Skip to main content

funder_partner: CGIAR

CIMMYT joins global efforts to curb greenhouse emissions and strengthen food systems

The 2023 UN Climate Change Conference (COP 28) took place from November 30 to December 12, 2023, in Dubai, UAE. The conference arrived at a critical moment when over 600 million people face chronic hunger, and global temperatures continue to rise at alarming rates. CIMMYT researchers advocated for action into agriculture’s mitigating role in climate change, increasing crop diversity, and bringing the tenets of sustainability and regenerative agroecological production systems to a greater number of farmers.

Directly addressing the needs of farmers, CIMMYT proposed the creation of an advanced data management system, training, and protocols for spreading extension innovations such as digital approaches and agronomic recommendations to farmers via handheld devices to harmonize the scaling in Africa of regenerative agriculture—diverse practices whose outcomes include better productivity and environmental quality, economic feasibility, social inclusivity, and nutritional security.

CIMMYT presented research showing that in times of fertilizer shortages, targeting nitrogen supplies from inorganic and organic sources to farms with minimal access to nitrogen inputs can improve nitrogen-use efficiency and helps maintain crop yields while limiting harm from excesses in fertilizer use. Examining how food production is driving climate change, CIMMYT promoted ways to lessen climate shocks, especially for smallholder farmers who inordinately suffer the effects of climate change, including rising temperatures and extended droughts. Improved, climate-resilient crop varieties constitute a key adaptation. Boosting farmer productivity and profits is a vital part of improving rural livelihoods in Africa, Asia, and Latin America.

When asked about CIMMYT’s contribution to COP 28, Bram Govaerts, CIMMYT’s director general, highlighted the inclusion of agriculture in the COP28 UAE Declaration on Sustainable Agriculture, Resilient Food Systems, and Climate Action as part of various potential solutions for climate change, an effort that CIMMYT supported through advocacy with leaders and government officials.

“Our participation addressed some of the pressure points which led to this significant recognition. It further cleared our role as an active contributor to discussions surrounding the future of food and crop science,” said Govaerts.

Unlocking the potential of crop genetic diversity

“The diversity stored in today’s gene banks contains the potential to unlock genes that can withstand drought and warmer temperatures,” said Sarah Hearne, CIMMYT’s director of Genetic Resources at a side-event: Crop diversity for climate change adaptation and mitigation contributing to resilient and nature positive futures for farmers globally.

Sarah Hearne presents on the potential of crop diversity to help combat climate change impacts on agrifood systems. (Photo: Food Pavilion/COP 28)

Hearne explained the process that characterizes plant DNA to identify the ideal, climate-adaptable breeding traits. This classification system also opens the door for genetic modeling, which can predict key traits for tomorrow’s climatic and environmental conditions.

“Our thinking must shift from thinking of gene banks to banks of genes, to make vibrant genetic collections for humanity, opening up genetic insurance for farmers,” said Hearne.

Working towards a food system that works for the environment

With an increased strain on food production, sustainability becomes critical for long-term human and environmental health. Sarah Hearne and Tek Sapkota, agricultural systems and climate change senior scientist, from CIMMYT participated in a panel discussion: Responsible consumption and sustainable production: pathways for climate-friendly food systems. They shared how progress in genetic innovation and fertilizer use can contribute to sustainable consumption and a resilient food system.

Fertilizer use remains highly skewed, with some regions applying more fertilizer than required and others, like sub-Saharan Africa, not having sufficient access, resulting in low crop yields. However, to achieve greater food security, the Global South must produce more food. For that, they need to use more fertilizer. Just because increased fertilizer use will increase greenhouse gases (GHGs) emissions, institutions cannot ask smallholder farmers not to increase fertilizer application. Increased GHGs emission with additional fertilizer application in low-input areas can be counterbalanced by improving Nutrient-Use Efficiency (NUE) in high-output areas thereby decreasing GHGs emissions. This way, we can increase global food production by 30% ca with the current level of fertilizer consumption.

Tek Sapkota speaks on how sustainable and efficient fertilizer use can contribute to a resilient food system. (Photo: Food Pavilion/COP 28)

“This issue needs to be considered through a holistic lens. We need to scale-up already proven technologies using digital extensions and living labs and linking farmers with markets,” said Sapkota.

On breeding climate-resilient seeds, Hearne addressed whether farmers are accepting new seeds and how to ensure their maximum adoption. Hearne detailed the partnership with CGIAR and NARS and the numerous technologies advancing the selection of ideal breeding traits, considering shortened breeding cycles, and responding to local needs such as heat or flood tolerance, and traditional preferences.

“Drought-tolerant maize, developed by CIMMYT and the International Institute of Tropical Agriculture (IITA), has benefited over 8 million households in sub-Saharan Africa, which proves that farmers are increasingly receptive to improved seeds. With a better selection of appropriate traits, we can further develop and distribute without yield penalties,” said Hearne.

Regenerative and agroecological production systems

Researchers have studied regenerative and agroecological production systems for decades, with new and old research informing current debates. These systems restore and maintain ecosystems, improving resource use efficiency, strengthening resilience, and increasing self-sufficiency. In his keynote presentation, Sapkota presented 3 examples of regenerative agriculture and agroecological systems:  conservation agriculture, cropping system diversification and site-specific nutrient management and their impact on food production, climate change adaptation and mitigation.

“As the science continues to develop, we need to harness digital capacity to co-create sustainable solutions alongside local, indigenous knowledge,” said Sapkota. “While we should continue research and innovation on cutting-edge science and technologies, we should also invest in knowledge sharing networks to spread access to this research; communication is fundamental for further adoption of these practices.”

STEM the gap: Scientists reflect on women’s increasing participation and visibility in STEM careers

CIMMYT’s women in science are shaping the future of agriculture. (Photo: CIMMYT)

Much has changed since many CIMMYT scientists attended university. In the past decades, the STEM field was predominantly male, with far less representation from marginalized groups and communities. Challenged by societal prejudices, only a handful of young women pursued STEM subjects, which further influenced career choices made by them, reinforcing the gender gap.

The gender gap in STEM is still significant, but times are changing. “At CIMMYT, we are deeply committed to promoting the voice of youth, marginalized communities, and women to improve the rigor of science for sustainable development. This includes investment in mentorship, learning from champions and pioneers, and appropriate performance assessment guidelines,” said Program Director of CIMMYT’s Sustainable Agrifood Systems, Sieglinde Snapp. “It is a long journey with bumps along the way, but I am proud to be in solidarity with the Global South, where we champion gender and social inclusion every day.”

On International Day of Women and Girls in Science 2024, five CIMMYT scientists who inspire, support, and open doors for many young women and underrepresented groups with their scientific work and pay-it-forward commitment share their motivation behind charting a career in STEM and encourage more young women and make the field more inclusive.

Beyhan Akin, winter wheat breeding lead 

Beyhan Akin stands with wheat plants. (Photo: Beyhan Akin)

Hailing from a farming family, Beyhan Akin was always surrounded by the beauty and potential of agriculture. She wished to contribute to her farming community, so 35 years ago, she joined CIMMYT’s wheat research program. Akin reminisced about her early days, how there were few women scientists, and the realization that if she succeeded, she could motivate more to follow in her footsteps.

“Agriculture science is expanding beyond core crop science with huge potential for interdisciplinary research and innovation. I hope young women students and scientists get the opportunity to pursue and excel in these fields. Increased advocacy and investment—grants, fellowships—at an institutional level is crucial to motivating and supporting the aspirations of women in science,” said Akin. “It might have taken a long time for women scientists like us to be in positions of influence, but I hope we can ensure the path is far less challenging today for these young women pursuing agriculture science/STEM.”

Alison Laing, agroecology specialist

Alison Laing stands with women farmers. (Photo: Alison Laing)

“Search out mentors. Don’t be afraid to either ask for help when you need it or to promote your achievements. And build networks,” advises Alison Laing to young women scientists starting in the field. Based in Bangladesh and working across South and Southeast Asia for over 15 years, Laing hopes that girls have opportunities to choose science education and become women with rewarding careers in fields that interest them, especially in non-traditional STEM disciplines.

Laing remembers how her mentor early in her career, the late John Schiller, a rice agronomist at the International Rice Research Institute (IRRI), encouraged her enthusiasm for learning and research. “He taught me so much about doing research in Southeast Asia, and I am indebted to him for his motivation and support in showing me how rewarding and interesting a scientific career can be.” She hopes other young students and scientists will have such mentors in their lives.

Sabina Tiwari, assistant research associate 

Sabina Tiwari speaks at a NSAF planning meeting. (Photo: Sabina Tiwari)

Fascinated by nature, plants, and how they thrive in diverse environments, Sabina Tiwari’s journey in science led her to become a plant breeder. “The indefinite potential of agriculture to improve lives made me realize how powerful agricultural science can be. This led to the motivation that I could create a positive difference in the world by being part of crop science and technology while working alongside great scientific minds, both men and women. Today, to young girls aspiring to make a difference in the world, I recommend they empower their cause through science and innovations.”

According to Tiwari, mentorship programs, internships, and job-shadowing experiences that helped her career must be extended to young women to gain practical exposure and knowledge of the possibilities in agriculture science.

Mazvita Chiduwa, associate scientist  

Mazvita Chiduwa speaks with a farmer. (Photo: Mazvita Chiduwa)

For Mazvita Chiduwa, a career in agriculture science has been rewarding. “I love the adventure involved in discovery in agriculture. I am inquisitive, and this career allows me to ask questions and seek answers,” said Mazvita.

Chiduwa believes society needs to embrace the participation of women and girls in STEM education and careers and that stereotypes about women not being cut out for STEM, prevalent even today, must be done away with.

To young girls and women aspiring for a career in STEM, Chiduwa says, “Go for it. There is a need for your uniqueness to contribute a wholesome solution to our world’s challenges.”

Luisa Cabrera Soto, research associate  

Luisa Cabrera conducts an analysis at a CIMMYT laboratory. (Photo: CIMMYT)

“A feminine perspective and approach are needed to enrich research,” reminds Luisa Cabrera Soto. “In a society where almost half of the members are female, I hope equity and inclusion will help improve under-representation in STEM.”

According to Cabrera, it is essential that women in science continue to challenge the gender prejudices and stereotypes that still exist. “Don’t let the spark of your curiosity go out. As a food science professional, I can say that there are still discoveries to be made and, through it, the probability of finding innovative solutions to global challenges such as food security.”

Heat tolerant maize hybrids: a pursuit to strengthen food security in South Asia

After a decade of rigorous effort, CIMMYT, along with public-sector maize research institutes and private-sector seed companies in South Asia, have successfully developed and released 20 high-yielding heat-tolerant (HT) maize hybrids across Bangladesh, Bhutan, India, Nepal, and Pakistan. CIMMYT researchers used a combination of unique breeding tools and methods including genomics-assisted breeding, doubled haploidy (a speed-breeding approach where genotype is developed by chromosome doubling), field-based precision phenotyping, and trait-based selection to develop new maize germplasm that are high-yielding and also tolerant to heat and drought stresses.

While the first batch of five HT maize hybrids were released in 2017, by 2022 another 20 elite HT hybrids were released and eight varieties are deployed over 50,000 ha in the above countries.

In South Asia, maize is mainly grown as a rainfed crop and provides livelihoods for millions of smallholder farmers. Climate change-induced variability in weather conditions is one of the major reasons for year-to-year variation in global crop yields, including maize in Asia. It places at risk the food security and livelihood of farm families living in the stress-vulnerable lowland tropics. “South Asia is highly vulnerable to the detrimental effects of climate change, with its high population density, poverty, and low capacity to adapt. The region has been identified as one of the hotspots for climate change fueled by extreme events such as heat waves and intermittent droughts,” said Pervez H. Zaidi, principal scientist at CIMMYT.

Heat stress impairs the vegetative and reproductive growth of maize, starting from germination to grain filling. Heat stress alone, or in combination with drought, is projected to become a major production constraint for maize in the future. “If current trends persist until 2050, major food yields and food production capacity of South Asia will decrease significantly—by 17 percent for maize—due to climate change-induced heat and water stress,” explained Zaidi.

From breeding to improved seed delivery–the CIMMYT intervention

In the past, breeding for heat stress tolerance in maize was not accorded as high a priority in tropical maize breeding programs as other abiotic stresses such as drought, waterlogging, and low nitrogen in soil. However, in the last 12–15 years, heat stress tolerance has emerged as one of the key traits for CIMMYT’s maize breeding program, especially in the South Asian tropics. The two major factors behind this are increased frequency of weather extremes, including heat waves with prolonged dry period, and increasing demand for growing maize grain year-round.

At CIMMYT, systematic breeding for HT maize was initiated under Heat Stress Tolerant Maize for Asia (HTMA), a project funded by the United States Agency for International Development (USAID) Feed the Future program. The project was launched in 2013 in a public–private alliance mode, in collaboration with public-sector maize research institutions and private seed companies in Bangladesh, Bhutan, India, Nepal, and Pakistan.

The project leveraged the germplasm base and technical expertise of CIMMYT in breeding for abiotic stress tolerance, coupled with the research capacity and expertise of the partners. An array of activities was undertaken, including genetic dissection of traits associated with heat stress tolerance, development of new HT maize germplasm and experimental hybrids, evaluation of the improved hybrids across target populations of environments using a heat stress phenotyping network in South Asia, selection of elite maize hybrids for deployment, and finally scaling via public–private partnerships.

Delivery of HT maize hybrids to smallholder farmers in South Asia

After extensive testing and simultaneous assessment of hybrid seed production and other traits for commercial viability, the selected hybrids were officially released or registered for commercialization. Impact assessment of HT maize hybrid seed was conducted in targeted areas in India and Nepal. Studies showed farmers who adopted the HT varieties experienced significant gains under less-favorable weather conditions compared to farmers who did not.

Under favorable conditions the yield was on par with those of other hybrids. It was also demonstrated that HT hybrids provide guaranteed minimum yield (approx. 1 t ha-1) under hot, dry unfavorable weather conditions. Adoption of new HT hybrids was comparatively high (19.5%) in women-headed households mainly because of the “stay-green” trait that provides green fodder in addition to grain yield, as women in these areas are largely responsible for arranging fodder for their livestock.

“Smallholder farmers who grow maize in stress vulnerable ecologies in the Tarai region of Nepal and Karnataka state in southern India expressed willingness to pay a premium price for HT hybrid seed compared to seed of other available hybrids in their areas,” said Atul Kulkarni, socioeconomist at CIMMYT in India.

Going forward–positioning and promoting the new hybrids are critical

A simulation study suggested that the use of HT varieties could reduce yield loss (relative to current maize varieties) by up to 36% and 93% by 2030 and by 33% and 86% by 2050 under irrigated and rainfed conditions respectively. CIMMYT’s work in South Asia demonstrates that combining high yields and heat-stress tolerance is difficult, but not impossible, if one adopts a systematic and targeted breeding strategy.

The present registration system in many countries does not adequately recognize the relevance of climate-resilience traits and the yield stability of new hybrids. With year-to-year variation in maize productivity due to weather extremes, yield stability is emerging as an important trait. It should become an integral parameter of the registration and release system.

Positioning and promoting new HT maize hybrids in climate-vulnerable agroecologies requires stronger public–private partnerships for increasing awareness, access, and affordability of HT maize seed to smallholder farmers. It is important to educate farming communities in climate-vulnerable regions that compared to normal hybrids the stress-resilient hybrids are superior under unfavorable conditions and at par with or even superior to the best commercial hybrids under favorable conditions.

For farmers to be able to easily access the new promising hybrids, intensive efforts are needed to develop and strengthen local seed production and value chains involving small-and medium-sized enterprises, farmers’ cooperatives, and public-sector seed enterprises. These combined efforts will lead to wider dissemination of climate-resilient crop varieties to smallholder farmers and ensure global food security.

Wheat blast spread globally under climate change modeled for the first time

Climate change poses a threat to yields and food security worldwide, with plant diseases as one of the main risks. An international team of researchers, surrounding professor Senthold Asseng from the Technical University of Munich (TUM), has now shown that further spread of the fungal disease wheat blast could reduce global wheat production by 13% until 2050. The result is dramatic for global food security.

With a global cultivation area of 222 million hectares and a harvest volume of 779 million tons, wheat is an essential food crop. Like all plant species, it is also struggling with diseases that are spreading more rapidly compared to a few years ago because of climate change. One of these is wheat blast. In warm and humid regions, the fungus magnaporthe oryzae has become a serious threat to wheat production since it was first observed in 1985. It initially spread from Brazil to neighboring countries. The first cases outside of South America occurred in Bangladesh in 2016 and in Zambia in 2018. Researchers from Germany, Mexico, Bangladesh, the United States, and Brazil have now modeled for the first time how wheat blast will spread in the future.

Wheat fields affected by wheat blast fungal disease in Passo Fundo, Rio Grande do Sul, Brazil. (Photo: Paulo Ernani Peres Ferreira)

Regionally up to 75% of total wheat acreage affected

According to the researchers, South America, southern Africa, and Asia will be the regions most affected by the future spread of the disease. Up to 75% of the area under wheat cultivation in Africa and South America could be at risk in the future. According to the predictions, wheat blast will also continue to spread in countries that were previously only slightly impacted, including Argentina, Zambia, and Bangladesh. The fungus is also penetrating countries that were previously untouched. These include Uruguay, Central America, the southeastern US, East Africa, India, and eastern Australia. According to the model, the risk is low in Europe and East Asia—with the exception of Italy, southern France, Spain, and the warm and humid regions of southeast China. Conversely, where climate change leads to drier conditions with more frequent periods of heat above 35 °C, the risk of wheat blast may also decrease. However, in these cases, heat stress decreases the yield potential.

Wheat fields affected by wheat blast fungal disease in Passo Fundo, Rio Grande do Sul, Brazil. (Photo: Paulo Ernani Peres Ferreira)

Dramatic yield losses call for adapted management

The affected regions are among the areas most severely impacted by the direct consequences of climate change. Food insecurity is already a significant challenge in these areas and the demand for wheat continues to rise, especially in urban areas. In many regions, farmers will have to switch to more robust crops to avoid crop failures and financial losses. In the midwest of Brazil, for example, wheat is increasingly being replaced by maize. Another important strategy against future yield losses is breeding resistant wheat varieties. CIMMYT in collaboration with NARs partners have released several wheat blast-resistant varieties which have been helpful in mitigating the effect of wheat blast. With the right sowing date, wheat blast-promoting conditions can be avoided during the ear emergence phase. Combined with other measures, this has proven to be successful. In more specific terms, this means avoiding early sowing in central Brazil and late sowing in Bangladesh.

First study on yield losses due to wheat blast

Previous studies on yield changes due to climate change mainly considered the direct effects of climate change such as rising temperatures, changing precipitation patterns, and increased CO2 emissions in the atmosphere. Studies on fungal diseases have so far ignored wheat blast. For their study, the researchers focused on the influence of wheat blast on production by combining a simulation model for wheat growth and yield with a newly developed wheat blast model. Environmental conditions such as the weather are thus included in the calculations, as is data on plant growth. In this way, the scientists are modeling the disease pressure in the particularly sensitive phase when the ear matures. The study focused on the influence of wheat blast on production. Other consequences of climate change could further reduce yields.

Read the full article.

Further information:

The study was conducted by researchers from:

  • CIMMYT (Mexico and Bangladesh)
  • Technical University of Munich (Germany)
  • University of Florida (United States)
  • Brazilian Agricultural Research Corporation (Brazil)
  • International Fertilizer Development Center (United States)
  • International Food Policy Research Institute (United States)

Market segmentation and Target Product Profiles (TPPs): developing and delivering impactful products for farming communities

Experimental maize field. (Photo: CIMMYT)

With the ever-changing climate conditions, including the unpredictable El Niño, and dynamic changes in government policies, understanding farmers’ preferences and market segmentation has become crucial for implementing impactful breeding programs. Market segmentation is a strategic process which divides a market into distinct group of consumers with similar needs, preferences, and behaviors. This allows organizations to tailor their products and services to specific customer segments, thus ensuring maximum value and impact.

In today’s fast-paced and evolving agricultural landscape, market segmentation plays a vital role in helping organizations navigate the complexities of a dynamic market. CIMMYT’s maize breeding program has a successful track record in developing and delivering improved varieties that are climate-resilient, high-yielding and suited to the rainfed tropical conditions in Africa. To further strengthen the impact, it is important to have a clear understanding of the evolving needs of farmers in different agroecological regions and the emerging market scenario so that breeding processes can be tailored based on market needs and client requirements.

Questions arise on how to refine the breeding programs relative to country-specific market segments, what efforts are underway to target these markets, and how do these markets transition. Recognizing the importance of market segmentation in refining breeding programs at the country and regional levels, CIMMYT hosted two workshops on maize market intelligence in Kenya and Zimbabwe, under the CGIAR Market Intelligence Initiative for eastern and southern Africa.

“Market intelligence in breeding programs is critical to understand the evolving needs of key stakeholders, including farmers, consumers, and the seed industry. It helps continuously improve the breeding pipelines to develop and deliver impactful products in targeted market segments. The workshops brought together relevant experts from the national programs and seed companies for focused discussions to develop a harmonized breeding strategy. This would help to address the needs of smallholder maize farmers in eastern and southern Africa,” said Director of CIMMYT’s Global Maize program and One CGIAR Global Maize Breeding Lead, B.M. Prasanna.

B.M. Prasanna delivers a presentation. (Photo: CIMMYT)

The workshops constituted a strategic continuation of the Product Design Team (PDT) meetings under CGIAR Market Intelligence, with a focus on the refinement of gender-intentional target product profile design. Guided by the expertise of CIMMYT’s Global Maize program, Market Intelligence, and ABI-Maize Transform teams, the sessions saw active participation from key stakeholders including lead breeders, seed systems experts, and market specialists from the National Agricultural Research and Extension Systems (NARES), alongside collaborative engagement with seed company partners. The workshops underscored the commitment to incorporate diverse perspectives, aligning with the evolving maize market landscape in eastern and southern Africa.

“The workshop provided critical insights on opportunities to improve market penetration of improved maize varieties. There is a need to strike a balance between the needs of the farmers, seed industry, and consumers in variety development; actively involve farmers and consumers in variety selection and understanding their preferences; and focus on emerging needs of the market such as yellow maize for feed and food,” said James Karanja, maize breeding lead at the Kenya Agriculture & Livestock Research Organization, Kenya.

Insights from both workshops underscored the importance of providing breeders with pertinent information and comprehensive training. The discussions illustrated the necessity for breeders to define their objectives with a 360-degree outlook, aligning breeding programs with market segments and interfacing with CIMMYT’s regional vision.

Workshop participants. (Photo: CIMMYT)

“The market intelligence workshop is an excellent initiative for the breeding programs. It shows how traits can be identified and prioritized, based on farmers’ requirements. The maize value chain is broad, and the synergy between the developer of the product (breeder), the producer (farmer), and the consumer needs to be effective. Hence, streamlining of the market segments and eventually the target product profiles is key in ensuring that the breeders develop improved products/varieties with relevant traits that address the needs of farmers, consumers, and the seed industry,” said Lubasi Sinyinda, breeder from the Zambia Agricultural Research Institute, Zambia.

Another participant, Lucia Ndlala, a maize breeder at the Agricultural Research Council, South Africa, echoed similar enthusiasm. “The workshop was exceptionally informative, providing valuable insights into target product profiles and market segments. This knowledge will undoubtedly prove instrumental in shaping future breeding strategies,” she said.

When applied through a breeding lens, market segmentation is a vital tool in refining breeding programs at both country and regional levels, enabling breeders to better understand and address the diverse needs of the farmers, and ensuring that the improved varieties are tailored to market segments.

Researchers gather to reflect on and lead CIMMYT’s Gender Equity and Social Inclusion (GESI) efforts with renewed commitment and partnership

SAS Program Director Sieg Snapp and GESI researchers gather in New Delhi from across CIMMYT – Asia, Africa, and Latin America. (Photo: Adeeth Cariappa/CIMMYT)

“As we look towards 2030, CIMMYT is focused on building inclusive value chains, advancing mechanization, and confronting seed system challenges. We are championing demand-driven technologies and improved agricultural needs,” said Sieglinde Snapp, program director of CIMMYT’s Sustainable Agrifood Systems (SAS) program, highlighting during the discussions the importance of integrating gender perspectives in research. “We are committed to integrating gender perspectives in all these initiatives, recognizing the vital role of women in agriculture and ensuring equitable access to resources and opportunities for all genders,” she added.

Farah Deba Keya presents her study analyzing constraints for women farmers’ active participation in mixed farming systems in Bangladesh. (Photo: CIMMYT)

The one-day meeting on October 13, 2023, in New Delhi, India, hosted under CIMMYT’s SAS program, brought together diverse groups of participants—totaling over ten senior gender researchers working in Africa, Asia, and Latin America, namely Sieg Snapp, Vijesh Krishna, Moti Jaleta, Michael Euler, Angela Meentzen, Monica Fisher—along with a cadre of junior and senior researchers and students collaborating with CIMMYT on gender research. The coming together of these GESI researchers provided a valuable opportunity for collaboration, sharing insights, and strategizing enhanced gender and socially inclusive research-for-development approaches within CIMMYT’s programs.

Monica Fisher, a senior researcher working in Africa, emphasized CIMMYT’s dedication to making gender equality and social inclusion more visible and relevant in agriculture globally. She said, “The significance of GESI research, particularly in bridging the gap between the Global South and the Global North, cannot be overstated. Our objective is to deepen our engagement in these areas.”

The day-long meeting covered various topics, including the dynamics of technology adoption, gender roles in agriculture, and the feminization of Indian agriculture. Discussions underscored the need for increased financial support for GESI research, the importance of addressing disparities in research focus, and the crucial role of intersectionality in agricultural contexts.

A notable segment of the meeting was dedicated to presentations by students on their ongoing research in gender-related topics. These young researchers brought fresh perspectives and innovative ideas, highlighting the evolving nature of gender roles in agriculture and the impact of technology on gender dynamics in various regions. Their contributions underscored the importance of fostering a new generation of researchers committed to gender equity and social inclusion in agricultural development. Hari Krishnan K. S., a student working with CIMMYT opined, “My study, supervised by CIMMYT’s gender researchers, revealed that the concept of masculinities transcends gender, focusing instead on effective farming practices. It highlighted the diverse influences on agricultural decision-making and the varied reactions to technology adoption in Punjab’s agriculture. This reflects the critical role of CIMMYT’s gender-focused research in shaping my approach and understanding as a student in this field.”

Contributing his perspective, Vijesh Krishna, lead researcher working in India, highlighted the need for innovation in research approach. According to him, “To revolutionize GESI research, a shift towards longitudinal data analysis and cross-country data utilization is needed. Building evidence and documenting changes in gender dynamics due to policy and social transformations are essential.” He further encouraged the fostering of in-house capacities to mainstream gender considerations across disciplines, enhancing collaboration, and developing skills for the effective communication of research findings to stakeholders.

Snapp believes that the meeting was not just a gathering of minds but a milestone in CIMMYT’s ongoing journey towards agrifood systems development. “It reaffirms the organization’s commitment to impactful research that acknowledges and addresses the nuances of gender and social dynamics in agriculture, paving the way for a more inclusive and sustainable future in the sector.”

Sieglinde Snapp explains initiatives to support urgent and relevant GESI research and efforts within CIMMYT’s programs (Photo: CIMMYT)

As the meeting concluded, Snapp spoke of the resolve to make GESI efforts urgent and relevant. She proposed three initiatives: firstly, renaming the SAS gender team the “Paula Kantor Gender and Development Centre” to reflect a broader scope and purpose; secondly, establishing a mentorship program to offer career guidance, networking opportunities, and professional development support; and finally, the introduction of a prestigious “Research Excellence in the Field” award in Paula Kantor’s honor.

“These initiatives aim to enhance the impact and recognition of the organization’s gender-focused efforts, promote professional growth, and honor excellence in the field, embodying CIMMYT’s commitment to gender-focused efforts,” she explained.

The meeting minutes are available here.

Soybean rust threatens soybean production in Malawi and Zambia

Healthy soybean fields. (Photo: Peter Setimela/CIMMYT)

Soybeans are a significant source of oil and protein, and soybean demand has been increasing over the last decade in Malawi and Zambia. Soybean contributes to human nutrition, is used in producing animal feed, and fetches a higher price per unit than maize, thus serving as a cash crop for smallholder farmers. These are among the main factors contributing to the growing adoption of soybean among smallholder producers. In addition, soybean is a vital soil-fertility improvement crop used in crop rotations because of its ability to fix atmospheric nitrogen. To a large extent, soybean demand outweighs supply, with the deficit covered by imports.

Soybean production in sub-Saharan Africa is expected to grow by over 2% per annum to meet the increasing demand. However, as production increases, significant challenges caused by diseases, pests, declining soil fertility, and other abiotic factors remain. According to official government statistics, Zambia produces about 450,000 tonnes of soybean per annum, with an estimated annual growth of 14%. According to FAOSTAT, this makes Zambia the second largest soybean producer in the southern African region. Although soybean was traditionally grown by large commercial farmers in Zambia, smallholders now account for over 60% of the total annual soybean production.

Production trends show that smallholder soybean production increased rapidly in the 2015–2016 season, a period that coincided with increased demand from local processing facilities. As smallholder production continued to increase, in 2020, total output by smallholder farmers outpaced that of large-scale farmers for the first time and has remained dominant over the last two seasons (Fig 1). However, soybean yields among smallholder farmers have remained low at around 1 MT/HA.

Figure 1. Soybean production trends by smallholders and large-scale farmers. (Photo: Hambulo Ngoma/Zambia Ministry of Agriculture, Crop Forecast Survey)

Soybean production in the region is threatened by soybean rust caused by the fungus Phakopsora pachyrhizi. The rust became prevalent in Africa in 1996; it was first confirmed in Uganda on experimental plots and subsequently on farmers’ fields throughout the country. Monitoring efforts in the U.S. have saved the soybean industry millions of dollars in fungicide costs due to the availability of accurate disease forecasting based on pathogen surveillance and environmental data.

Soybean rust disease is spread rapidly and easily by wind, and most available varieties grown by farmers are susceptible. The above-normal rainfall during the 2022–2023 season was conducive to the spread of the fungus. A recent survey of over 1,000 farm households shows that 55% and 39% of farmers in Zambia and Malawi, respectively, were affected by soybean rust during the 2022–2023 season. The lack of rust-tolerant varieties makes production expensive for smallholder farmers who cannot afford to purchase fungicides to control the pathogens. It is estimated that soybean rust can cause large yield losses of up to 90%, depending on crop stage and disease severity. Symptoms due to soybean rust infection may be observed at any developmental stage of the plant, but losses are mostly associated with infection from the flowering stage to the pod-filling stage.

Soybean plants affected by soy rust. (Photo: Peter Setimela)

Mitigation measures using resistant or tolerant varieties have been challenging because the fungus mutates very rapidly, creating genetic variability. Although a variety of fungicides effective against soybean rust are available, the use of such fungicides is limited due to the high cost of the product and its application, as well as to environmental concerns. Due to this restricted use of fungicide, an early monitoring system for detecting rust threats for steering fungicide might only be relevant for large-scale producers in eastern and southern Africa. With the massive increase in the area under soybean production, soybean rust is an important disease that cannot be ignored. Host-plant resistance provides a cheaper, more environmentally friendly, and much more sustainable approach for managing soybean rust in smallholder agriculture that characterizes the agricultural landscape of eastern and southern Africa.

To advance the use of rust-tolerant varieties, the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, or MasAgro Africa, is presently concluding surveys to assess farmers’ demand and willingness to pay for rust-tolerant varieties in Malawi and Zambia. The results from this assessment will be valuable to seed companies and last-mile delivery partners to gain a better understanding of what farmers need and to better serve the farmers.  This coming season AID-I will include rust tolerant varieties in the mega-demonstrations to create awareness about new varieties that show some tolerance to rust.

Livestock Production Systems in Zimbabwe (LIPS-Zim)

The livestock sub-sector is one of the most important arms of the agricultural sector, contributing to the livelihoods of 70% of Zimbabwe’s rural population. Sustainable livestock production depends on the maintenance of healthy and productive animals which requires paying particular attention to the problems of both endemic and introduced animal diseases and zoonotic. Climate relevant livestock production practices such as fodder management and conservation, water harvesting, and manure management have been identified as solutions to increasing livestock productivity.

The Livestock Production Systems in Zimbabwe (LIPS-Zim) project, funded by the European Union (EU) focuses on increasing agricultural productivity in Zimbabwe’s semi-arid, agro-ecological regions IV and V. Led by the International Livestock Research Institute (ILRI) and in partnership with CIMMYT, the French Agricultural Research Center for International Development (Cirad) and the University of Zimbabwe (UZ), LIPS-Zim is working in 10 districts of Zimbabwe, i.e. Matabeleland South Province (Beitbridge and Gwanda districts), the parched Matabeleland North Province (Binga, Hwange and Nkayi districts), Midlands (Gokwe North district), Masvingo (Chiredzi and Zaka districts), Manicaland (Buhera district) and Mashonaland East (Mutoko district). LIPS-Zim is conducting research that seeks to increase livestock feed productivity and well as reducing diseases and mortality of livestock.

Main objectives

Core to the project is to increase the adoption of climate-relevant innovations (e.g feeding) in livestock-based production systems and improve the surveillance and control of livestock diseases. CIMMYT’s main thrust in this project is based on the recognition that at least 50% of the arable land area in semi-arid region IV and V of Zimbabwe is still put to maize despite extension recommendations for farmers to grow the more resilient small grains in those regions. Given the above, and to address their food and feed needs, farmers in those regions need drought-tolerant and nutritious maize varieties that are resilient in those dry environments. CIMMYT’s work is thus focusing on testing the feed value of these nutritious and drought tolerant maize varieties when intercropped with various legumes such as mucuna, cowpea, lab-lab and pigeonpea. CIMMYT is also testing the later, along with climate smart production techniques such as conservation agriculture and water harvesting practices.

Examining how insects spread toxic fungi

Maize grain heavily damaged by the larger grain borer and maize weevil. (Photo: Jessica González/CIMMYT)

According to the World Health Organization (WHO), 10% of the global population suffers from food poisoning each year. Aflatoxins, the main contributor to food poisoning around the world, contaminate cereals and nuts and humans, especially vulnerable groups like the young, elderly, or immune-compromised, and animals are susceptible to their toxic and potentially carcinogenic effects.

Fungi contamination occurs all along the production cycle, during and after harvest, so the mitigation of the mycotoxins challenge requires the use of an integrated approach, including the selection of farmer-preferred tolerant varieties, implementing good agricultural practices such as crop rotation or nitrogen management, reducing crop stress, managing pests and diseases, biological control of mycotoxigenic strains, and good post-harvest practices.

Monitoring of mycotoxins in food crops is important to identify places and sources of infestations as well as implementing effective agricultural practices and other corrective measures that can prevent outbreaks.

A bug problem

Insects can directly or indirectly contribute to the spread of fungi and the subsequent production of mycotoxins. Many insects associated with maize plants before and after harvest act as a vector by carrying fungal spores from one location to another.

International collaboration is key to managing the risks associated with the spread of invasive pests and preventing crop damage caused by the newly introduced pests. CIMMYT, through CGIAR’s Plant Health initiative, partners with the Center for Grain and Animal Health Research of the US Department of Agriculture (USDA) and Kansas State University are investigating the microbes associated with the maize weevil and the larger grain borer.

The experiment consisted of trapping insects in three different habitats, a prairie near CIMMYT facilities in El Batán, Texcoco, Mexico, a maize field, and a maize store at CIMMYT’s experimental station at El Batán, using Lindgren funnel traps and pheromones lures.

Hanging of the Lindgren funnel traps in a prairie near El Bátan, Texcoco, Mexico. (Photo: Jessica González/CIMMYT)

Preliminary results of this study were presented by Hannah Quellhorst from the Department of Entomology at Kansas State University during an online seminar hosted by CIMMYT.

The collected insect samples were cultured in agar to identify the microbial community associated with them. Two invasive pests, the larger grain bore and the maize weevil, a potent carcinogenic mycotoxin was identified and associated with the larger grain borer and the maize weevil.

The larger grain borer is an invasive pest, which can cause extensive damage and even bore through packaging materials, including plastics. It is native to Mexico and Central America but was introduced in Africa and has spread to tropical and subtropical regions around the world. Together with the maize weevil, post-harvest losses of up to 60% have been recorded in Mexico from these pests.

“With climate change and global warming, there are risks of these pests shifting their habitats to areas where they are not currently present like sub-Saharan Africa and North Africa,” said Quelhorst. “However, the monitoring of the movement of these pests at an international level is lacking and the microbial communities moving with these post-harvest insects are not well investigated.”

Understanding and Enhancing Adoption of Conservation Agriculture in Smallholder Farming Systems of southern Africa (ACASA)

Conservation agriculture (CA) has increasingly been promoted in southern Africa to address low agricultural productivity, food insecurity, and land degradation. Despite significant experimental evidence on the agronomic and economic benefits and the large scaling-up investments by donors and national governments, the adoption rates of CA practices among smallholder farmers are low and slow.

With funding from the Norwegian Agency for Development Cooperation (NORAD) and implemented by the International Institute of Tropical Agriculture (IITA) and CIMMYT, ACASA strives to understand “why previous efforts and investments to scale CA technologies and practices in southern Africa have not led to widespread adoption.” It is a three-year project implemented in Malawi, Zambia, and Zimbabwe, where CA is part of national policy.

Since 2021, the project has undertaken extensive surveys aimed to understand incentives, drivers, and barriers of CA adoption across the three countries (Malawi, Zambia, and Zimbabwe) typifying much of the southern Africa smallholder systems. The aim of the project is to consolidate the lessons learned so far and provide a pathway to scaling and foster the next generation of social, crop, agronomic and climate research; to mainstream CA enabled by fundamental paradigm shifts in farming practices, markets, and social institutions for sustainable intensification of smallholder farming systems of southern Africa.

Project objectives include –

  • Understanding the contexts of smallholder farmer in southern Africa to identify the drivers and barriers preventing adoption of CA practices, including biophysical, socio-economic, institutional and policy constraints
  • Identifying labor-efficient mechanization options for smallholder farmers
  • Identifying opportunities and tools for better targeting of appropriate CA practices and options across heterogenous agroecologies and farm types, and
  • Identifying approaches and strategies for inclusive scaling of CA practices (policy, institutional and value chain entry points and pathways to promote and scale CA)

 

CIMMYT scientists recognized for significant research impact

CIMMYT applies high quality science to develop more resilient agrifood systems. This year three scientists from CIMMYT are included in Clarivate’s 2023 Analysis of the most highly cited academic papers.

Jill Cairns participates at a plenary session. (Photo: Alfonso Cortés/CIMMYT)

While CIMMYT’s mission does explicitly require academic publication from its scientists, “the recognition reflects extensive networking with academia, opening doors for new technologies to benefit resource-poor farmers and consumers as well as lending scientific kudos to CIMMYT and underpinning fundraising efforts,” says Distinguished Scientist and Head of Wheat Physiology, Matthew Reynolds.

Maize Physiologist Jill Cairns and collaborators spearheaded the application of high throughput phenotyping for maize-breeding in sub-Saharan Africa, which she says, “would not have been possible without involving leading academic experts like JL Araus at Barcelona University.”

José Crossa chairs the session: adding value to phenotypic data. (Photo: Alfonso Cortés/CIMMYT)

Biometrician and Distinguished Scientist José Crossa has pioneered wheat genetic analysis and use of artificial intelligence to solve crop research questions. “With machine learning tools like Deep Learning, there is a golden opportunity to understand the many complex dimensions of crop adaptation, so data-driven breeding models will have the necessary precision to target complex traits,” he explains. Crossa is widely respected by leading academics in biometrics for his insights on bridging statistical theory to solve real world problems.

Reynolds has built initiatives like the Heat and Drought Wheat Improvement Consortium (HeDWIC) and the International Wheat Yield Partnership (IWYP) that transfer cutting-edge technologies—from many of the best academic institutions in the world—to application in breeding, helping to widen wheat gene pools globally.

Matthew Reynolds speaks at a workshop. (Photo: Alfonso Cortés/CIMMYT)

All three scientists achieved the same recognition last year. As in 2022, Reynolds was awarded for his contribution to scientific literature in plant and animal sciences, while Cairns and Crossa were awarded for their contributions to scientific literature across several fields of research (cross fields).

Since 2001, Clarivate’s Highly Cited Researchers list has identified global research scientists and social scientists who have demonstrated significant and broad influence in their field(s) of research. It recognizes exceptional research performance demonstrated by the production of multiple papers that rank in the top 1% by citations for field and year, according to the Web of Science citation indexing service.

In 2023, the list recognizes 6,849 individuals from more than 1,300 institutions across 67 countries and regions.

Transforming rural agriculture with improved seed and mechanization

Excited farmers pose after purchasing seed in preparation for the upcoming cropping season. (Photo: CIMMYT)

More than 1,300 smallholder farmers, across the Mwenezi and Masvingo districts of Zimbabwe, braved the hot morning sun to attend the fourth edition of the seed and mechanization fair organized by CIMMYT and partners in early October 2023. The event, themed “Harnessing improved seed and mechanization for climate resilience,” saw these farmers from all walks of life—first timers to past attendees—eager to participate, learn and explore the innovations on display.

Evolving over time, the seed and mechanization fair has continued to serve as a strategic platform to connect local farmers with private sector companies while enhancing the uptake of drought-tolerant maize varieties and scale-appropriate machinery. “Since 2020, CIMMYT-driven seed fairs have encouraged smallholder farmers in semi-arid areas, to grow the right seed at the right time to avoid any shortcomings due to unpredictable of weather patterns,” said Christian Thierfelder, principal cropping systems agronomist at CIMMYT.

Fast approaching farming season

El Niño continues to pose a threat to farmers especially in semi-arid areas such as in Mwenezi district situated in southern Zimbabwe and Masvingo district in south-eastern Zimbabwe which are drought prone areas characterized by high temperatures, rainfall deficit, among other challenges. Through the seed fairs, CIMMYT, a consortium member of the World Food Program projects, R4 Rural Resilience and the Zambuko Livelihoods Initiatives supported by the Swiss Agency for Development and Cooperation (SDC) and USAID, has been at the forefront, advocating for and inspiring local farmers to buy and use seed varieties suitable for their environment, while encouraging farming as a business. In addition, the regional project Ukama/Ustawi Diversification in East and Southern Africa joined efforts to support farmers in income diversification from pure cereal-based systems to more diversified cereal-legume and mechanized farming systems.

“I believe this is the right function at the right time as we prepare for the next farming season. From this event, we anticipate that farmers will say, ‘Yes we have received new technology, yes we have knowledge on new varieties, yes we have information about the weather forecast’. We now have confidence that farmers are well-equipped and ready for the season to achieve the Zimbabwe Vision 2030,” said Isaac Mutambara, district development coordinator from Mwenezi.

Building resilience with drought-tolerant varieties

Amid climate change, equipping farmers with climate-smart knowledge and the right seed varieties has been central to the seed fairs. Working hand in hand with the government, CIMMYT has been breeding drought tolerant, orange maize with high nutritional value. “We encourage the growing and consumption of crops with nutritional value for household food security. Furthermore, we have different varieties of orange maize which are drought-tolerant,” said Thokozile Ndhlela, maize line development breeder. In addition, CIMMYT as part of HarvestPlus, has been encouraging the growing and consumption of nutritious NUA45 beans which are high in iron and zinc.

Mechanizing agriculture

Live demonstration of the basin digger in Mwenezi. (Photo: CIMMYT)

The joint participation of the USAID funded ‘Feed the Future Zimbabwe Mechanization and Extension activity’, helped to emphasize the importance of transforming smallholder agriculture through scale-appropriate equipment. At the event, machinery manufacturers such as Prochoice, Kurima and Mahindra showcased cutting-edge machinery, designed to ease farming operations. These companies showed live demonstrations of two-wheel tractors, basin diggers, multiple crop threshers amongst others, effectively emphasizing the benefits of scale-appropriate mechanization. The innovations on display demonstrated the unwavering dedication of the private sector towards supporting farmers and driving agricultural innovation. “It has been a truly exciting opportunity operating the peanut sheller, while appreciating the different machinery in live action. I will consider buying this machine as it reduces the added burden of shelling and processing,” said Lungiwe Nyathi, a local farmer from Mwenezi.

Partnerships for growth

Various seed companies, including AgriSeeds, SeedCo, Farm and City, Super Fert, National Tested Seeds, Intaba Trading, Sesame for Life and K2, marketed appropriate seed varieties that ensure bumper harvests. Sales of seed, fertilizer and other inputs were high, with the total value of sales reaching US6,450. Vouchers were distributed to farmers who made high cash purchases of seeds. “I bought 45kgs of seed which I believe is a great start, and I am happy that I do not have to pay extra money for transporting the seed to my home,” said Martha Chiwawo, a farmer from ward 16 in Masvingo.

The fairs would not be complete without CIMMYT partners. While Zambuko Livelihoods Initiative shared their expertise in the district, SNV has been encouraging sustainable savings and lending schemes among farmers to purchase machinery while facilitating market access and reducing post-harvest losses. The World Food Programme (WFP) encouraged farmers to become resilient and self-sufficient through valuable knowledge and skills to improve their lives. In addition, the Mwenezi Development Training Centre (MDTC) focused on encouraging small livestock which are adaptable to the area. Additional partners Cesvi and Sesame for Life, who both operate in ward 6 of Mwenezi district, participated in the seed fairs for the first time. Both partners advance the production of high value crops—paprika and sesame—which have a ready export market and favorable prices for smallholder farmers. Government extension departments showed strong support while researchers from the Makoholi Research Station in Masvingo used the opportunity to talk to farmers about their research initiatives.

As the day came to an end, farmers were brimming with excitement and ready to embark on the season ahead with purchased, improved seed and a wealth of knowledge on innovative conservation agriculture practices. The event proved to be an invaluable opportunity for uniting farmers, government, seed companies, and partners in a shared mission to promote sustainable farming practices and ensure food security.

Combatting maize lethal necrosis in Zimbabwe

Maize is a staple crop in Zimbabwe, playing a vital role in the country’s agricultural landscape as food for its own people and an export good. However, behind every successful maize harvest lies the quality of seed and resistance to diseases and stresses.

Amidst the multitude of diseases that threaten maize crops, one adversary is maize lethal necrosis (MLN). Though not native to Zimbabwe, it is crucial to remain prepared for its potential impact on food security.

What is maize lethal necrosis?

MLN is a viral disease, caused by a combination of two virus diseases. The disease emerged in Kenya in 2011 and quickly spread to other countries in eastern Africa. The introduction of MLN to Africa was likely affected by the movement of infected seed and insect vectors. MLN has had a severe impact on regional maize production, leading to yield losses of up to 90%.

Recognizing the need to equip seasoned practitioners with the knowledge and skills to effectively diagnose and manage MLN, CIMMYT organized a comprehensive training on MLN diagnosis and management, targeting 25 representatives from Zimbabwe’s Plant Quarantine Services.

From students to experienced technicians, pathologists and plant health inspectors, this was an opportunity to refresh their knowledge base or an introduction to the important work of MLN mitigation. “This training for both advanced level practitioners and students is crucial not only for building competence on MLN but also to refresh minds to keep abreast and be prepared with approaches to tackle the disease once it is identified in the country,” said Nhamo Mudada, head of Plant Quarantine Services.

Maize plants showing maize lethal necrosis (MLN). (Photo: CIMMYT)

Expectations were diverse, ranging from sharpening understanding of key signs and symptoms to learning from country case examples currently ridden with the disease. With CIMMYT’s guidance, practitioners learned how to identify MLN infected plants, make accurate diagnoses, and implement management strategies to minimize losses.

“For over 10 years, these trainings have been important to raise awareness, keep local based practitioners up to speed, help them diagnose MLN, and make sure that they practice proper steps to tackle this disease,” said L.M Suresh, CIMMYT maize pathologist and head of the MLN screening facility in Kenya.

Identifying the specific MLN causing viral disease affecting a maize plant is the first step in combating MLN. Determining whether it is a biotic or abiotic disease is critical in establishing its cause and subsequent diagnosis. By implementing proper diagnostic techniques and understanding the fundamentals of good diagnosis, practitioners can bring representative samples to the lab and accurately identify MLN.

Tackling MLN in Zimbabwe

Initiated in 2015 at Mazowe as a joint initiative between the Government of Zimbabwe and CIMMYT, a modern quarantine facility was built to safely import maize breeding materials from eastern Africa to southern Africa and enable local institutions to proactively breed for resistance against MLN.

The MLN quarantine facility at the Plant Quarantine Institute is run by the Department of Research and Specialist Services (DRSS) and is mandated to screen maize varieties imported under strict quarantine conditions to ensure that they are MLN-free.

Training participants pose outside of the MLN screening facilities. (Photo: CIMMYT)

To date, CIMMYT and partners have released 22 MLN resistant and tolerant hybrids in eastern Africa. CIMMYT’s research and efforts to combat MLN have focused on a multidimensional approach, including breeding for resistant varieties, promoting integrated pest management strategies, strengthening seed systems, and enhancing the capacity of farmers and stakeholders.

“Support extended through valuable partnerships between CIMMYT, and the collaborations have played a pivotal role from surveillance to diagnostics and building capacity,” said Mudada.

Feedback and insights

Chief Plant Health Inspector for Export and Imports Biosecurity, Monica Mabika, expressed gratitude for the training. “It is always an honor when we have expert pathologists come through and provide a valuable refresher experience, strengthening our understanding on issues around biosecurity and learning what other countries are doing to articulate MLN,” she said.

Students learn how to screen maize plants for MLN. (Photo: CIMMYT)

Among the students was Audrey Dohwera from the University of Zimbabwe, who acknowledged the importance of the training. “I have been attached for 2 months under the pathology department, and I was eager to learn about MLN, how to detect signs and symptoms on maize, how to address it and be able to share with fellow farmers in my rural community,” she said.

With the knowledge gained from this training, practitioners are well equipped to face the challenges that MLN may present, ultimately safeguarding the country’s maize production status.

Strengthening seed systems with Zamseed

Bram Govaerts and Amsal Tarekegne compare a maize hybrid. (Photo: Katebe Mapipo/CIMMYT)

Maize is a vital crop in Zambia and Tanzania, both for farmers’ economic livelihoods and for delivering nutrients and sustenance to a large group of people. But maize is threatened by climate change, like more severe droughts, and from pests like fall army worm (FAW), which can completely devastate farmers’ fields.

Against this backdrop of looming threats, CIMMYT, as part of the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, or MasAgro Africa, is partnering with the Zambia Seed Company Limited (Zamseed) to distribute seeds that are drought tolerant and resistant to the ravages of FAW. And because maize is a staple of many people’s diets, CIMMYT and Zamseed are also developing and distributing maize varieties enhanced with vitamin A.

To uphold maize variety integrity, CIMMYT and Zamseed are engaged in the capacity building of quality assurance and quality control for local stakeholders.

CIMMYT’s engagement with Zamseed involves efforts to popularize high yielding, drought-tolerant, and vitamin enhanced maize varieties in Zambia and Tanzania. Some of these efforts include demonstrations of the new varieties, field days held at different stages of maize development, and deliberate engagement of women throughout the entire seed selection, planting and harvesting effort.

“Our partnership with Zamseed started in October 2022,” said Ir Essegbemon Akpo, a CIMMYT maize seed systems specialist. “It has been a fruitful collaboration, delivering significant outputs to thousands of farmers in Zambia and Tanzania.”

To date, Zamseed has held 300 and 500 demonstrations in Tanzania and Zambia, respectively. The company has held many field days at the demonstration sites to showcase drought tolerant and vitamin A enhanced maize to hundreds of small-scale farmers.

“We have witnessed many farmers who visited the demonstration activities who are excited to see the new high yielding and drought tolerant varieties,” said Amsal Tarekegne of Zamseed.

Seeded by funds from the AID-I project, Zamseed is producing 60kg of Early Generation Seed (EGS) of parents of a FAW-tolerant hybrid maize variety. The company plans to produce 200kg of this hybrid for commercialization and launch in 2024.

To ensure that seeds delivered to farmers are of the highest quality, CIMMYT is working with Zamseed to develop quality assurance and control frameworks, involving genotyping of selected seeds at various times during the seed multiplication and distribution process.

Zamseed has been servicing the requirements of farmers in the sub-Sahara region since 1980, focusing on products that will enhance the profitability of the small-scale farmer and ensure household food security.

Sowing seeds of change: CIMMYT leads crop diversification efforts in South Asia

Farmers participate in a training on improved seeds and technologies. (Photo: S. Mojumder Drik/CIMMYT)

Rapid urbanization, globalization, economic development, technological advancement, and changing agriculture production systems in South Asia are transforming food systems and the food environment.

India and Bangladesh, particularly, have seen a significant transformation since the advent of the Green Revolution as each became able to feed their population without having to import major crops.

However, that policy focus on food self-sufficiency and yield intensification has incurred significant health, environmental and fiscal costs, including a precipitous drop in crop diversification*.

This loss of crop diversification threatens economic and social development and environmental stability while weakening the crucial link between agriculture and community health, particularly in undernourished rural areas. To ensure sustainable food production and nutritional security, it is imperative to manage and conserve crop diversification.

To address these issues and ensure sustainable food production, there is an urgent need to transition from intensive to sustainable farming practices.

CIMMYT exploring crop diversification pathways

CIMMYT’s ongoing projects in South Asia, including the Transforming Agrifood Systems in South Asia (TAFSSA) and Transforming Smallholder Food Systems in the Eastern Gangetic Plains (RUPANTAR) are conducting extensive on-site and on-farm trials, including socioeconomic dimensions of farmers to promote crop diversification.

“To effectively address the challenges of crop diversification, it is essential to integrate on-farm trials and participatory action research, involving farmers in the experimentation and adaptation process tailored to their unique regional needs,” said Ravi Nandi, innovation systems scientist at CIMMYT in Bangladesh. “This hands-on involvement provides valuable data to guide policymaking, ensuring relevance and applicability.”

In addition, TAFSSA and RUPANTAR are engaging in participatory action research to uncover the most viable options for crop and livelihood diversification, understand the socioeconomic factors impacting farmers, and identify the potential opportunities and challenges associated with the crop and livelihood diversification efforts among the farmers.

Researchers completed two comprehensive surveys, engaging with 2,500 farmers across the Eastern Gangetic Plains (EGP) of India, Nepal and Bangladesh, yielding valuable data that will inform future strategies for crop diversification in the region.

Ongoing investigations into the political economy of policies for crop diversification in Bangladesh generate novel insights, further contributing to the development of efficient crop diversification projects and sustainable agricultural policies.

The rise of crop diversification in practices and policy

In recent years, crop diversification has gained traction as a promising strategy to boost agricultural productivity, reduce risks (production, market, climate, and environmental), enhance nutritional outcomes, and promote sustainable agriculture.

Following the inaugural National Conference of Chief Secretaries in Dharamshala, India, led by the Prime Minister of India, state governments introduced numerous policies and schemes to support crop diversification. Some of these initiatives, highlighted in Figure 1, were backed by substantial budget allocations aimed at motivating farmers to diversify their crop production from the current intensive production system.

Figure 1: Author’s compilation from various public sources.

Similar initiatives have been started in Bangladesh, Nepal and other South Asian countries to promote crop diversification. These policies and schemes are important steps towards addressing inadequacies that intensive farming has created in agriculture and food systems.

While policies promoting crop diversification in South Asia are a positive step, their effectiveness is contingent on evidence-based decision-making. The complexities of implementing diversification strategies vary significantly depending on local contexts, particularly in countries like India, Nepal and Bangladesh, where most farmers operate on less than one hectare of land and face diverse weather conditions.

Smallholder farmers, at risk of losing economic stability from abandoning profitable monocrops, face additional challenges because of limited access to advanced technologies and fragmented markets, making the transition to diversified farming a precarious endeavor.

A shift towards comprehensive multi-criteria assessments, including qualitative methods and stakeholder interactions, is necessary for creating practical and locally relevant indicators. Supporting infrastructure, accessible extension services and market development, along with empowering farmers through education on agronomic practices and crop management, will play a crucial role in successfully implementing and reaping the benefits of crop diversification.

*Crop diversification is a process that makes a simplified cropping systems more diverse in time and space by adding additional crops.