clearly produce higher yields than farmers’ traditional varieties. But critics have long maintained that, in developing countries, yields of modern varieties vary more from season to season than the traditional varieties, thereby exposing producers and consumers to greater risk.

Gollin’s study analyzed changes in national-level yield stability for wheat and maize across developing countries and related them directly to the diffusion of modern varieties. “The outcomes strongly suggest that, over the past 40 years, there has actually been a decline in the relative variability of grain yields—that is, the absolute magnitude of deviations from the yield trend—for both wheat and, to a lesser extent, for maize in developing countries,” says Gollin. “This reduction in variability is statistically associated with the spread of modern cultivars, even after controlling for expanded use of irrigation and other inputs.”

 The value to farmers of reduced risk

Valuing these reductions in yield variability requires assumptions about society’s willingness to trade off risk against return. Using a standard analytic framework, the study finds that the reductions in variability are as valuable as small increases in average yield. Assuming a moderate level of risk aversion on farmers’ part and taking estimates for the magnitude of reductions in yield variability, the results suggest that the reductions in yield variability due to modern varieties are worth about 0.3% of annual production in the case of wheat and 0.8% of production in the case of maize. These appear to be small effects, but the sheer scale of wheat and maize production in the developing world means that the benefits from improved yield stability are large in absolute terms. At appropriate world prices, the benefits are about US$143 million for wheat and about US$149 million for maize, on an annual and recurring basis.

The study drew on country-level data for the diffusion of modern wheat and maize varieties compiled by Robert Evenson of Yale University, as well as aggregate data on production and yields from FAOSTAT, the global food information database of the Food and Agriculture Organization of the United Nations. The analysis also made novel use of a mathematical tool called the Hodrick-Prescott filter to disentangle changes in long term trends from annual fluctuations. The filter is most often used in macroeconomics.

According to Gollin, the benefits are not attributable to any particular research theme or program. “They reflect longstanding efforts in breeding for disease and pest resistance, drought tolerance, and improved cropping systems, to name a few,” he says. “By reducing the fluctuations in maize and wheat grain yields, scientists have played a vital role in making modern crop technology attractive, accessible, and beneficial to farmers and consumers around the globe.”

For more information contact John Dixon (j.dixon@cgiar.org)

Improving wheat for world food security

cimmyt-wheatIn order to contribute to world food security, the International Research Initiative for Wheat Improvement (IRIWI), supported by research organisations and funding agencies from about ten countries, has been adopted by the Ministers of Agriculture of the G20. INRA, with the Biotechnology and Biological Sciences Research Council (UK) and the International Maize and Wheat Improvement Center (CIMMYT, Mexico), will contribute to the coordination activities of the IRIWI during the first four years of the project.

The historic agreement between the Ministers of Agriculture of the G20 on 23 June 2011 in Paris underlines the importance of increasing world agricultural production, in particular that of wheat, to resolve the urgent challenges of hunger and food price volatility. Already very active on this issue, INRA, together with other national and international research and funding organisations from about ten countries, will launch the International Research Initiative for Wheat Improvement (IRIWI) in 2011. This initiative aims at reinforcing synergies between bread and durum wheat national and international research programmes to increase food security, nutritional value and safety while taking into account societal demands for sustainable and resilient agricultural production systems.

Wheat is one of the main staple crops in the world but the present production levels do not satisfy demand. With a world population of 9 billion in 2050, wheat demand is expected to increase by 70%. Annual wheat yield increases must jump from the current level of below 1% to at least 1.7%.

Repeated weather hazards in a context of global change, the constant rise in oil prices, speculation on agricultural markets are some of the factors reinforcing volatility of wheat prices and aggravating food insecurity in numerous countries.

Strengthening coordination of world wheat research

IRIWI will coordinate worldwide research efforts in the fields of wheat genetics, genomics and agronomy. Both Northern and Southern countries share the need to improve wheat yield, tolerance to stress, pathogens and pests, as well as wheat resource use efficiency. Improved agronomic practices and development of innovative cropping systems are also a priority. Several large national research programmes on wheat have been launched recently in Northern countries. CIMMYT and ICARDA have presented a new CGIAR research programme called WHEAT for the developing world.

As part of its activities, IRIWI will provide a forum to facilitate communication between research groups, identify potential synergies and encourage collaborations among major existing or emerging nationally, regionally and internationally (public and private) funded wheat research programmes. It will also support the development of publicly available integrated databases and platforms and establish and periodically update priorities for wheat research of global relevance.

Sharing resources, methods and expertise to improve and stabilise yields

The on-going efforts to decipher the wheat genome sequence, as well as the development of high throughput genotyping and phenotyping tools, will provide new ways to exploit more efficiently the available genetic diversity and create new wheat varieties by public and private breeders. Development and adoption of precise and site-specific management techniques will lead to the improvement of production systems. The IRIWI will facilitate and ensure the rapid exchange of information and know-how between researchers, and will organize knowledge transfer to breeders and farmers.

These actions will allow the creation of improved wheat varieties and the dissemination of better agronomic practices worldwide in the next 15 years. These new wheat varieties and agronomic practises will allow farmers to stably produce more and better wheat in different environments.

Presentation of the International Research Initiative for Wheat Improvement (pdf)

IRIWI reinforces INRA’s long-term involvement in research in wheat improvement. Recently, the BREEDWHEAT project was selected by the French Stimulus Initative. BREEDWHEAT is carried out in coordination with or contributes to other international initiatives, such as the WHEAT-Global Alliance project for food security in Southern countries, conducted by the CIMMYT and the International Wheat Sequencing Programme coordinated by the IWGSC.

wheat-food-security

Zero-tillage a winner for winter wheat in Turkey

CIMMYT E-News, vol 4 no. 8, August 2007

aug06Zero-tillage trials in rainfed, winter wheat-fallow systems show smallholder farmers on the Anatolian Plains a way to double their harvests.

Muzzafer Avci is an agronomist with the Central Field Crops Research Institute of the Turkish Ministry of Agriculture. In recent years he has been working with CIMMYT wheat agronomist, Ken Sayre, and over time has become an advocate of zero-tillage—the direct seeding of a crop into the residues of a previous crop, without plowing—for rainfed winter wheat, a key crop for small-scale farmers on the Anatolian Plateau. On this day, he completes a drought impact forecast for the Ministry and drives the three hours east of Ankarato to the Ilci Cicekdagi farm, where the Royal Netherlands Embassy in Turkey has funded zero-tillage trials.

On the Anatolian Plateau, farms are typically less than 10 hectares in size. Wheat farmers obtain just a single harvest every second season from each field. Sowing takes place in autumn before the onset of winter. The wheat germinates quickly, lies dormant over the winter, and matures the following summer. After harvest the field is left fallow for a year before being sown to wheat again. During the fallow, farmers plow the weeds under two or three times. Even with the long fallow, which one would suppose helps conserve or improve soil fertility, typical wheat harvests on these farms reach only 2 tons per hectare, far below the crop’s genetic potential. Once highly productive, the winter wheat farming system has become more and more dependent on fertilizer as soils degrade, making it unsustainable.

Model farm showcases zero-tillage

aug04
A former state farm that was recently privatized, the Ilci Cicekdagi farm is not typical. It comprises 1,700 hectares and supports modern, diversified farming involving dairy and beef cattle, sheep, and many crops, among them wheat. The farm owner and managers believe they have a responsibility to assist less well-endowed, smallholder farmers in the area. So they hold demonstrations and field days for the local community. Farm manager Nedim Tabak says he hopes the farm will be a model for local farmers. He is proud of his zero-tillage trials and shows them off to Avci and to Carla Konsten, Agricultural Counselor from the Royal Netherlands Embassy in Ankara. The Netherlands, Canada, and Australia have funded pilot zero-tillage work in Turkey for the past two years and representatives of those countries’ funding agencies are pleased with the result. “This technology will clearly benefit farmers on the Anatolian Plateau,” says Avci, who learned about zero-tillage first-hand at a CIMMYT course on the topic.

aug05Retired agronomist Mufit Kalayci, recently brought back to the Anatolian Agricultural Research Center in Eskisiher, Turkey, to mentor a new team, sees the value of zero-tillage in intensive, irrigated systems with more than a single crop per year, but is skeptical about using it with traditional rainfed wheat farms. “I don’t think you can retain enough moisture over the fallow period.” he says. For that reason, one of the goals of the zero-tillage experiment was to see if a second crop other than weeds could be grown during the fallow season. This question will be answered in coming years.

Zero-tillage: A lot to like

Of course, use of zero-tillage and retaining crop residues on the soil do more than simply capture and hold soil moisture. The practices reduce production costs and diesel fuel burning, and help prevent topsoil erosion from the strong winds that often sweep the Plateau during fallow. The elimination of repeated tillage to bury weeds also helps retain soil structure, aiding aeration and water filtration. The zero-tillage trials have obtained demonstration yields of more than 4 tons per hectare—double what farmers currently get.

Farm manager Tabak says his trials were sown late for lack of timely access to a zero-tillage seeder. He is planning to modify one of the seeders on the farm for next season. Already some local farmers have looked at his test plots and said they will try zero-tillage too next season.

For more information: Julie Nicol, Wheat Nematologist (j.nicol@cgiar.org)