Skip to main content

funder_partner: CGIAR

Moving zinc-enriched wheat into the mainstream

Agricultural scientists are calling on support to add zinc-biofortification as a core trait in the world's largest wheat breeding program. Photo: CIMMYT/ Peter Lowe
Agricultural scientists are calling for support to make zinc-biofortification a core trait in the world’s largest wheat breeding program. Photo: CIMMYT/ Peter Lowe

EL BATAN, Mexico (CIMMYT) – In an effort to stamp out hidden hunger, scientists are calling for support to make zinc-biofortification a core trait in the world’s largest wheat breeding program.

At least 2 billion people around the world suffer from micronutrient deficiency, or hidden hunger, which is characterized by iron-deficiency anemia, vitamin A and zinc deficiency.

Zinc deficiency remains a crucial health issue in sub-Saharan Africa and South Asia. As a key nutrient in red meat, it is prevalent in areas of high cereal and low animal food consumption.

It is vital in times of rapid human growth such as pregnancy, infancy and puberty. Compared to adults, children, adolescents as well as pregnant and lactating women have an increased need for zinc. Deficiency harms growth and development and can cause respiratory infections, diarrheal disease and a general weakening of the immune system.

One way to tackle hidden hunger is through biofortified crops, which have been bred to contain higher amounts of minerals and vitamins. These crops help to improve health in poor communities where other nutritional options are unavailable, limited or unaffordable.

As a key staple, wheat provides 20 percent of the world’s dietary energy and protein, therefore it’s an ideal vehicle for biofortification, said Velu Govindan, a wheat breeder at the International Maize and Wheat Improvement Center (CIMMYT).

CIMMYT scientists are calling for funds to make increased zinc grain content a core trait in its global wheat breeding program. CIMMYT-derived wheat cultivars have contributed to more than half of the wheat varieties grown in developing countries.

“In wheat breeding, including zinc as core trait – as done with high and stable yield, drought and heat tolerance and disease resistance – would have huge health benefits in South Asia and sub-Saharan Africa,” said Ravi Singh, who leads CIMMYT’s wheat improvement program. “Around 70 percent of the wheat varieties grown in these regions derive from CIMMYT breeding research.”

In the early 2000s, scientists conducted large-scale screening for high zinc content in traditional wheat and their wild relatives from CIMMYT’s wheat germplasm bank. The search was successful, revealing diverse genetic resources with traits that became the building blocks for zinc-enriched wheat.

CIMMYT initiated biofortification breeding in 2006 and four biofortified wheat varieties have been released in South Asia. Promotion of zinc-biofortified wheat varieties in India and Pakistan is in the early stages and further testing and scaling out to other countries like Bangladesh, Nepal, Afghanistan and Ethiopia is underway, the scientists confirmed.

Studies in India have shown that regular consumption of zinc-enriched wheat improves the overall health of women and children, said Govindan.

Extensive global presence of CIMMYT-derived varieties means that, once the program adds enhanced grain zinc levels as a core trait, many wheat farmers and consumers throughout the developing world will automatically reap the benefits of better nutrition.

However, increased funding is needed to make the jump to full inclusion of high zinc content, according to Hans Braun, director of CIMMYT’s Global Wheat Program and CGIAR’s research program on wheat.

“Each added trait in a breeding program requires a significant increase in the number of breeding lines grown and evaluated, adding significant costs” Braun said.

CIMMYT’s wheat breeding program is currently funded at around $15 million per annum. In 2016, it distributed 14.5 tons of seed of experimental wheat lines in more than 500,000 small envelopes to nearly 300 partners in 83 countries. Globally, this makes CIMMYT the most important wheat germplasm provider together with the International Center for Agricultural Research in the Dry Areas (ICARDA).

For more information on zinc-biofortified wheat visit this science brief.

Maize lethal necrosis quarantine facility opens avenues for introducing novel maize germplasm in southern Africa

An aerial view of the MLN quarantine facility in Zimbabwe. Photo: Mainassara Zaman-Allah/CIMMYT
An aerial view of the MLN quarantine facility in Zimbabwe. Photo: Mainassara Zaman-Allah/CIMMYT

HARARE, Zimbabwe – The maize lethal necrosis (MLN) quarantine facility in southern Africa was officially opened in Zimbabwe on April 20, 2017 to enable safe introduction and exchange of novel maize germplasm from CIMMYT to partners in southern Africa.

Set up by the International Maize and Wheat Improvement Center (CIMMYT), with the approval of the government of Zimbabwe, the work for establishing the facility at the Plant Quarantine Station at Mazowe, outside Zimbabwe’s capital Harare, was initiated in the last quarter of 2015.  The five hectare MLN quarantine facility funded by the United States Agency for International Development, is the first of its kind in southern Africa and will be used to safely import elite maize breeding materials from CIMMYT to southern Africa.

MLN is a devastating disease that causes huge economic losses if it occurs, particularly for smallholder farmers who frequently do not have means to control it. MLN was first detected in Kenya in 2011, and has since been reported in Democratic Republic of the Congo, Ethiopia, Rwanda, Tanzania, and Uganda. It is caused by a double infection of maize plants by two viruses: the maize chlorotic mottle virus and the sugarcane mosaic virus. Severe infestation can result in total yield loss. MLN-causing viruses are transmitted not only by insect vectors, but also by seed. There is an urgent need to prevent the deadly disease from moving further south.

The MLN quarantine facility is now functional. To date, over two hectares of land have been planted successfully with maize breeding materials imported from Kenya for the purpose of proactively breeding for MLN while at the same time preventing movement of the disease from endemic areas. Personnel have been trained to safely conduct activities at the site. The facility operates under strict quarantine regulations and is closely monitored and approved by Zimbabwe’s Plant Quarantine Services to ensure that the maize materials introduced are MLN-free.

“This modern quarantine facility is expected to uphold safety when importing maize breeding materials to southern Africa, and to facilitate local and regional institutions to proactively breed for resistance against the MLN disease,” said Zimbabwe’s Minister for Agriculture, Mechanization and Irrigation Development, Joseph Made, while officially opening the facility.

Dr Made also said “I am confident that the quarantine facility will play a significant role in curbing the spread of MLN, while at the same time facilitating on-going work of developing new maize varieties that are resistant to the disease.”

“This MLN quarantine facility, and the collaborative efforts between institutions of the government of Zimbabwe, especially the Department of Research and Specialist Services (DR&SS) and CIMMYT-Southern Africa Regional Office, are key to prevent the possible spread of MLN in southern Africa, and to develop and deploy elite maize varieties with MLN resistance and other farmer-preferred traits,” said B.M. Prasanna, Director of the CIMMYT Global Maize Program and CGIAR Research Program MAIZE, while speaking at the same occasion.

CIMMYT Global Maize Program Director and CGIAR Research Program MAIZE Director B.M. Prasanna, shakes hands with Zimbabwe’s Minister for Agriculture, Joseph Made, after the official opening of the MLN quarantine facility. Photo: Johnson Siamachira/CIMMYT.
CIMMYT Global Maize Program Director and CGIAR Research Program MAIZE Director B.M. Prasanna, shakes hands with Zimbabwe’s Minister for Agriculture, Joseph Made, after the official opening of the MLN quarantine facility. Photo: Johnson Siamachira/CIMMYT.

CIMMYT and the government of Zimbabwe have so far conducted two nation-wide MLN surveys. In the first, no incidence of MLN was recorded. Results of the second survey are still being assessed. To strengthen the phytosanitary work at this MLN quarantine facility, CIMMYT will also offer capacity building to DR&SS researchers through trainings, technical assistance, and advisory services.

MLN is a reality that cannot be ignored. Partners have to work together to control its spread through finding practical solutions to tackle this complex challenge, including strengthening MLN disease diagnostic and surveillance capacity. In addition, intensive inter-institutional efforts to develop and deploy improved maize varieties that incorporate MLN resistance should be continued. The commercial seed sector must also play a key role by producing and delivering MLN-free healthy seed to farmers.

Until seed companies in the MLN-endemic countries have produced 100 percent MLN-free, clean commercial seed, and have necessary certification from the national plant protection offices, the potential risk of MLN entering southern Africa and the consequent damage to maize producers from significantly outweighs the benefits of commercial seed trade.

MLN can only be effectively prevented and tackled through concerted inter-institutional and multi-disciplinary action. The key actions include: enforcement of synchronized maize plantings and a maize-free period of at least three to four months in a year in severely affected areas; creation of an extension corps specifically dedicated to creating awareness on MLN management among the farming communities and monitoring and implementation of standard operating procedures for production of MLN-free clean seed at various points along the seed value chain, to be used by all players in the seed industry.

CIMMYT developed and released, through national partners in eastern Africa, nine MLN-tolerant maize hybrids in the last three years. Four among these hybrids are already being seed scaled-up and commercialized by seed company partners in Uganda, Kenya and Tanzania. As many as 19 MLN-tolerant hybrids are under national performance trials in eastern Africa.

DuPont Pioneer explores support for CGIAR Excellence in Breeding Platform

Photo: CIMMYT
Photo: CIMMYT

EL BATAN, Mexico (CIMMYT) – A DuPont Pioneer leadership delegation visited CIMMYT HQ on May 12 to explore public-private collaboration approaches within the new CGIAR Excellence in Breeding Platform (EiB). The high level delegation, included Geoff Graham, Vice President of Plant Breeding, and other members of management from Global Breeding & Marker Technology Field Technology Innovation & Operations, and Africa, and Latin America regional operations. The team got acquainted with the EiB through interactions with CGIAR scientists and a tour of the CIMMYT scientific facilities.

The visit focused on mutually beneficial collaboration that would enable CGIAR and DuPont Pioneer breeding programs to better capitalize on each other’s experiences, and strengthen knowledge sharing in the pre-competitive domain. The ultimate aim is to improve public and private breeding programs targeting the developing world, including for crops with lower private sector investments.

This visit is the latest in a series of new public-private collaborations with DuPont Pioneer. During CIMMYT’s 50th anniversary celebrations DuPont Pioneer and CIMMYT entered a Master Alliance Agreement to jointly develop improved crops using CRISPR-Cas advanced plant breeding technology for characteristics that address the needs of smallholder farmers around the world.

“Public and private sector breeding programs may target different farming communities and agricultural commodities,” said Marianne Banziger, CIMMYT Deputy Director General for Research and Partnerships. “Nonetheless there are many areas where we can learn from each other and thereby accelerate benefits reaching farming communities, both in poorer and wealthier countries.”

The Excellence in Breeding Platform is one of three new platforms within the new CGIAR portfolio. Drawing from innovations in the public and private sector, the Platform will provide access to cutting-edge tools, services and best practices, application-oriented training and practical advice with the intention to modernize breeding programs targeting the developing world.

Breakthroughs in agriculture for action on climate change

Farmers in Lushoto, in the Tanga region of Tanzania, are working with researchers to test different forage varieties like Brachiaria for yield and drought resilience. (Photo: Georgina Smith/CIAT)
Farmers in Lushoto, in the Tanga region of Tanzania, are working with researchers to test different forage varieties like Brachiaria for yield and drought resilience. (Photo: Georgina Smith/CIAT)

The facts are startling. More than 2 billion people worldwide suffer from micronutrient deficiency – 795 million of whom are undernourished. The challenge to nutritiously and securely feed the growing population is further exacerbated by climate change which has led to extreme weather patterns and decreasing crop yields. With more than 10% of the world’s population living on less than $1.90 per day, the imperative to transform food systems in a way that simultaneously improves lives, livelihoods and the condition of natural resources is clear.

Climate change presents a formidable challenge as one of the biggest constraints to improving food systems, food security and poverty alleviation around the world, especially for the world’s most vulnerable people. The impacts of climate change and poverty are closely interconnected as climate change impacts land  availability, rainfall, and disease. With poor people disproportionately dependent on rainfed agriculture for their livelihoods, these communities are thus especially vulnerable to the impacts of climate change. The increasing frequency and intensity of climatic shocks impinges on their ability to sell an agricultural surplus, meaning less reinvestment in their farms and other livelihood activities, and less ability to purchase a nourishing diet.

The breakthrough Paris Climate Agreement of 2015, while far from perfect, represented an historic and ambitious new phase for climate action, and opened a door for the agricultural sector to take a leading role. “We recognize that the agricultural sector has a key role to play in increasing resilience to climate shocks. Food security, food production, human rights, gender, ecosystems and biodiversity were all explicitly recognized in the Paris agreement and these are issues at the core of our work,” according to Elwyn Grainger-Jones, Executive Director of the CGIAR System Organization.

Across Africa, Asia and Latin America, CGIAR and its partners are developing climate-smart technologies to help farmers adapt to climate change as well as mitigate agriculture’s contribution to climate change. The CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) brings together the expertise in agricultural, environmental and social sciences to identify and address this nexus between agriculture and climate change. Innovations such as drought tolerant crops, agricultural insurance schemes and management practices for reducing greenhouse gas emissions are just a few of the technologies being developed by CGIAR.

In Africa, researchers from the International Maize and Wheat Improvement Center (CIMMYT) are working on drought tolerant maize which offers African farmers significant benefits, producing up to 30 percent more grain than conventional varieties under drought. Through beneficial partnerships with governments, private sector and local NGO’s, researchers have fast-tracked varietal releases and fostered competitive seed markets, allowing for widespread access to quality seed at an affordable price.

“A large percentage of resource-poor farmers and consumers live in tropical environments, which are most vulnerable to climate change. By providing research-based knowledge and tools, CGIAR helps farmers adapt, bringing food security and prosperity to these areas,” said Martin Kropff, CIMMYT’s director general and CGIAR System Organization Board Chair. “CGIAR-led research on drought tolerant maize has helped more than 5 million households in 13 countries become more resilient to climate change.”

Ruth Kamula, a community-based seed producer in Kiboko, Kenya, planted KDV-1, a drought tolerant (DT) seed maize variety developed with the Kenya Agricultural Research Institute (KARI) as part of CIMMYT's Drought Tolerant Maize for Africa (DTMA) project. "I am trying my hand at DT maize seed production because it will lift me and my family out of poverty. It is our lifeline during this time of drought," she says. (Photo: Anne Wangalachi/CIMMYT)
Ruth Kamula, a community-based seed producer in Kiboko, Kenya, planted KDV-1, a drought tolerant (DT) seed maize variety developed with the Kenya Agricultural Research Institute (KARI) as part of CIMMYT’s Drought Tolerant Maize for Africa (DTMA) project. “I am trying my hand at DT maize seed production because it will lift me and my family out of poverty. It is our lifeline during this time of drought,” she says. (Photo: Anne Wangalachi/CIMMYT)

In Vietnam, Bangladesh and the Philippines, researchers from the International Rice Research Institute (IRRI) are developing rice management techniques, known as alternate wetting and drying, in irrigated lowland areas which could save water and reduce greenhouse gas  emissions while maintaining yields.

To ensure that agricultural innovation is developed where needed, CGIAR is prioritizing responsive, farmer driven technologies, particularly in relation to climate-smart solutions.

In Senegal, CGIAR-led research on digital advisory and climate information services are reaching farmers with improved seasonal forecasts via radio and SMS – information that is helping farmers adapt to climate change and improve resilience to climate shocks.

In India, researchers from CCAFS are establishing well-designed agricultural insurance schemes which will enhance resilience to climatic shocks and help protect farmers during bad harvests. CCAFS is also working in partnership with the World Business Council for Sustainable Development (WBCSD) to help major agribusiness companies improve their ability to trace, measure and monitor climate-smart agriculture progress, among others, by developing science-based indicators.

“The challenge we now have is how to take these innovations to scale, reaching millions rather than thousands of farmers. This requires a transformation in the way we partner and deliver our science, as well as targeting and bundling together climate-smart agriculture innovations,” outlined Kropff.

“We recognize that responding effectively to the challenges of climate change hinges on dramatic changes in the way we work,” continued Grainger-Jones. “We have a responsibility to foster paradigm shifts which can prepare us for the challenges we face.

Research led by the International Center for Tropical Agriculture (CIAT) is doing just that, testing the impact of feeding animals with climate-smart Brachiaria grass, of which some varieties can tolerate drought and waterlogging, while others have produced more and better forage.

At its core, CGIAR is committed to transforming agriculture and food systems that will enable the most vulnerable to better nourish their families and improve productivity and resilience.

“As the world’s largest agricultural research for development partnership, CGIAR is in a unique position to respond to the world’s most complex development challenges. We are committed to leading world class climate change science to increase resilience to sustain the planet’s fragile ecosystem,” reflected Grainger-Jones.

Elwyn Grainger-Jones, CGIAR System Organization Executive Director and Martin Kropff, Director General of CIMMYT and Board Chair of CGIAR System Organization recently participated in the: Climate change research and partnerships for impact on food and nutritional security event during the opening of the new CGIAR Research Program on Climate Change and Food Security (CCAFS) office at Wageningen University in the Netherlands.

Obstacles to gender-smart fertilizer use hurt livelihoods, scientists say

Farmers head for home after harvesting maize in Chipata district, Zambia. CIMMYT/Peter Lowe
Farmers head home after harvesting maize in Chipata district, Zambia. CIMMYT/Peter Lowe

EL BATAN, Mexico (CIMMYT) – Compiling gender-inclusive data could help scientists understand how to help smallholder farmers improve nitrogen fertilizer application practices, according to a new research paper.

Smallholder maize and wheat farmers need to make use of inorganic nitrogen fertilizer alongside other good agronomic practices to produce healthy and productive crops, but nitrogen can be misapplied.

Fertilizer overuse can be harmful to plants and soil, contaminate drinking water and kill off fish species. Additionally, nitrogen fertilizer produces nitrous oxide, a potent greenhouse gas, which contributes to climate change.

“Gender and environmentally-blind fertilizer policies have been the norm in many regions, leading to negative effects in both high and low nitrogen fertilizer use scenarios that impact most strongly on women and children”, said Clare Stirling, a senior scientist with the Sustainable Intensification Program at the International Maize and Wheat Improvement Center (CIMMYT).

“Our study shows that moving towards a more balanced and efficient use of nitrogen fertilizer will significantly improve gender and social equity outcomes,” Stirling said, adding that such outcomes can only be brought about by significant socio-economic and cultural changes influencing gender and social norms.

“Agriculture needs to function within a ‘safe operating space’ for nitrogen,” she said. “We need to make sure that nitrogen use efficiency is neither too high nor too low. If it’s too high, soils are at risk of being mined and become degraded, if it’s too low, large amounts of reactive nitrogen are released to the environment.”

In developing countries, women make up about 43 percent of the agricultural labor force, but in comparison to men, they have access to only a fraction of the land, credit, inputs – such as improved seeds and fertilizers, agricultural training and information, according to the Farming First coalition

The lack of resource access puts women heads of household at a disadvantage. Even if they are primary decision makers, in general they are hampered by weaker socio-economic status, lower availability of male labor, lower access to markets, agricultural technologies, machinery, credit, collateral and advice, including on how to mitigate and adapt to climate change. As a result of unequal access, women use less fertilizer. They may also forgo food to ensure that children and other family members eat nutritious food, putting their own health at risk.

“Even with training, women may find it more difficult to apply practical knowledge than men due to socio-economic constraints,” said Simon Attwood, an agroecology scientist with Bioversity International, who collaborated on the new study, titled “Gender and inorganic nitrogen: what are the implications of moving towards a more balanced use of nitrogen fertilizer in the tropics?

“There’s a growing consensus that gender gaps in access to inputs are in part behind differences in productivity and on-farm practices,” he said.

Women farmers who use too little nitrogen fertilizer are trapped in a negative cycle of lower crop yields and income, leading to a greater risk of household food and nutrition insecurity, the scientists said. On the other hand, where too much nitrogen fertilizer is used woman and children are likely to be the most vulnerable to suffering ill-health consequences.

Despite their significant role in agricultural production, particularly in the developing world, women are neglected in most development initiatives, suggesting that the returns on targeting women farmers in relation to promoting best practice fertilizer use, may be very high with respect to increasing production and incomes, according to the authors.

Due to their central role regarding child health, nutrition and education, women should be key beneficiaries of development efforts, the scientists argue.

“These factors make the case that the social returns on agricultural investments are higher when targeted to women,” Attwood said.

The scientists took several case studies from India and sub-Saharan Africa, confirming their theory that imbalanced nitrogen fertilizer use has a greater impact on women and children.

The first case study revealed clear connections between negative health outcomes for poor rural women and their infants and the timing of nitrogen fertilizer applications in India. The study showed that morbidity of the babies of poor rural women appears to be negatively affected through their mother’s work in rice paddy fields, where they absorb fertilizer-derived toxins.

The second case study suggests that applying nitrogen fertilizer to cash crops rather than staple food crops such as maize may contribute towards less food availability and poorer nutrition outcomes for families in some sub-Saharan African countries.

The third case study in Lake Victoria connects the dots between insufficient fertilizer use, soil degradation leading to soil erosion and runoff into the lake and health problems for both men and women. The presence of high levels of nitrogen in the lake due to poor land management is changing its ecology, affecting the lives of artisanal fisher communities and leading to higher rates of HIV/AIDS.

“As long as the majority of policy-makers and planners remain frozen into a conceptual lock-in oblivious to the gendered implications of technically balanced and socially balanced fertilizer use, women smallholder farmers will not reach their potential,” said Cathy Farnworth, a gender specialist working with the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) and lead author on the research paper.

“We need gender awareness in research studies and rural advisory services to develop appropriate strategies to reach and empower women in different households to help them act independently.”

The project was funded by CCAFS, Bioversity, CIMMYT, and the CGIAR Research Programs on wheat and maize.

Despite hardships, women running own households provide model of empowerment and innovation

GENNOVATE research reveals women-headed households often experience high rates of poverty reduction. Photo: CIMMYT/P. Lowe
GENNOVATE focus groups testified to high rates of poverty reduction in communities with more numerous women-headed households. Photo: CIMMYT/P. Lowe

Sometimes change unfolds where least expected.

In many cultures, households headed by widows are among the poorest and most excluded population groups. Across diverse rural areas, and especially where customary laws continue to exert strong force, widows are fully expected to relinquish their family home, farmlands, livestock and other assets to their deceased husband’s family — leaving them destitute, even as they must alone provide for their children. The impoverishment and ostracism endured by women and children involved in divorce or separation can be even more severe as they may lose respect from the community.

However, stories of resilience, change and achievement emerged from the testimonies of many women running their own households who participated in a recent qualitative study exploring gender and innovation processes in 27 villages in maize farming regions of Ethiopia, Malawi, Mexico, Nepal, Nigeria, Tanzania and Zimbabwe.

The research, conducted under the umbrella of GENNOVATE, a CGIAR comparative research initiative funded by the Bill & Melinda Gates Foundation, explored how gender norms affect agricultural innovation. It showed that many of the “unattached” women in our sample rated themselves as strongly empowered by their experiences with running their households and with managing their own farms and livestock and petty trades to make ends meet. Moreover, focus groups testified to some of the highest rates of poverty reduction in communities where we received reports of more numerous women-headed households.

These findings are consistent with wider trends underway in sub-Saharan Africa where women-headed households now constitute one-in-four of the region’s households and are experiencing faster poverty reduction than male-headed households, according to a recent World Bank study.  Heavy male migration is part and parcel of these trends.

In our data we found many widows innovating in their agricultural livelihoods and working their way out of poverty.

“I am proud to say that I am one of them,” said a 42-year-old woman farmer from a village in Ethiopia, describing how she lifted her household out of poverty. “I have been moving up since I divorced my husband and started raising my eight children alone. I have rented land . . . and entered into equb (an informal savings group) to buy inputs for my land. I also am growing vegetables as well as selling firewood.”

In another Ethiopian village, a 35-year-old father of six and farmer relates how a widow in his village escaped poverty and became “known in the area for her bravery.” He shares the story of how she got ahead by processing and selling false banana (a root crop processed into a variety of staple goods) in the market, and using that income to purchase a heifer to get involved in cattle breeding activities.

We also heard about a 48-year-old woman in Ethiopia who separated from her husband and managed to provide for eight children by using farming techniques she learned from him and by planting improved maize seeds. She was also one of the first to cultivate potatoes in her area and became one of the female model farmers of her area.

Photo: CIMMYT/P. Lowe
GENNOVATE case studies reveal more restrictive gender norms in rural Ethiopia than other villages studied. Photo: CIMMYT/P. Lowe

The GENNOVATE case studies set in rural Ethiopia feature more restrictive gender norms — or societal rules governing men’s and women’s everyday behaviors — than many other villages we studied.  These are communities where gender norms highly discourage women from participating in household decision making, moving about their village unaccompanied or engaging in paid work. In order to provide for themselves and their children, it is deemed acceptable for women who head their households to work around these social conventions.

Study participants were careful to distinguish between the more fluid gender norms that apply to widows and other women who head their households in comparison to the more restrictive norms for married women.

A participant in the focus group of poor women in a village of Malawi observed that it is easier for a widow to work for pay, “because they have no one to provide for their needs.”

“They are also free to make decisions about working because they are not controlled by their husbands like married women,” she added. In a poor indigenous community of Mexico, a member of the men’s nonpoor focus group declared that the only kind of women to leave their village in order to vend in a market would be widows, because otherwise women “work in the home.”

One of the most unexpected findings to emerge from the GENNOVATE maize case studies is the disproportionate numbers of women who report heading their households in our sample of semi-structured interviews with women “innovators.” They had been identified for these interviews because they are known in their village as liking to try out new things. Among the 54 women innovators interviewed, 21 — nearly 40 percent — report themselves as de jure heads of household — single, widowed, separated, or divorced. This figure does not include women interviewed who report their status as married but whose husbands may be away working. By comparison, among the 54 men innovators interviewed there was only one unmarried man and one widower.

“I have power and freedom to make most major life decisions because I’m now the husband and the wife,” said a 42 year-old widow and mother of six children from 2 to 19 years old from a village in Nigeria.

During her interview, she shared details of how her yields improved from adopting hybrid maize and new practices such as planting only two seeds per hole. “Before now, I used to drop four to five seeds in a hole,” she said, explaining that she learned about improved practices from the local extension agent.

Women who head their households often face great struggles. In Ethiopia, especially, but in other countries as well, testimonies gathered attest to the hard lives, impoverishment, loss of respect and exclusion still endured by women running their own households.

“All the burden is on me,” said a widow from a village in Nigeria, explaining the difficulty of taking responsibility for every aspect of caring for her family.

Yet, across diverse contexts, we find these women moving about the village, accessing information, interacting with the opposite sex, encountering opportunities to apply new learning and assuming leadership positions. Such findings suggest that surveys which target female-headed households, and compare them with male-headed households, may not accurately capture important barriers to agricultural innovations faced by most women.

Our research suggests that women heads of households may offer entry points for strengthening agricultural innovations at the local level as they can provide role models which may help to shift local normative environments for other women and men. More research is needed, however, to identify approaches for supporting these local change agents in ways that ease stigma, work burdens and other risks.

Patti Petesch is GENNOVATE’s expert advisor and a CIMMYT associate researcher.

Lone Badstue chairs the GENNOVATE Executive Committee and CIMMYT’s strategic leader for gender research.

“Young Scientist Award” winner fights hidden hunger with high zinc wheat

Velu Govindan, a wheat breeder who has advanced the development of nutrient-rich millet and wheat varieties with higher yield potential, disease resistance and improved agronomic traits, has won the 2016 Young Scientist Award for Agriculture presented by India’s Society for Plant Research. (Photo: Xochiquetzal Fonseca/CIMMYT)
Velu Govindan, a wheat breeder who has advanced the development of nutrient-rich millet and wheat varieties with higher yield potential, disease resistance and improved agronomic traits, has won the 2016 Young Scientist Award for Agriculture presented by India’s Society for Plant Research. (Photo: Xochiquetzal Fonseca/CIMMYT)

EL BATAN, Mexico (CIMMYT) – A scientist who has advanced the development of nutrient-rich millet and wheat varieties with higher yield potential, disease resistance and improved agronomic traits has won the 2016 Young Scientist Award for Agriculture presented by India’s Society for Plant Research.

Velu Govindan, a wheat breeder from India working with the HarvestPlus project at the International Maize and Wheat Improvement Center (CIMMYT), received the award last week for high-yielding, nutritious wheat varieties tolerant to rust diseases and climate change-induced heat and drought stress.

“I’m so honored,” said Govindan. “It’s a terrific vote of confidence for the work we’re doing at CIMMYT and through HarvestPlus to develop nutritious staple crops that significantly reduce hidden hunger and help millions of people lead better, more productive lives in the global south.”

CIMMYT scientists tackle micronutrient deficiency or “hidden hunger” by biofortifying crops to boost nutrition in poor communities where nutritional options are unavailable, limited or unaffordable. About 2 billion people worldwide suffer from hidden hunger, which is characterized by iron-deficiency anemia, vitamin A and zinc deficiency.

The wheat component of HarvestPlus, which is part of the Agriculture for Nutrition and Health program managed by the CGIAR global agricultural research project, involves developing and distributing wheat varieties with high zinc levels.

Govindan has been actively involved in the recently released wheat variety Zinc Shakthi – meaning “more power” – which has been adopted by some 50,000 smallholder farmers in India. In addition, two new varieties are projected soon to be widely adopted throughout the fertile northwestern Indo-Gangetic Plains of India.

“We’ve released ‘best bet’ varieties in India and Pakistan to ensure fast-track adoption of high zinc wheat,” Govindan said. “Farmers are adopting it, not only for its nutritional benefit, but also for its superior agronomic features like competitive yield, rust resistance and other farmer preferred traits.”

Before joining CIMMYT eight years ago, Govindan worked at the International Crops Institute for the Semi-Arid Tropics (ICRISAT), where he initiated the development of an iron-rich pearl millet called Dhanashakti – meaning “prosperity and strength” – which was commercialized in 2012 in the Indian state of Maharashtra, where it is now used by more than 100,000 smallholder farmers.

In addition to his primary responsibility of breeding nutrient-rich wheat varieties, Govindan works with the Global Wheat Program’s spring wheat breeding team at CIMMYT. The spring bread wheat program develops high yielding and climate resilient varieties, which are distributed to more than 80 countries in the wheat growing regions of the developing world.

Through its annual awards ceremony, the Society for Plant Research, which has also produced the international journal Vegetos since 1988, recognizes individual contributions from across a broad spectrum of plant-based research, including agriculture, biotechnology, industrial botany and basic plant sciences.

Surveillance training to control wheat blast in Bangladesh

Bleached spikes infected with wheat blast hold shriveled grain, if any. Photo: E. Duveiller/CIMMYT

DINAJPUR, Bangladesh (CIMMYT) — Responding to a 2016 outbreak of the deadly and little-understood crop disease “wheat blast” in Bangladesh, 40 wheat pathologists, breeders and agronomists from Bangladesh, India and Nepal have gathered to hone their skills through surveillance exercises in farmers’ fields and molecular analysis of the causal fungus in laboratories of the Bangladesh Agricultural Research Institute (BARI) at Gazipur.

Entitled “Taking action to mitigate the threat of wheat blast in South Asia: Disease surveillance and monitoring skills training,” the 13-day program was launched on 4 February at BARI’s Wheat Research Center (WRC), Bangladesh Agriculture Research Institute (BARI), Dinajpur, in collaboration with the International Maize and Wheat Improvement Center (CIMMYT), the CGIAR research program on wheat, the Delivering Genetic Gain in Wheat (DGGW) project led by Cornell University, and Kansas State University (KSU).

The 2016 Bangladesh outbreak was the first time wheat blast has appeared in South Asia. The disease struck 15,000 hectares in 7 southwestern and southern districts of Bangladesh, with crop losses averaging 25-30 percent and reaching 100 percent in some cases.

In response the Bangladesh Ministry of Agriculture formed a task force through the Bangladesh Agricultural Research Council (BARC) to help develop and distribute resistant cultivars and pursue integrated agronomic control measures. A factsheet distributed to wheat farmers is raising awareness about the disease and particularly its identification and management.

Caused by the fungus Magnaporthe oryzae pathotype Triticum (MoT) and first discovered in Paraná State, Brazil, in the mid-1980s, wheat blast constitutes a major constraint to wheat production in South America. The sudden appearance of a highly virulent MoT strain in Bangladesh presents a serious threat for food and income security in South Asia, home to 300 million undernourished people and whose inhabitants consume over 100 million tons of wheat each year.

Experts from CIMMYT, Cornell University and Kansas State University, along with scientists from BARI and Bangladesh Agricultural University (BAU), are serving as instructors and facilitators.

“This training will increase the capacity of Bangladesh and neighboring country scientists, thereby strengthening research on wheat blast and monitoring disease through intensive surveillance,” said the Additional Secretary (Research), Ministry of Agriculture Md. Fazle Wahid Khondaker, chief guest in the inaugural session. Arun K. Joshi, CIMMYT-India country representative, T.P. Tiwari, CIMMYT-Bangladesh country representative, Prof. Dr. Bahadur Meah from BAU, Mymensingh, and Additional Director, Department of Agricultural Extension, and Md. Julfikar Haider were present as special guests. Dr. N.C.D. Barma, WRC, BARI chaired the session, and BARI Director General Dr. Abul Kalam Azad took part.

The training program is funded by BARI, CIMMYT, DGGW, the United States Agency for International Development (USAID) and the Bill & Melinda Gates Foundation through the CIMMYT-led Cereal Systems Initiative for South Asia (CSISA) and CSISA- Mechanization projects, as well as the Australian Center for International Agricultural Research (ACIAR). The DGGW project is funded by the Bill & Melinda Gates Foundation and the United Kingdom’s Department for International Development (DFID) through UK Aid.

Participants with guests during training inauguration. Photo: S. Khan/CIMMYT

A ton of seed shipped to the doomsday vault at Svalbard

CIMMYT gene bank specialists — shown here with the shipment destined for Svalbard — conserve, study and share a remarkable living catalog of genetic diversity comprising over 28,000 unique seed collections of maize and over 140,000 of wheat (Photo: Alfonso Cortés/CIMMYT).

MEXICO CITY, Mexico (CIMMYT) — Staff of the gene bank of the International Maize and Wheat Improvement Center (CIMMYT) have sent 56 boxes of nearly 28,000 samples of maize and wheat seed from the center’s collections, to be stored in the Svalbard Global Seed Vault.

Located on Spitsbergen Island in Norway’s remote Arctic Svalbard Archipelago, 1,300 kilometers south of the North Pole, the vault provides free, “safe deposit” cold storage for back-up samples of seed of humanity’s crucial food crops.

“CIMMYT has already sent  130,291 duplicate samples of our maize and wheat seed collections to Svalbard,” said Bibiana Espinosa, research associate in wheat genetic resources. “This brings the total to nearly  158,218 seed samples, which we store at Svalbard to guard against the catastrophic loss of maize and wheat seed and diversity, in case of disasters and conflicts.”

Thursday’s shipment contained 1,964 samples of maize seed and 25,963 samples of wheat and weighed nearly a ton, according to Espinosa.

The wheat seed came from 62 countries and nearly half the samples comprised “landraces” — locally-adapted varieties created through thousands of years of selection by farmers.

“Of the maize samples, 133 contained seed of improved varieties, 51 were of teosinte — maize’s direct ancestor — and 1,780 were of landraces,” said Marcial Rivas, research assistant for maize genetic resources. “Many landraces are in danger of permanent loss, as farmers who grew them have left the countryside to seek work and changing climates have altered the landraces’ native habitats.”

The government of Norway and the Crop Trust cover the cost of storage and upkeep of the Svalbard Global Seed Vault, coordinating shipments in conjunction with the Nordic Genetic Resource Center.  Established in 2006, the Crop Trust supports the conservation and availability of crop diversity for food security worldwide and helps to fund CIMMYT’s work to collect and conserve maize and wheat genetic resources.  CIMMYT’s maize and wheat germplasm bank is supported by the CGIAR Research Program on Genebanks.

Breaking Ground: Carolina Sansaloni explores and unlocks genetic potential from wheat genebanks

twitterbg3

Breaking Ground is a regular series featuring staff at CIMMYT

EL BATAN, Mexico (CIMMYT) – Carolina Sansaloni’s passion for genetics began when she was at Universidad de Misiones in Posadas, Misiones, Argentina, an interest that grew as she moved on to receive her master’s and doctoral degrees in molecular biology at Universidad de Brasilia in Brazil.

While completing her doctorate degree, Sansaloni travelled to Canberra, Australia to research the genomic structure of the eucalyptus tree at Diversity Arrays Technology (DArT), learning the ins and outs of sequencing technology.

In 2012, the International Maize and Wheat Improvement Center (CIMMYT) wanted to introduce the DArT genotyping technologies to Mexico to serve the needs of the Mexican maize and wheat research communities, and once Sansaloni finished her doctoral degree, she was an obvious choice to lead this initiative.

Working under the MasAgro Biodiversidad project in partnership with DArT, INIFAP and CIMMYT, Sansaloni helped to build the Genetic Analysis Service for Agriculture (SAGA in Spanish) from the ground up.

The service, managed by the CIMMYT-based Seeds of Discovery (SeeD) initiative, brings cutting edge genotyping capacity and genetic analysis capability to Mexico. The facility provides unique insights into the genetic variation of wheat and maize at a “sequence level.” Use of the vast quantities of data generated help understand genetic control of characteristics evaluated at a plant or crop level for example, height variations among wheat varieties.

SAGA’s services are available for all CIMMYT scientists, universities, national agriculture research programs and private companies. Worldwide, few other platforms produce this kind of data and most are inaccessible to scientists working at publicly funded institutions because their economic or logistics difficulties.

“When it comes to genotyping technology, it doesn’t matter what type of organism you are working with. It could be wheat, eucalyptus or chicken –  the machine will work the same way,” explained Sansaloni.

Sansaloni has also been focusing her time on the wheat Global Diversity Analysis, which characterizes and analyzes seeds in genebanks at both CIMMYT and the International Center for Agricultural Research in Dry Areas (ICARDA). Her team has characterized approximately 100,000 wheat accessions including 40 percent of the CIMMYT genebank and almost 100 percent of the ICARDA genebank wheat collection. This is an incredible and unique resource for wheat scientists providing a genetic framework to facilitate selection of the most relevant accessions for breeding.

“Currently only five to eight percent of materials in the genebank are being used in the breeding programs,” Sansaloni said. “The Global Diversity Analysis could have huge impacts on the future of wheat yields. It is like discovering the pieces of a puzzle, and then beginning to understand how these pieces can fit together to build excellent varieties of wheat.”

Sansaloni’s goal is to combine information from CIMMYT and ICARDA, making the information accessible to the entire wheat community and eventually enhancing breeding programs across the globe.

“Working at CIMMYT has been an invaluable experience,” Sansaloni said. “I’ve had the opportunity to work and collaborate with so many different people, and it’s brought me from the laboratory into the wheat fields, which really brings me closer to my work.”

SeeD is a joint initiative of CIMMYT and the Mexican Ministry of Agriculture (SAGARPA) through the MasAgro project. SeeD receives additional funding from the CGIAR Research Programs on Maize (MAIZE CRP) and Wheat (WHEAT CRP), and from the UK’s Biotechnology and Biological Sciences Research Council (BBSRC).

Crop and bio-economic modeling for an uncertain climate

workshop
Gideon Kruseman, CIMMYT ex-ante and foresight specialist presents household level bio-economic models at workshop. CIMMYT/Khondoker Mottaleb

Gideon Kruseman is CIMMYT’s ex-ante and foresight specialist.

The potential impact of climate change on agriculture and the complexity of possible adaptation responses require the application of new research methods and tools to develop adequate strategies. At a recent five-day training workshop titled “Crop and Bio-economic Modeling under Uncertain Climate,” scientists applied crop and bio-economic models to estimate biophysical and economic impacts of climate variability and change.

Crop system modeling is used to simulate yields for specific weather patterns, nutrient input levels and bio-economic household modeling involves using quantitative economic methodology to incorporate biological, chemical and/or physical processes to analyze the impact of technology development, policy interventions and such exogenous shocks as extreme weather events on the decision-making processes of smallholder farmers and related development indicators. Events influence results in two ways: the probability of occurrence will shape decision-making and actual occurrence will shape realized results.

During the training, which was organized and hosted by the International Maize and Wheat Improvement Center (CIMMYT), which took place in November in Kenya’s capital, Nairobi, scientists examined how technology development and policy or development interventions may influence farm household decisions on resource allocation and cropping patterns.

The training was beneficial due to its “holistic approach to solve smallholder agricultural production problem using decision support tools,” said Theodrose Sisay from the Ethiopian Institute of Agricultural Research.

Attendees learned in practical terms how shifting weather patterns will change farmer perception of the probability of occurrence of extreme events, which may influence subsequent cropping patterns and technology choices. Cropping system models shed light on the effects of different weather patterns on crop yields under varying management practices. Bio-economic household modeling then places those results in the context of smallholder livelihood strategies.

Bio-economic household model results demonstrated the conditions under which cropping patterns are likely to change as a result of resource constraints and household preferences. The analysis illustrated how cropping patterns may shift as a result of climate change:

bem-before-after-cc

Before climate change.                                          After climate change.

Figure: comparison of model results of climate change scenarios

The workshop was organized under the Global Futures & Strategic Foresight (GFSF) project and the “Flagship 1” component of the CGIAR Research Program on Policies, Institutions, and Markets (PIM), which in part explores global and regional foresight modeling tools.

Participants included representatives of the Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA) and West and Central Africa Council for Agricultural Research and Development (CORAF), as well as researchers from agricultural research institutes and universities from Benin, Ethiopia, Kenya, Niger, Nigeria, Senegal and Uganda.

This was the third and last of a series of training workshops offered to same group of trainees since 2014. Not only did the 16 participants learn how to apply crop and bio-economic models allowing them to estimate biophysical and economic impacts of climate variability and change, but they also learned how to assess different adaptation options.

The tools they worked with included the Decision Support System for Agrotechnology Transfer (DSSAT), and a bio-economic household model using Gtree with the general algebraic modeling system (GAMS). The training involved plenary discussions, group work, and individual hands-on exercises.

The training program served as a refresher course on GAMS, said Janvier Egah, a socio-economist from Benin.

“Over time, I had forgotten everything,” he added. “With this training, I remembered the notions of the past course and learned new concepts such as integrating the costs of climate change in bio-economic models. These models interest me particularly and I want to write and submit proposals to apply them.”

The participants came with their own input data for the DSSAT cropping system model and learned how to calibrate the model. The participants developed climate change scenarios, ran simulations and interpreted the simulation outputs using graphical and statistical interfaces.

Workshop participants. Photo credit: CIMMYT
Workshop participants. Photo credit: CIMMYT

The participants, who have worked together in these workshops on three different occasions, indicated a strong willingness to continue collaborating after the conclusion of the project. They took steps to develop a concept note for a collaborative research grant with a major component related to the use of crop and bio-economic models.

The workshop had a stronger component related to the economic analysis of household decision-making than previous training sessions, and trainees used simulation models based on mathematical programming techniques.

At the conclusion of the workshop, participants expressed interest in pursuing further analysis of this type in the future as a complement to crop growth modelling.

Wheat rust poses food security risk for global poor, says DFID’s Priti Patel

David Hodson, CIMMYT senior scientist (L), describes the challenges posed by wheat rust to Priti Patel, Britain's international development secretary, during the Grand Challenges Annual Meeting in London. Handout/DFID
David Hodson, CIMMYT senior scientist (L), describes the challenges posed by wheat rust to Priti Patel, Britain’s international development secretary, during the Grand Challenges Annual Meeting in London. DFID/handout

LONDON (CIMMYT) – International wheat rust monitoring efforts are not only keeping the fast-spreading disease in check, but are now being deployed to manage risks posed by other crop diseases, said a scientist attending a major scientific event in London.

Although initially focused on highly virulent Ug99 stem rust, the rust tracking system – developed as part of the Borlaug Global Rust Initiative, an international collaboration involving Cornell University and national agricultural research programs – is also used to monitor other fungal rusts and develop prediction models with the aim of helping to curtail their spread.

“We appear to be looking at some shifts in stem rust populations with the Digalu race and new variants increasing and spreading,” said David Hodson, a senior scientist with the International Maize and Wheat Improvement Center (CIMMYT), who showcased the latest research findings at the recent Grand Challenges meeting in London hosted by the Bill & Melinda Gates Foundation.

“Our data reinforce the fact that we face threats from rusts per se and not just from the Ug99 race group – we are fortunate that international efforts laid the groundwork to establish a comprehensive monitoring system,” said Hodson, one of more than 1,200 international scientists at the gathering.

“The research investments are having additional benefits,” he told Priti Patel, Britain’s secretary of state for international development, explaining that the wheat rust surveillance system is now also being applied to the deadly Maize Lethal Necrosis disease in Africa.

“The learning from stem rust and investments in data management systems and other components of the tracking system have allowed us to fast-track a similar surveillance system for another crop and pathosystem.”

In a keynote address, echoed by an opinion piece published in London’s Evening Standard newspaper authored by Patel and billionaire philanthropist Bill Gates, Patel described the risks posed by wheat rust to global food security and some of the efforts funded by Britain’s Department for International Development (DFID) to thwart it.

“Researchers at the University of Cambridge are working with the UK Met Office and international scientists to track and prevent deadly outbreaks of wheat rust which can decimate this important food crop for many of the world’s poorest people,” Patel said, referring to collaborative projects involving CIMMYT, funded by the Gates Foundation and DFID

Patel also launched a DFID research review at the meeting, committing the international development agency to continued research support and detailing how the UK intends to deploy development research and innovation funding of £390 million ($485 million) a year over the next four years.

Wheat improvement work by the CGIAR consortium of agricultural researchers was highlighted in the research review as an example of high impact DFID research. Wheat improvement has resulted in economic benefits of $2.2 to $3.1 billion per year and almost half of all the wheat planted in developing countries.

Cutting-edge tools promote conservation, use of biodiversity

The CIMMYT maize germplasm bank holds 28,000 samples of unique maize genetic diversity that could hold the key to develop new varieties farmers need. Photo: Xochiquetzal Fonseca/CIMMYT.

EL BATAN, Mexico (CIMMYT) – Biodiversity is the building block of health for all species and ecosystems, and the foundation of our food system. A lack of genetic diversity within any given species can increase its susceptibility to stress factors such as diseases, pests, heat or drought for lack of the genetic variation to respond. This can lead to devastating consequences that include crop failures and extinction of species and plant varieties. Conserving and utilizing biodiversity is crucial to ensure the food security, health and livelihoods of future generations.

The 13th meeting of the Conference of the Parties (COP 13) to the Convention on Biological Diversity will be held in Cancún, Mexico, from December 5 to 17, 2016. Established in 1993 due to global concerns over threats to biodiversity and species extinctions, the Convention on Biological Diversity is an international, legally-binding treaty with three main objectives: the conservation of biological diversity; the sustainable use of the components of biological diversity; and the fair and equitable sharing of the benefits arising out of the utilization of genetic resources.

Mexico’s Secretariat of Agriculture (SAGARPA) has invited scientists from the International Maize and Wheat Improvement Center (CIMMYT) working with the MasAgro Biodiversidad (known in English as Seeds of Discovery, or SeeD) initiative to present at COP 13 on their work to facilitate the use of maize genetic diversity, particularly through a collection of tools and resources known as the “Maize Molecular Atlas.” The presentations will focus on how resources that have been developed can aid in the understanding of germplasm stored in genebanks and collections to enable better use.

As the region of origin and as a center of diversity for maize, Mexico and Mesoamerica are home to much of the crop’s genetic variation. Thousands of samples of maize from this and other important regions are preserved in the CIMMYT germplasm bank, in trust, for the benefit of humanity. The bank’s 28,000 maize seed samples hold diversity to develop new varieties for farmers to respond to challenges such as heat, disease and drought stress. However, information on the genetic makeup and physical traits of these varieties is often limited, making the identification of the most relevant samples difficult.

Native maize varieties, known as landraces, contain a broad amount of genetic diversity that could protect food security for future generations.
Native maize varieties, known as landraces, contain a broad amount of genetic diversity that could protect food security for future generations.

SeeD works to better characterize and utilize novel genetic diversity in germplasm banks to accelerate the development of new maize and wheat varieties for the benefit of farmers. The initiative has generated massive amounts of information on the genetic diversity of maize and wheat, as well as cutting-edge software tools to aid in its use and visualization. This information and tools are freely available as global public goods for breeders, researchers, germplasm bank managers, extension agents and others, but are even more powerful when they are integrated with different types and sets of data.

Developed by the SeeD initiative, the maize molecular atlas represents an unparalleled resource for those interested in maize genetic diversity.

“You can think of the maize molecular atlas like a satellite navigation system in your car,” said Sarah Hearne, a CIMMYT scientist who leads the project’s maize component. “Information that used to be housed separately, such as maps, traffic or the locations of police officers, gas stations, restaurants and hotels, are now brought together. It’s the same with the atlas. Having access to all of these data at once in an interlinked manner allows people to make better decisions, faster,” she said.

SeeD’s maize molecular atlas includes three main types of resources: data, such as maize landrace passport data (where it came from, when it was collected, etc.), geographic information system (GIS) -derived data (what the environment was like where maize was collected; rainfall, soils, etc.), genotypic data (genetic fingerprints of maize varieties) and available phenotypic data (information on how plants grow in different conditions); knowledge, (derived from data-marker trait associations; what bits of the genome do what); and tools, including data collection software (KDSmart), data storage and query tools (Germinate) and visualization tools (CurlyWhirly).

All of these resources are available through the SeeD website, where, when used together, they can increase the effective and efficient identification and utilization of maize genetic resources.

Interestingly, one of the first benefits of this initiative was for Mexican farmers. The efforts to better characterize the collection led to the identification of landraces that were resistant to Tar Spot, a disease that is devastating many farmers’ fields in Mexico and Central America. These landraces were immediately shared with farming communities while also being utilized in breeding programs. Smallholders in particular grow crops in diverse environmental conditions. They need diverse varieties. The understanding and use of biodiversity by researchers, breeders and farmers will be crucial to ensure the use of more and genetically diverse crops.

“With the atlas we now have the ability, with fewer resources, to interlink and query across different data types in one searchable resource,” Hearne said. This will allow breeders and researchers world-wide to hone in on the genetic and physical plant traits they are looking for, to more quickly identify and use novel genetic diversity to create improved varieties adapted to their specific needs. So far about 250 researchers and students from Mexico have participated in workshops and activities to begin using the new tools. With Mexico being a very important center of diversity for many species, agricultural and beyond, the same tools could be used for other species, here and abroad.

Hearne is looking forward to sharing information about MasAgro Biodiversidad and CIMMYT’s progress at COP 13, and is hopeful about the impacts the maize molecular atlas will have on biodiversity conservation.

“Conservation isn’t just preservation, it’s use. The molecular maize atlas enables us to better utilize the genetic resources we have, but also to better understand what diversity we may still need for our collection,” she said. “If you don’t know what you have, you don’t know what you need to preserve or look for. The work of the maize molecular atlas helps to address the underlying causes of biodiversity loss by raising awareness of the importance of these resources for sustainable food production while enabling researchers world-wide to use the information for assessing their own collections and generate more diverse varieties.”

SeeD is a multi-project initiative comprising: MasAgro Biodiversidad, a joint initiative of CIMMYT and the Mexican Ministry of Agriculture (SAGARPA) through the MasAgro (Sustainable Modernization of Traditional Agriculture) project; the CGIAR Research Programs on Maize (MAIZE CRP) and Wheat (WHEAT CRP); and a computation infrastructure and data analysis project supported by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC). Learn more about the Seeds of Discovery project here

Advice for India’s rice-wheat farmers: Put aside the plow and save straw to fight pollution

A suite of simple, climate-smart farming practices predicated for years by agricultural scientists holds the key to resource conservation, climate change and reduced pollution in South Asia.
A suite of simple, climate-smart farming practices predicated for years by agricultural scientists holds the key to resource conservation, climate change and reduced pollution in South Asia. Photo: CIMMYT

EL BATAN, Mexico (CIMMYT) — Recent media reports show that the 19 million inhabitants of New Delhi are under siege from a noxious haze generated by traffic, industries, cooking fires and the burning of over 30 million tons of rice straw on farms in the neighboring states of Haryana and Punjab.

However, farmers who rotate wheat and rice crops in their fields and deploy a sustainable agricultural technique known as “zero tillage” can make a significant contribution to reducing smog in India’s capital, helping urban dwellers breathe more easily.

Since the 1990s, scientists at the International Maize and Wheat Improvement Center (CIMMYT) have been working with national partners and advanced research institutes in India to test and promote reduced tillage which allows rice-wheat farmers of South Asia to save money, better steward their soil and water resources, cut greenhouse gas emissions and stop the burning of crop residues.

The key innovation involves sowing wheat seed directly into untilled soil and rice residues in a single tractor pass, a method known as zero tillage. Originally deemed foolish by many farmers and researchers, the practice or its adaptations slowly caught on and by 2008 were being used to sow wheat by farmers on some 1.8 million hectares in India.

Scientists and policymakers are promoting the technique as a key alternative for residue burning and to help clear Delhi’s deadly seasonal smog.

Burning soils the air, depletes the soil

“Rice-wheat rotations in Bangladesh, India, Nepal and Pakistan account for nearly a quarter of the world’s food production and constitute a key source of grain and income in South Asia, home to more than 300 million undernourished people,” said Andy McDonald, a cropping systems agronomist at CIMMYT. “But unsustainable farming practices threaten the region’s productivity and are worsening global climate change.”

The burning of paddy straw is one example, according to expert studies. Besides triggering costly respiratory ailments in humans and animals in farm regions and urban centers like Delhi, burning rice residues depletes soil nutrients, with estimated yearly losses in Punjab alone of 3.9 million tons of organic carbon, 59,000 tons of nitrogen, 20,000 tons of phosphorus and 34,000 tons of potassium, according to M.L. Jat, a senior agronomist at CIMMYT, who leads CIMMYT’s contributions to “climate-smart” villages in South Asia, as part of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

The Turbo Happy Seeder allows farmers to sow a rotation crop directly into the residues of a previous crop—in this case, wheat seed into rice straw—without plowing, a practice that raises yields, saves costs and promotes healthier soil and cleaner air. Inset: Agricultural engineer H.S. Sidhu (left), of the Borlaug Institute for South Asia (BISA), who has helped test and refine and the seeder, visits a zero tillage plot with Dr. B.S. Sidhu, agricultural commissioner of Punjab State. Photo: CIMMYT

Zero tillage: A lot to like

Traditional tillage for sowing wheat in northern India involves removing or burning rice straw and driving tractor-drawn implements back and forth over fields to rebuild a soil bed from the rice paddy, a costly and protracted process.

Zero tillage cuts farmers’ costs and provides better yields. By eliminating plowing, farmers can sow wheat up to two weeks earlier. This allows the crop to fill grain before India’s withering pre-Monsoon heat arrives — an advantage that is lost under conventional practices.

A 2016 study in Bihar state showed that farmers’ annual income increased by an average 6 percent when they used zero tillage to sow wheat, due both to better yields and savings in diesel fuel through reduced tractor use.

Zero tillage also diminishes farmers’ risk from erratic precipitation, according to Jat. “A new study in Haryana has shown that in wet years when conventionally-sown wheat fields are waterlogged, zero-tilled crops can produce 16 percent more grain.”

Environmental and climate change benefits include 93 kilograms less greenhouse gas emissions per hectare. “In the long run, retaining crop residues builds up soil organic matter and thereby reduces farming’s carbon footprint,” Jat explained.

Zero-tilled wheat also requires 20 to 35 percent less irrigation water, slowing depletion of the region’s rapidly-dwindling underground water reserves and putting money in farmers’ pockets by reducing their need to pump.

“It’s impressive that a single practice provides such a broad set of benefits,” said McDonald, who leads CIMMYT’s Cereal Systems Initiative for South Asia (CSISA).

Specialized seed planters sell slowly

Farmer awareness is growing, but putting aside the plow is not an easy proposition for some. In particular, zero tillage requires use of a special, tractor-mounted implement which, in a single pass, chops rice residues, opens a rut in the soil, and precisely deposits and covers the seed.

Development of this special seeder was first funded by the Australian Centre for International Agricultural Research (ACIAR) and led by Punjab Agricultural University, with contributions from CIMMYT and other organizations. The latest version, the Turbo Happy Seeder, costs $1,900 — an investment that many farmers still struggle to make.

“As an alternative, we’ve been saying that not all farmers need to own a seeder,” Jat observed. “Many can simply hire local service providers who have purchased the seeder and will sow on contract.” In Bihar and the neighboring state of Uttar Pradesh, the number of zero-tillage service providers rose from only 17 in 2012 to more than 1,900 in 2015, according to Jat.

Given New Delhi’s smog troubles, Haryana and Punjab policymakers are adding support to avoid burning rice straw. “The government of Haryana has taken a policy decision to aggressively promote the seeder for zero tillage and residue management and to provide 1,900 seeders on subsidy this year,” said Suresh Gehlawat, assistant director of agriculture for that state, in a recent statement.

On the horizon: Zero tillage for rice

As part of these efforts, CIMMYT scientists and partners are testing and promoting with farmers a suite of resource-conserving practices. These include precision land levelling, which saves water and improves productivity, as well as directly sowing rice into untilled, non-flooded plots.

“The practice of direct-seeded rice requires less labor, raising farmers’ profits by as much as $130 per hectare over paddy-grown rice,” said Jat. “Moreover, growing rice in non-flooded fields uses 25 percent less water and reduces the emission of methane, a greenhouse gas 200 times more powerful than carbon dioxide, by 20 kilograms per hectare.”