Skip to main content

funder_partner: CGIAR

Collaborating to accelerate genetic gains in maize and wheat

Stakeholders in the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project have pledged to strengthen efforts to deliver desirable stress tolerant, nutritious and high-yielding maize and wheat varieties to smallholder farmers in a much shorter time. The alliance, comprising funders, national agricultural research systems (NARS), private seed companies, non-governmental organizations, the International Maize and Wheat Improvement Center (CIMMYT) and, for the maize component the International Institute for Tropical Agriculture (IITA), made these assurances during virtual events held in July and August 2020, marking the inception of the 5-year AGG project.

The initiative seeks to fast-track the development of higher-yielding, climate resilient, demand-driven, gender-responsive and nutritious seed varieties for maize and wheat, two of the world’s most important staple crops. The project is funded by the Bill & Melinda Gates Foundation, the Foreign, Commonwealth & Development Office (FCDO), the U.S. Agency for International Development (USAID), and the Foundation for Food and Agriculture Research (FFAR).

Tackling current and emerging threats

Jeff Rosichan, scientific program director of the Foundation for Food and Agricultural Research (FFAR),  acknowledged the significant and ambitious aim of the project in tackling the challenges facing maize and wheat currently and in the future. “We are seeing the emergence of new pests and pathogens and viral diseases like never before. A lot of the work of this project is going to help us to tackle such challenges and to be better prepared to tackle emerging threats,” he said.

AGG builds on gains made in previous initiatives including Drought Tolerant Maize for Africa (DTMA), Improved Maize for African Soils (IMAS), Water Efficient Maize for Africa (WEMA), Stress Tolerant Maize for Africa (STMA) and Delivering Genetic Gain in Wheat (DGGW), with support from partners in 17 target countries in sub-Saharan Africa (SSA) and South Asia.

Hailu Wordofa, agricultural technology specialist at the USAID Bureau for Resilience and Food Security, underscored his expectation for CIMMYT’s global breeding program to use optimal breeding approaches and develop strong collaborative relationships with NARS partners, “from the development of product profiles to breeding, field trials and line advancement.”

Similarly, Gary Atlin, senior program officer at the Bill & Melinda Gates Foundation lauded the move toward stronger partnerships and greater emphasis on the CIMMYT and IITA breeding programs. “The technical capacity of partners has increased through the years. It is prudent to ensure that national partnerships continue. It is always a challenging environment, this time multiplied by the COVID-19 crisis, but through this collaboration, there is a greater scope to strengthen such partnerships even more,” he said.

Anne Wangui, Maize Seed Health Technician, demonstrates how to test maize plants for maize dwarf mosaic virus (MDMV). (Photo: Joshua
Anne Wangui, Maize Seed Health Technician, demonstrates how to test maize plants for maize dwarf mosaic virus (MDMV). (Photo: Joshua Masinde/CIMMYT)

Symbiotic partnerships with great impact

“From the NARS perspective, we are committed to doing our part as primary partners to deliver the right seed to the farmers,” said Godfrey Asea, director of the National Crops Resources Research Institute at the National Agriculture Research Organization (NARO), Uganda. “We see an opportunity to review and to use a lot of previous historical data, both in-country and regionally and to continue making improved decisions. We also reiterate our commitment and support to continuously make improvement plans in our breeding programs.”

Martin Kropff, director general of CIMMYT, recognized the tremendous impact arising from the longstanding cooperation between CIMMYT’s maize and wheat programs and national programs in countries where CIMMYT works. “A wheat study in Ethiopia showed that 90% of all the wheat grown in the country is CIMMYT-related, while an impact study for the maize program shows that 50% of the maize varieties in Africa are CIMMYT-derived. We are very proud of that – not for ourselves but for the people that we work for, the hundreds of millions of poor people and smallholder farmers who really rely on wheat and maize for their living and for their incomes,” he said.

Founder and Chief Executive Officer of East Africa-based Western Seed Company Saleem Esmail expressed optimism at the opportunities the project offers to improve livelihoods of beneficiaries. “I believe we can do this by sharing experiences and by leveraging on the impacts that this project is going to bring, from new technologies to new science approaches, particularly those that help save costs of seed production.”

He, however, observed that while the target of fast-tracking varietal turnover was great, it was a tough call, too, “because farmers are very risk averse and to change their habits requires a great deal of effort.”

On his part, director of Crop Research at the Oromia Agricultural Research Institute (OARI) in Ethiopia Tesfaye Letta revealed that from collaborative research work undertaken with CIMMYT, the institute has had access to better-quality varieties especially for wheat (bread and durum). These have helped millions of farmers to improve their productivity even as Ethiopia aims for wheat self-sufficiency by expanding wheat production under irrigation.

“We expect more support, from identifying wheat germplasm suitable for irrigation, developing disease resistant varieties and multiplying a sufficient quantity of early generation seed, to applying appropriate agronomic practices for yield improvement and organizing exposure field visits for farmers and experts,” he said.

Challenges and opportunities in a time of crisis

Alan Tollervey, head of agriculture research at Foreign, Commonwealth and Development Office (FCDO) and the UK representative to the CGIAR System Council, emphasized the need for continued investment in agricultural research to build a resilient food system that can cope with the demands and pressures of the coming decades. This way, organizations such as CIMMYT and its partners can adequately deliver products that are relevant not only to the immediate demands of poor farmers in developing countries – and the global demand for food generally – but also to address foreseen threats.

“We are at a time of intense pressure on budgets, and that is when projects are most successful, most relevant to the objectives of any organization, and most able to demonstrate a track record of delivery. CIMMYT has a long track history of being able to respond to rapidly emerging threats,” he said.

Felister Makini, the deputy director general for crops at the Kenya Agricultural Research Organization (KALRO) lauded the fact that AGG not only brings together maize and wheat breeding and optimization tools and technologies, but also considers gender and socioeconomic insights, “which will be crucial to our envisioned strategy to achieve socioeconomic change.”

Zambia Agriculture Research Organization (ZARI) maize breeder Mwansa Kabamba noted that the inclusion of extension workers will help to get buy-in from farmers especially as far as helping with adoption of the improved varieties is concerned.

In its lifecycle, the AGG project aims to reduce the breeding cycles for both maize and wheat from 5-7 years currently to 3-4 years. By 2024, at least 150,000 metric tons of certified maize seed is expected to be produced, adopted by 10 million households, planted on 6 million hectares and benefit 64 million people. It also seeks to serve over 30 million households engaged in wheat farming the target countries.

Cover photo: CIMMYT researcher Demewoz Negera at the Ambo Research Center in Ethiopia. (Photo: Peter Lowe/CIMMYT)

Matching nutrients to agroforestry systems for greater maize and wheat yields

Globally, the COVID-19 pandemic and associated lockdowns have created bottlenecks across the agricultural value chain, including disrupting the supply of fertilizer. This could negatively impact the already low yields in smallholders’ fields in the Global South. Livelihoods of these resource-poor farmers and food security of those they feed call for innovations or smarter application of existing knowledge to avoid increasing food insecurity.

In a recent study, a team of scientists from the International Maize and Wheat Improvement Center (CIMMYT) and Plant Production Systems, Wageningen University, found that there are clever ways to mix and match maize and wheat varieties with mineral fertilizers in tree-crop systems for greater nutrient use efficiency. The study explored the impact of different combinations of nitrogen (N) and phosphorus (P) fertilizers on crop yield in tree crop systems. It also identified mineral fertilizer-tree combinations that maximize agronomic nutrient use efficiencies under different contexts.

Tree-crop-fertilizer interactions for wheat growing under Faidherbia albida and maize growing under Acacia tortilis and Grevillea robusta through omission trials of N and P were explored in open fields and fields under tree canopy, using a split plot design. The experiments were conducted under different agroecologies in Ethiopia (Meki and Mojo) and Rwanda, where retaining scattered trees in fields has been practiced for centuries. The trials were replicated four times and over two seasons. Trees with approximately similar ages, crown structures and pruning history were used for a researcher-led and farmer-managed on-farm experiment.

The results demonstrated that different on-farm tree species interact uniquely with crops, resulting in different responses to N and P fertilization. Except for F. albida, perhaps the most ‘ideal’ agroforestry species, the other two tree species under the current study raised the question of tree-crop compatibility for optimum productivity. F. albida significantly improved N and P use efficiencies, leading to significantly higher grain yields in wheat. The P use efficiency of wheat under F.albida was double that of wheat grown in an open field. By contrast, G. robusta and A. tortilis trees lowered nutrient use efficiencies in maize, leading to significantly less maize grain yields compared with open fields receiving the same fertilization. The case study also identified probabilities of critically low crop yields and crop failure to be significantly greater for maize growing under the canopy of these species.

A tree-crop system in Ethiopia. (Photo: Tesfaye Shiferaw /CIMMYT)
A tree-crop system in Ethiopia. (Photo: Tesfaye Shiferaw /CIMMYT)

In conclusion, the study demonstrated that tree-crop interactions are mediated by the application of N and P fertilizers in tree-crop systems. In F. albida-wheat agroforestry systems, N fertilizers could be saved, with localized application of P fertilizers close to tree crowns. Such adaptable application may help smallholder farmers cope with COVID-19-imposed fertilizer limitations. In G.robusta-maize and A.tortilis-maize agroforestry systems, maize did not respond to N and P fertilizers applied at recommended rates, although the application of these nutrients compensated for competition. This implies mineral fertilizers can offset the effect of competition, while they fail to provide the yield advantages like mono-cropping situations.

The researchers underlined the fact that fertilizer recommendations need to be adapted to agroforestry systems. However, in order to quantify the exact magnitude and nature of fertilizer-tree interaction in agroforestry systems accurately, factorial application of higher and lower rates of mineral fertilizer is needed. They also called for further research to identify fertilization rates that minimize tree-crop competition for G. robusta-maize and A. tortilis-maize systems, while additional studies are needed to identify the rates and timing of application that optimize F. albida-wheat facilitation.

This work was carried out by the International Maize and Wheat Improvement Center (CIMMYT) and Plant Production Systems, Wageningen University

Download your copy of the publication: Should fertilizer recommendations be adapted to parkland agroforestry systems? Case studies from Ethiopia and Rwanda

Massive-scale genomic study reveals wheat diversity for crop improvement

A new study analyzing the diversity of almost 80,000 wheat accessions reveals consequences and opportunities of selection footprints. (Photo: Eleusis Llanderal/CIMMYT)
A new study analyzing the diversity of almost 80,000 wheat accessions reveals consequences and opportunities of selection footprints. (Photo: Keith Ewing)

Researchers working on the Seeds of Discovery (SeeD) initiative, which aims to facilitate the effective use of genetic diversity of maize and wheat, have genetically characterized 79,191 samples of wheat from the germplasm banks of the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA).

The findings of the study published today in Nature Communications are described as “a massive-scale genotyping and diversity analysis” of the two types of wheat grown globally — bread and pasta wheat — and of 27 known wild species.

Wheat is the most widely grown crop globally, with an annual production exceeding 600 million tons. Approximately 95% of the grain produced corresponds to bread wheat and the remaining 5% to durum or pasta wheat.

The main objective of the study was to characterize the genetic diversity of CIMMYT and ICARDA’s internationally available collections, which are considered the largest in the world. The researchers aimed to understand this diversity by mapping genetic variants to identify useful genes for wheat breeding.

From germplasm bank to breadbasket

The results show distinct biological groupings within bread wheats and suggest that a large proportion of the genetic diversity present in landraces has not been used to develop new high-yielding, resilient and nutritious varieties.

“The analysis of the bread wheat accessions reveals that relatively little of the diversity available in the landraces has been used in modern breeding, and this offers an opportunity to find untapped valuable variation for the development of new varieties from these landraces”, said Carolina Sansaloni, high-throughput genotyping and sequencing specialist at CIMMYT, who led the research team.

The study also found that the genetic diversity of pasta wheat is better represented in the modern varieties, with the exception of a subgroup of samples from Ethiopia.

The researchers mapped the genomic data obtained from the genotyping of the wheat samples to pinpoint the physical and genetic positions of molecular markers associated with characteristics that are present in both types of wheat and in the crop’s wild relatives.

According to Sansaloni, on average, 72% of the markers obtained are uniquely placed on three molecular reference maps and around half of these are in interesting regions with genes that control specific characteristics of value to breeders, farmers and consumers, such as heat and drought tolerance, yield potential and protein content.

Open access

The data, analysis and visualization tools of the study are freely available to the scientific community for advancing wheat research and breeding worldwide.

“These resources should be useful in gene discovery, cloning, marker development, genomic prediction or selection, marker-assisted selection, genome wide association studies and other applications,” Sansaloni said.


Read the study:

Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints.

Interview opportunities:

Carolina Sansaloni, High-throughput genotyping and sequencing specialist, CIMMYT.

Kevin Pixley, Genetic Resources Program Director, CIMMYT.

For more information, or to arrange interviews, contact the media team:

Ricardo Curiel, Communications Officer, CIMMYT. r.curiel@cgiar.org

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org

Acknowledgements:

The study was part of the SeeD and MasAgro projects and the CGIAR Research Program on Wheat (WHEAT), with the support of Mexico’s Secretariat of Agriculture and Rural Development (SADER), the United Kingdom’s Biotechnology and Biological Sciences Research Council (BBSRC), and CGIAR Trust Fund Contributors. Research and analysis was conducted in collaboration with the National Institute of Agricultural Botany (NIAB) and the James Hutton Institute (JHI).

About CIMMYT:

The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org.

3 climate-resilient food solutions for smallholder farmers

While COVID-19 is exacerbating an existing hunger crisis, authors highlight three of the most impactful research and development successes from the past few years that help smallholder farmers cope with climate change and bolster food security.

The first is CIMMYT’s program to develop drought-tolerant maize varieties with support from the Bill & Melinda Gates Foundation, successfully developing hundreds of new varieties that boost farmers’ yields and incomes, directly improving millions of lives.

Read more here: https://www.greenbiz.com/article/3-climate-resilient-food-solutions-smallholder-farmers

Reaching women with improved maize and wheat

By 2050, global demand for wheat is predicted to increase by 50 percent from today’s levels and demand for maize is expected to double. Meanwhile, these profoundly important and loved crops bear incredible risks from emerging pests and diseases, diminishing water resources, limited available land and unstable weather conditions – with climate change as a constant pressure exacerbating all these stresses.

Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) is a new 5-year project led by the International Maize and Wheat Improvement Center (CIMMYT) that brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat.

Funded by the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth & Development Office, the U.S. Agency for International Development (USAID) and the Foundation for Food and Agriculture Research (FFAR), AGG fuses innovative methods to sustainably and inclusively improve breeding efficiency and precision to produce seed varieties that are climate-resilient, pest- and disease-resistant, highly nutritious, and targeted to farmers’ specific needs.

AGG seeks to respond to the intersection of the climate emergency and gender through gender-intentional product profiles for its improved seed varieties and gender-intentional seed delivery pathways.

AGG will take into account the needs and preferences of female farmers when developing the product profiles for improved varieties of wheat and maize. This will be informed by gender-disaggregated data collection on current varieties and preferred characteristics and traits, systematic on-farm testing in target regions, and training of scientists and technicians.

Farmer Agnes Sendeza harvests maize cobs in Malawi. (Photo: Peter Lowe/CIMMYT)
Farmer Agnes Sendeza harvests maize cobs in Malawi. (Photo: Peter Lowe/CIMMYT)

To encourage female farmers to take up climate-resilient improved seeds, AGG will seek to understand the pathways by which women receive information and improved seed and the external dynamics that affect this access and will use this information to create gender-intentional solutions for increasing varietal adoption and turnover.

“Until recently, investments in seed improvement work have not actively looked in this area,” said Olaf Erenstein, Director of CIMMYT’s Socioeconomics Program at a virtual inception meeting for the project in late August 2020. Now, “it has been built in as a primary objective of AGG to focus on [
] strengthening gender-intentional seed delivery systems so that we ensure a faster varietal turnover and higher adoption levels in the respective target areas.”

In the first year of the initiative, the researchers will take a deep dive into the national- and state-level frameworks and policies that might enable or influence the delivery of these new varieties to both female and male farmers. They will analyze this delivery system by mapping the seed delivery paths and studying the diverse factors that impact seed demand. By understanding their respective roles, practices, and of course, the strengths and weaknesses of the system, the researchers can diagnose issues in the delivery chain and respond accordingly.

Once this important scoping step is complete, the team will design a research plan for the following years to understand and influence the seed information networks and seed acquisition. It will be critical in this step to identify some of the challenges and opportunities on a broad scale, while also accounting for the related intra-household decision-making dynamics that could affect access to and uptake of these improved seed varieties.

“It is a primary objective of AGG to ensure gender intentionality,” said Kevin Pixley, Director of CIMMYT’s Genetic Resources Program and AGG project leader. “Often women do not have access to not only inputs but also information, and in the AGG project we are seeking to help close those gaps.”

Cover photo: Farmers evaluate traits of wheat varieties, Ethiopia. (Photo: Jeske van de Gevel/Bioversity International)

Excellence in Agronomy 2030 initiative to launch at African Green Revolution Forum

Nine CGIAR centers, supported by the Big Data Platform, will launch the Excellence in Agronomy 2030 initiative on September 7, 2020, during this year’s African Green Revolution Forum (AGRF) online summit.

The Excellence in Agronomy 2030 (EiA 2030) initiative will assist millions of smallholder farmers to intensify their production systems while preserving key ecosystem services under the threat of climate change. This initiative, co-created with various scaling partners, represents the collective resolve of CGIAR’s agronomy programs to transform the world’s food systems through demand- and data-driven agronomy research for development.

EiA 2030 will combine big data analytics, new sensing technologies, geospatial decision tools and farming systems research to improve spatially explicit agronomic recommendations in response to demand from scaling partners. Our science will integrate the principles of Sustainable Intensification and be informed by climate change considerations, behavioral economics, and scaling pathways at the national and regional levels.

A two-year Incubation Phase of EiA 2030 is funded by the Bill & Melinda Gates Foundation. The project will demonstrate the added value of demand-driven R&D, supported by novel data and analytics and increased cooperation among centers, in support of a One CGIAR agronomy initiative aiming at the sustainable intensification of farming systems.

Speaking on the upcoming launch, the IITA R4D Director for Natural Resource Management, Bernard Vanlauwe, who facilitates the implementation of the Incubation Phase, said that “EiA 2030 is premised on demand-driven agronomic solutions to develop recommendations that match the needs and objectives of the end users.”

Christian Witt, Senior Program Officer from the Bill & Melinda Gates Foundation, lauded the initiative as a cornerstone for One CGIAR. “It is ingenious to have a platform like EiA 2030 that looks at solutions that have worked in different settings on other crops and whether they can be applied in a different setting and on different crops,” Witt said.

Martin Kropff, Director General of the International Maize and Wheat Improvement Center (CIMMYT), spoke about the initiative’s goals of becoming the leading platform for next-generation agronomy in the Global South, not only responding to the demand of the public and private sectors, but also increasing efficiencies in the development and delivery of solutions through increased collaboration, cooperation and cross-learning between CGIAR centers and within the broader agronomy R&D ecosystem, including agroecological approaches.

At the EiA 2030 launch, representatives from partner organizations and CGIAR centers will give presentations on different aspects of the project.

CGIAR centers that are involved in EiA include AfricaRice, the International Center for Tropical Agriculture (CIAT), the International Maize and Wheat Improvement Center (CIMMYT), the International Potato Center (CIP), the International Center for Agricultural Research in the Dry Areas (ICARDA), World Agroforestry Center (ICRAF), the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), the International Institute of Tropical Agriculture (IITA), and the International Rice Research Institute (IRRI).

Launch details:

  • Date: September 7, 2020
  • Venue: Virtual; online
  • Time: 3 pm, Central Africa Time (CAT)
  • Link: To be provided before the event.

Register for AGRF here.

For more information contact Bernard Vanlauwe, b.vanlauwe@cgiar.org, or David Ngome, d.ngome@cgiar.org

Follow EiA on Facebook, Twitter and LinkedIn for updates and information.

Building resistance in wheat: International collaboration fights Septoria tritici blotch disease

Phenotypic selection of resistant lines (Ms. H. Kouki Field technician and consultant A. Yahyaoui) at the Septoria Precision Phenotyping Platform at Kodia/INGC. (Photo: Septoria Precision Phenotyping Platform)

Tunisia has been a major durum wheat producer and consumer since Roman times, a crop used now for couscous, bread and pasta dishes throughout North Africa and the Mediterranean Basin.

However, a persistent disease known as Septoria tritici blotch (STB) has been threatening durum wheat harvests across the country thanks to its increasing resistance to fungicides and adaptability to harsher climatic conditions. The disease, which is caused by the fungus Zymoseptoria tritici, thrives under humid conditions and can cause up to 60% yield loss in farmers’ fields.

To help fight this disease, the International Maize and Wheat Improvement Center (CIMMYT) established the Septoria Precision Phenotyping Platform in collaboration with the Institution of Agricultural Research and Higher Education of Tunisia (IRESA) and the International Center for Agricultural Research in the Dry Areas (ICARDA) in Tunisia in 2015.

The platform aims to accelerate the transfer of STB resistance genes into elite durum wheat lines from national and international breeding programs, particularly CIMMYT and ICARDA breeding programs. Researchers at the platform have tested an impressive diversity of durum wheat lines for resistance to the disease from research institutes across Tunisia, Morocco, Algeria, Mexico, France, Italy, the UK, USA and Canada.

STB field reactions showing typical necrotic symptoms containing pycnidia on an infected adult plant leaf of wheat. (Photo: Septoria Precision Phenotyping Platform)

“New and more virulent strains of the pathogen are constantly emerging, which results in previously resistant wheat varieties becoming more susceptible,” said Sarrah Ben M’Barek, head of the laboratory at the Septoria Precision Phenotyping platform.

Field phenotyping – the use of field-testing to identify desired plant traits — is the heart of the platform. Scientists can test as many as 30,000 plots each year for STB resistance.

Evaluations are conducted at two main field research stations managed by the Regional Field Crop Center (CRRGC) and the National Institute of Field Crops (INGC), based at two major hotspots for the disease in Beja and Kodia. This work is complemented by laboratory research at the National Agronomic Institute of Tunisia (INAT) at Tunis.

“The platform plays a critical role in identifying STB resistant wheat germplasm and characterizing the resistance genes they possess. These resistant sources be can further utilized in hybridization schemes by durum wheat breeders worldwide to develop durable resistant varieties,” explained CIMMYT consultant and platform coordinator Amor Yahyaoui.

With the help of data from the platform, breeders hope to combine multiple resistance genes in an individual variety to create a genetically complex “lock” whose combination the fungus will not easily break.

According to Ben M’Barek, the huge genetic diversity in wheat and its ancestors has helped breeders to develop new varieties for almost a century. However, the adoption of new varieties has typically been slow.

Farmers in Tunisia traditionally rely on fungicides to manage the disease. However, with the pathogen recently becoming more resistant to fungicides and more adaptive to harsher climatic conditions, interest in STB resistant varieties is increasing.

Field disease reactions of a susceptible wheat cultivar. (Photo: Septoria Precision Phenotyping Platform)

A hub for training and collaboration

The platform is also a hub for training and capacity development for national and international scientists, field research and lab. assistants, students and farmers. It brings together research staff and technicians from different institutions within Tunisia including the CRRGC, INGC, the National Institute of Agricultural Research of Tunisia (INRAT), INAT and the University of Jendouba.

Farmer’s organizations and regional extension services, as well as private organizations such as Comptoir Multiservices Agricoles (CMA), seed and chemical companies also collaborate with the platform. The result is a team effort that has generated a tremendous wealth of data, made only possible through the dedication of Yahyaoui, said Ben M’Barek.

“Spending a few days at the platform each year is a like a crash course on STB resistance. All subjects are covered and great experts around the world come together to discuss all details of this host-pathogen interaction,” said Filippo Bassi, senior durum wheat breeder at ICARDA.

“Sending young scientists to spend some time at the platform ensures that they learn all about the mechanisms of resistance and take them back to their home country to deploy them in their own breeding programs. It is like a true university for STB.”

Yet, the platform still has a lot of work to do, according to Ben M’Barek. Scientists at the platform are now working on raising awareness on crop and pest management such as integrated management approaches amongst farming communities, setting up on-farm field trials and developing disease early warning surveillance.

Next year the platform will provide a unique podium for students, academics and researchers to exchange ideas and research findings on cereal leaf blight diseases. The International Symposium on Cereal Leaf Blights will take place on May 19-21, 2021 in Tunisia. Details can be found here.

The Septoria Precision Phenotyping Platform is led by the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with the Institution of Agricultural Research and Higher Education of Tunisia (IRESA) and the International Center for Agricultural Research in the Dry Areas (ICARDA) and is supported by the CGIAR Research Program in Wheat (WHEAT).

Septoria Precision Phenotyping Platform at Oued Béja (CRRGC). (Photo: Gert Kema/Wageningen University)

New publications: Power, agency and benefits among women and men maize farmers

For smallholder farmers in sub-Saharan Africa, new agricultural technologies such as improved maize varieties offer numerous benefits — increased incomes, lower workloads and better food security, among others. However, when new technologies are introduced, they can denaturalize and expose gender norms and power relations because their adoption inevitably requires women and men to renegotiate the rules of the game. The adoption of new varieties will often be accompanied by a number of related decisions on the allocation of farm labor, the purchase and use of inorganic fertilizers, switching crops between women- and men-managed plots, and the types of benefit household members expect to secure may change.

In an article published this month in Gender, Technology and Development, researchers from the International Maize and Wheat Improvement Center (CIMMYT) explore how women in Nigeria negotiate these new power dynamics to access and secure the benefits of improved maize varieties and, more broadly, to expand their decision-making space.

Using focus group and interview data collected as part of the GENNOVATE project, the authors draw on case studies from four villages — two in the northern states of Kaduna and Plateau; two in the southwestern state of Oyo — to develop an understanding of the relationship between gender norms, women’s ability and willingness to express their agency, and the uptake of agricultural technologies. “This is an important step toward improving the capacity of agricultural research for development to design and scale innovations,” say the authors. “Achieving this ambition is highly relevant to maize.”

The results were similar across all four sites. The authors found that women in each area were constrained by powerful gender norms which privilege male agency and largely frown upon women’s empowerment, thus limiting their ability to maximize the benefits from improved varieties or realize their agency in other domains.

All women respondents remarked that improved maize varieties were easy to adopt, have higher yields and mature quickly, which meant that income flows started earlier and helped them meet household expenditures on time. They prioritized the contribution of improved maize to securing household food security, which helped them meet their ascribed gender roles as food providers.

“At the same time though, women felt they could not maximize their benefits from improved maize varieties due to men’s dominance in decision-making,” the authors explain. “This was particularly the case for married women.”

“Men are meant to travel far – not women”

Woman selling white maize at Bodija market in Ibadan, Nigeria. (Photo: Adebayo O./IITA)
Woman selling white maize at Bodija market in Ibadan, Nigeria. (Photo: Adebayo O./IITA)

Embedded gender norms – particularly those relating to mobility – infuse the wider environment and mean that women’s access to opportunities is considerably more restricted than it is for men.

The findings demonstrate that both women and men farmers secure benefits from improved maize varieties. However, men accrue more benefits and benefit directly, as they have unfettered mobility and opportunity. They can access markets that are further away, and the maize they sell is unprocessed and requires no transformation. Additionally, men do not question their right to devote profits from maize primarily to their own concerns, nor their right to secure a high level of control over the money women make.

On the other hand, women respondents — regardless of age and income cohort — repeatedly stated that while it is hard to earn significant money from local sales of the processed maize products they make, it is also very difficult for them to enter large markets selling unprocessed, improved maize.

The difficulties women face in trying to grow maize businesses may be partly related to a lack of business acumen and experience, but a primary reason is limited personal mobility in all four communities. For example, in Sabon Birni village, Kaduna, women lamented that though the local market is not large enough to accommodate their maize processing and other agri-business ventures, they are not permitted travel to markets further afield where ‘there are always people ready to buy’.

“Women’s benefits relate to the fact that improved maize varieties increase the absolute size of the ‘maize cake’,” say the authors. “They expect to get a larger slice as a consequence. However, the absolute potential of improved varieties for boosting women’s incomes and other options of importance to women is hampered by gender norms that significantly restrict their agency.”

The implications for maize research and development are that an improved understanding of the complex relational nature of empowerment is essential when introducing new agricultural technologies.

Read the full paper:
Unequal partners: associations between power, agency and benefits among women and men maize farmers in Nigeria

Other recent publications from GENNOVATE:

Continuity and Change: Performing Gender in Rural Tanzania

Engaging men in gender-equitable practices in maize systems of sub-Saharan Africa

Cover photo: Maize and other food crops on sale at Ijaye market, Oyo State, Nigeria. (Photo: Adebayo O./IITA)

Read more recent publications by CIMMYT researchers:

  1. Phenotypic characterization of Canadian barley advanced breeding lines for multiple disease resistance. 2019. Osman, M., Xinyao He, Capettini, F., Helm, J., Singh, P.K. In: Cereal Research Communications v. 47, no. 3, pg. 484-495.
  2. Tillage and crop rotations enhance populations of earthworms, termites, dung beetles and centipedes: evidence from a long-term trial in Zambia. 2019. Muoni, T., Mhlanga, B., Forkman, J., Sitali, M., Thierfelder, C. In: Journal of Agricultural Science v. 157, no. 6, pg. 504-514.
  3. Genética de la resistencia a roya amarilla causada por Puccinia striiiformis f. sp. tritici W. en tres genotipos de trigo (Triticum aestivum L.) = Genetics of the resistance to yellow rust caused by Puccinia striiformis f. sp. tritici W. in three genotypes of wheat (Tritcum aestivum L.). 2019. Rodriguez-Garcia, M.F., Rojas Martínez, R.I., Huerta-Espino, J., Villaseñor Mir, H.E., Zavaleta Mejía, E., Sandoval-Islas, S., Crossa, J. In: Revista Fitotecnia Mexicana v. 42, no. 1, pg. 31-38.
  4. Mapping of maize storage losses due to insect pests in central Mexico. 2019. GarcĂ­a-Lara, S., GarcĂ­a-Jaimes, E., Bergvinson, D.J. In: Journal of Stored Products Research v. 84, art. 101529.
  5. Analysis of distribution systems for supply of synthetic grain protectants to maize smallholder farmers in Zimbabwe: implications for hermetic grain storage bag distribution. 2019. Govereh, J., Muchetu, R.G., Mvumi, B.M., Chuma, T. In: Journal of Stored Products Research v. 84, art. 101520.
  6. Agronomic performance and susceptibility of seven Ghanaian improved sweet potato varieties to the sweet potato weevil, Cylas spp. (Coleoptera: Brentidae) in Coastal Savanna zone of Ghana. 2019. Adom, M., Fening, K.O., Wilson, D.D., Adofo, K., Bruce, A.Y. In: African Entomology v. 27, no. 2, pg. 312-321.
  7. Validation of candidate gene-based markers and identification of novel loci for thousand-grain weight in spring bread wheat. 2019. Sehgal, D., Mondal, S., Guzman, C., Garcia Barrios, G., Franco, C., Singh, R.P., Dreisigacker, S. In: Frontiers in Plant Science v. 19, art. 1189.
  8. Genomic prediction and genome-wide association studies of flour yield and alveograph quality traits using advanced winter wheat breeding material. 2019. Kristensen, P.S., Jensen, J., Andersen, J.P., Guzman, C., Orabi, J., Jahoor, A. In: Genes v. 10, no. 9, art. 669.
  9. Identification of superior doubled haploid maize (Zea mays) inbred lines derived from high oil content subtropical populations. 2019. Silva-Venancio, S., Preciado-Ortiz, R.E., Covarrubias-Prieto, J., OrtĂ­z-Islas, S., Serna-Saldivar, S.O., GarcĂ­a-Lara, S., Terron Ibarra, A., Palacios-Rojas, N. In: Maydica v. 64, no. 1, pg. 1-11.
  10. Tillage and residue-management effects on productivity, profitability and soil properties in a rice-maize-mungbean system in the Eastern Gangetic Plains. 2019. Rashid, M.H., Timsina, J., Islam, N., Saiful Islam. In: Journal of Crop Improvement v. 33, no. 5, pg. 683-710.
  11. Mapping of genetic loci conferring resistance to leaf rust from three globally resistant durum wheat sources. 2019. Kthiri, D., Loladze, A., N’Diaye, A., Nilsen, K., Walkowiak, S., Dreisigacker, S., Ammar, K., Pozniak, C.J. In: Frontiers in Plant Science v. 10, art. 1247.
  12. Compost amended with N enhances maize productivity and soil properties in semi-arid agriculture. 2019. Shahid Iqbal, Arif, M., Khan, H.Z., Yasmeen, T., Thierfelder, C., Tang Li, Khan, S., Nadir, S., Jianchu Xu In: Agronomy Journal v. 111 no. 5, pg. 2536-2544.
  13. Simulation-based maize–wheat cropping system optimization in the midhills of Nepal. 2019. Laborde, J.P., Wortmann, C.S., Blanco-Canqui, H., McDonald, A., Lindquist, J.L. In: Agronomy Journal v. 111, no. 5, pg. 2569-2581.
  14. Affordability linked with subsidy: impact of fertilizers subsidy on household welfare in Pakistan. 2019. Ali, A., Rahut, D.B., Imtiaz, M. In: Sustainability v. 11, no. 19, art. 5161.
  15. Field-specific nutrient management using Rice Crop Manager decision support tool in Odisha, India. 2019. Sharma, S., Rout, K.K., Khanda, C.M., Tripathi, R., Shahid, M., Nayak, A.D., Satpathy, S.D., Banik, N.C., Iftikar, W., Parida, N., Kumar, V., Mishra, A., Castillo, R.L., Velasco, T., Buresh, R.J. In: Field Crops Research v. 241, art. 107578.
  16. Balanced nutrient requirements for maize in the Northern Nigerian Savanna: parameterization and validation of QUEFTS model. 2019. Shehu, B.M., Lawan, B.A., Jibrin, J. M., Kamara, A. Y., Mohammed, I.B., Rurinda, J., Shamie Zingore, Craufurd, P., Vanlauwe, B., Adam, A.M., Merckx, R. In: Field Crops Research v. 241, art. 107585.
  17. Factor analysis to investigate genotype and genotype × environment interaction effects on pro-      vitamin A content and yield in maize synthetics. 2019. Mengesha, W., Menkir, A., Meseka, S., Bossey, B., Afolabi, A., Burgueño, J., Crossa, J. In: Euphytica v. 215, no. 11, art. 180.
  18. Agricultural productivity and soil carbon dynamics: a bioeconomic model. 2019. Berazneva, J., Conrad, J.M., GĂŒereña, D. T., Lehmann, J., Woolf, D. In: American Journal of Agricultural Economics v. 101, no.4, pg. 1021-1046.
  19. Effect of manures and fertilizers on soil physical properties, build-up of macro and micronutrients and uptake in soil under different cropping systems: a review. 2019. Dhaliwal, S.S., Naresh, R.K., Mandal, A., Walia, M.K., Gupta, R.K., Singh, R., Dhaliwal, M.K. In: Journal of Plant Nutrition v. 42, no. 2, pg. 2873-2900.
  20. Combined study on genetic diversity of wheat genotypes using SNP marker and phenotypic reaction to Heterodera filipjevi. 2019. Majd Taheri, Z., Tanha Maafi, Z., Nazari, K., Zaynali Nezhad, K., Rakhshandehroo, F., Dababat, A.A. In: Genetic Resources and Crop Evolution v. 66, no. 8, pg. 1791-1811.
  21. Characterization of QTLs for seedling resistance to tan spot and septoria nodorum blotch in the PBW343/Kenya Nyangumi wheat recombinant inbred lines population. 2019. Singh, P.K., Sukhwinder-Singh, Zhiying Deng, Xinyao He, Kehel, Z., Singh, R.P. In: International Journal of Molecular Sciences v. 20, no. 21, art. 5432.
  22. Rapid identification and characterization of genetic loci for defective kernel in bread wheat. 2019. Chao Fu, Jiuyuan Du, Xiuling Tian, He Zhonghu, Luping Fu, Yue Wang, Dengan Xu, Xiaoting Xu, Xianchun Xia, Zhang Yan, Shuanghe Cao In: BMC Plant Biology v. 19, no. 1, art. 483.
  23. Nitrogen fertilizer rate increases plant uptake and soil availability of essential nutrients in continuous maize production in Kenya and Zimbabwe. 2019. Pasley, H.R., Cairns, J.E., Camberato, J.J., Vyn, T.J. In: Nutrient Cycling in Agroecosystems v. 115, no. 3, pg. 373-389.
  24. Identification of a conserved ph1b-mediated 5DS–5BS crossing over site in soft-kernel durum wheat (Triticum turgidum subsp. durum) lines. 2019. Ibba, M.I., Mingyi Zhang, Xiwen Cai, Morris, C.F. In: Euphytica v. 215, art. 200.
  25. Optimum and decorrelated constrained multistage linear phenotypic selection indices theory. 2019. Ceron Rojas, J.J., Toledo, F.H., Crossa, J. In: Crop Science v. 59, no. 6, pg. 2585-2600.
  26. Comparison of weighted and unweighted stage-wise analysis for genome-wide association studies and genomic selection. 2019. Tigist Mideksa Damesa, Hartung, J., Gowda, M., Beyene, Y., Das, B., Fentaye Kassa Semagn, Piepho, H.P. In: Crop Science v. 59, no. 6, pg. 2572-2584.
  27. Effects of drought and low nitrogen stress on provitamin a carotenoid content of biofortified maize hybrids. 2019. Ortiz-Covarrubias, Y., Dhliwayo, T., Palacios-Rojas, N., Thokozile Ndhlela, Magorokosho, C., Aguilar Rincón, V.H., Cruz-Morales, A.S., Trachsel, S. In: Crop Science v. 59, no. 6, pg. 2521-2532.
  28. Designing interventions in local value chains for improved health and nutrition: insights from Malawi. 2019. Donovan, J.A., Gelli, A. In: World Development Perspectives v. 16, art. 100149.

Lessons for gender in seed systems

Seed systems are complex and dynamic, involving diverse, interdisciplinary actors. Women play an important role in the seed value chain, although underlying social and cultural norms can impact their equal participation. Gender-sensitive seed systems will create more opportunities for women and increase food security.

The International Maize and Wheat Improvement Center (CIMMYT) convened a multi-stakeholder technical workshop titled, “Gender dynamics in seed systems in sub-Saharan Africa and worldwide lessons” on December 2, 2019, in Nairobi, Kenya. Researchers and development practitioners operating in the nexus of gender and seed systems shared lessons learned and research findings to identify knowledge gaps and exchange ideas on promising — and implementable — interventions and approaches that expand opportunities for women in the seed sector.

The missing link between maize seeds and trust

The world population is expected to rise to almost 10 billion by 2050. To feed this number of people, we need to increase food production while using fewer resources. Biofortification, the process of fortifying staple crops with micronutrients, could help to solve this problem.

However, it is not that easy to identify biofortified seeds.

Often, the process of biofortification does not change a seed in a visible way, opening the possibilities for counterfeit products. Farmers cannot verify that the seeds they buy are as advertised. Unsurprisingly, fake seeds are a major obstacle to the adoption of biofortified crops. Similarly, in the process from farm to fork, traceability of biofortified food is equally difficult to achieve.

Picture Aisha, a smallholder farmer in Nigeria. She’s in the market for biofortified maize seeds for her farm. How does she know which seeds to pick, and how can she be sure that they are actually biofortified?

One solution is blockchain technology.

Quality protein maize looks and tastes just like any other maize, but has increased available protein that can stem or reverse protein malnutrition, particularly in children with poor diets. (Photo: Xochiquetzal Fonseca/CIMMYT)
Quality protein maize looks and tastes just like any other maize, but has increased available protein that can stem or reverse protein malnutrition, particularly in children with poor diets. (Photo: Xochiquetzal Fonseca/CIMMYT)
Researchers consult smallholders to test demand for vitamin A-enriched maize in Kenya. (Photo: CIMMYT)
Researchers consult smallholders to test demand for vitamin A-enriched maize in Kenya. (Photo: CIMMYT)
Natalia Palacios, CIMMYT maize nutrition quality specialist, works on breeding maize rich in beta-carotene, a provitamin that is converted to vitamin A within the human body. (Photo: CIMMYT)
Natalia Palacios, CIMMYT maize nutrition quality specialist, works on breeding maize rich in beta-carotene, a provitamin that is converted to vitamin A within the human body. (Photo: CIMMYT)

What is blockchain?

Blockchain is a shared digital ledger for record keeping, where data is decentralized and allocated to users. Digital information, or blocks, is stored in a public database, or chain.

This technology platform helps in situations of lack of trust. It provides an unhackable, unchangeable and transparent record of events where users place trust in computer code and math, instead of a third party. This code writes the rules of the system and the software is peer-reviewed, so rules and data are resilient against corruption. When new data is added to the database, actors in then network verify and timestamp the data before adding it to the blockchain. After input, no one can change the information. No single entity owns or controls the database, allowing actors to trust in the system without having to trust any other actors.

While often associated with bitcoin and cryptocurrencies, blockchain technology has many other uses in traditional industries, including the potential to transform agri-food systems. The Community of Practice on Socio-economic Data, led by the International Maize and Wheat Improvement Center (CIMMYT), produced a report detailing the role blockchain can play in agri-food systems and biofortified seeds.

Blockchain for agri-food systems

Agri-food systems consist of complex networks that often mistrust each other. Blockchain technology can enhance transparency, traceability and trust. It could have a significant role to play in closing the yield gap and reducing hunger.

Many transactions done in the agri-food sector have paper records. Even when records are digital, disconnected IT systems create data silos. Blockchain enables stakeholders to control, manage and share their own data, breaking down silos.

For example, blockchain technology can help solve issues of land governance, unclear ownership and tenure by providing an accurate land registration database. It can help with compliance to standards from governments or private organizations. This technology could make financial transactions more efficient, limit corruption, and provide provenance, traceability and recall of products.

Verifying biofortified maize seeds

HarvestPlus conducted a study to understand the barriers to widespread adoption of biofortified seeds. The team interviewed 100 businesses and 250 individuals from farmers to global brands about their experiences with biofortification. Unsurprisingly, they found that a big barrier to adoption is the inability to distinguish biofortified crops from standard ones.

Therefore, it is crucial to have a system to verify biofortified seeds. HarvestPlus collaborated with The Fork to investigate solutions.

One solution is a public blockchain. The result could look like this: Aisha, our smallholder farmer in Nigeria wants to buy biofortified maize seeds for her farm. At the store, she takes a phone out of her pocket and scans a QR code on a bag to see a trustworthy account of the seeds’ journey to that bag. Satisfied with the account, she brings verified biofortified maize seeds home, improving nutrition of her family and community.

Contingent on farmers having access to smartphones, this situation could be possible. However, blockchain technology will not solve everything, and it is important we test and study these solutions while considering other challenges, such as access to technology and human behavior.

The Community of Practice on Socio-economic Data report, Blockchain for Food, gives principles of digital development of blockchain. It is crucial to understand the existing ecosystem, design for scale, build for sustainability and design the technology with the user. These are crucial points to consider when developing blockchain solutions for agri-food systems.

As the global food system is beginning to transition towards more transparency, circularity and customization, blockchain technology could play a major role in how this shift evolves. A new testing and learning platform for digital trust and transparency technologies in agri-food systems, including blockchain technology, was launched in February 2020. The platform will build capacity of the potential of this technology and ensure that it is usable and inclusive.

Read the report:
Blockchain for Food: Making Sense of Technology and the Impact on Biofortified Seeds.

Cover photo: Close up of a quality protein maize cob. (Photo: Alfonso Cortés/CIMMYT)

The future of agriculture in sub-Saharan Africa

The theme for International Youth Day 2020, Youth Engagement for Global Action, highlights the various ways in which the engagement of young people at local, national and global levels enriches national and multilateral institutions and processes.

Up to 60% of Africa’s youth face challenges such as limited employment opportunities, financial constraints to access land and adequate technical equipment. However, agriculture is increasingly providing options. Through it, young people are participating and leveraging on new technologies that can optimize farming systems and create employment.

This photo essay depicts youth in on-farm and off-farm activities across East and Southern Africa. These young men and women are innovators and adopters of improved technologies such as small scale mechanization, appropriate farming practices, employment opportunities and research innovations implemented by the International Maize and Wheat Improvement Center (CIMMYT).

In Embu County, Kenya, 25-year-old Jackline Wanja stands in a demonstration plot of high-yielding, drought-resilient and fast-maturing maize varieties. (Photo: Joshua Masinde/CIMMYT)
In Embu County, Kenya, 25-year-old Jackline Wanja stands in a demonstration plot of high-yielding, drought-resilient and fast-maturing maize varieties. (Photo: Joshua Masinde/CIMMYT)
Beyene Chufamo (28) is a two-wheel tractor technology service provider based in Meki, Ethiopia. In 2016, with the support of CIMMYT, he started providing repair and maintenance services to service providers in different areas. (Photo: Ephrem Tadesse/CIMMYT)
Beyene Chufamo (28) is a two-wheel tractor technology service provider based in Meki, Ethiopia. In 2016, with the support of CIMMYT, he started providing repair and maintenance services to service providers in different areas. (Photo: Ephrem Tadesse/CIMMYT)
Beyene Chufamo (center, in green t-shirt) provides technical training on operation, safety, repair and maintenance to machinery hire service providers in different CIMMYT operation sites. His participation in small mechanization supply chain enables service providers and farmers to effectively use their machinery and significantly reduce the downtime of their machinery. (Photo: Ephrem Tadesse/CIMMYT)
Beyene Chufamo (center, in green t-shirt) provides technical training on operation, safety, repair and maintenance to machinery hire service providers in different CIMMYT operation sites. His participation in small mechanization supply chain enables service providers and farmers to effectively use their machinery and significantly reduce the downtime of their machinery. (Photo: Ephrem Tadesse/CIMMYT)
Nancy Wawira (29) stands among ripening maize cobs of high yielding, drought-tolerant maize varieties on a demonstration farm in Embu County, Kenya. Involving young people like Wawira helps to accelerate the adoption of improved stress-tolerant maize varieties. (Photo: Joshua Masinde/CIMMYT)
Nancy Wawira (29) stands among ripening maize cobs of high yielding, drought-tolerant maize varieties on a demonstration farm in Embu County, Kenya. Involving young people like Wawira helps to accelerate the adoption of improved stress-tolerant maize varieties. (Photo: Joshua Masinde/CIMMYT)
Rose Salimanja (34) from Nyanga District, Zimbabwe, operates a two-wheel tractor and trailer during a trailer operations training course. Under the Zimbabwe Building Resilience Fund (ZRBF), CIMMYT is implementing appropriate small-scale mechanized solutions and services for smallholder farmers and service providers. (Photo: Dorcas Matangi/CIMMYT)
Rose Salimanja (34) from Nyanga District, Zimbabwe, operates a two-wheel tractor and trailer during a trailer operations training course. Under the Zimbabwe Building Resilience Fund (ZRBF), CIMMYT is implementing appropriate small-scale mechanized solutions and services for smallholder farmers and service providers. (Photo: Dorcas Matangi/CIMMYT)
Targeting youth in interventions such as the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project provides pathways for training in appropriate mechanized solutions to support farmers in rural areas. The enterprising Mwanga Youth Group members Pinnot Karwizi (28), Shepherd Karwizi (26) and Masimba Mawire (32) provide grain shelling services to farmers in Makonde District, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Targeting youth in interventions such as the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project provides pathways for training in appropriate mechanized solutions to support farmers in rural areas. The enterprising Mwanga Youth Group members Pinnot Karwizi (28), Shepherd Karwizi (26) and Masimba Mawire (32) provide grain shelling services to farmers in Makonde District, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Zvikomborero Karimudengu skillfully operates a two-wheel tractor and trailer during a training session in Nyanga South district, Zimbabwe. Small scale mechanization services are proving to be immensely useful during the COVID-19 pandemic as services can be provided while adhering to social distancing regulations and without requiring additional labour. (Photo: Dorcas Matangi/CIMMYT)
Zvikomborero Karimudengu skillfully operates a two-wheel tractor and trailer during a training session in Nyanga South district, Zimbabwe. Small scale mechanization services are proving to be immensely useful during the COVID-19 pandemic as services can be provided while adhering to social distancing regulations and without requiring additional labour. (Photo: Dorcas Matangi/CIMMYT)

Alison Bentley to be new Global Wheat Program director

Alison Bentley (right) and Martin Jones inspect wheat in a glasshouse. (Photo: Toby Smith/Gloknos)
Alison Bentley (right) and Martin Jones inspect wheat in a glasshouse. (Photo: Toby Smith/Gloknos)

In November 2020, Alison Bentley will be joining the International Maize and Wheat Improvement Center (CIMMYT) as the new program director of the Global Wheat Program. She will be succeeding Hans Braun, who has steered the program for the last 16 years.

Bentley is thrilled to join CIMMYT and excited about the opportunity to harness science and breeding to improve livelihoods. She believes in a collective vision for equitable food supply and in science-led solutions to deliver impact.

“It really is an exciting time for wheat research: the international community has worked together to produce sequence and genomic resources, new biological and physiological insights, a wealth of germplasm and tools for accelerating breeding. This provides an unparalleled foundation for accelerating genetic gains and connecting ideas to determine how we can practically apply these tools and technologies with partners to deliver value-added outputs,” she said.

Bentley has worked on wheat — wheat genetics, wheat genetic resources and wheat pre-breeding — her entire career. She is the UK’s representative on the International Wheat Initiative Scientific Committee, and is a committee member for the Genetics Society, the UK Plant Sciences Federation, the Society of Experimental Botany, and the Editorial Board of Heredity.

Bentley obtained her PhD from the University of Sydney, Australia, in 2007. She then joined the National Institute of Agricultural Botany (NIAB) in the UK, where she progressed from Senior Research Scientist (2007) to Program Leader for Trait Genetics (2013), and Director of Genetics and Breeding (since 2016).

Currently, Bentley is involved in international research projects in Ethiopia, The Gambia, Ghana, India and Pakistan. She leads a number of UK-India projects with partners including Punjab Agricultural University, the Indian National Institute of Plant Genome Research and the University of Cambridge, studying variation and developing wheat and other cereal germplasm with enhanced resource use efficiency.

AGG project to ramp up genetic gains in maize for better livelihoods

A new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG), seeks to achieve these results by speeding up genetic gains in maize and wheat breeding to deliver improved, stress resilient, nutritious seed to smallholders in 13 countries in sub-Saharan Africa (SSA) and four in South Asia. The 5-year AGG project is funded by the Bill & Melinda Gates Foundation, the UK Department for International Development (DFID) and the U.S. Agency for International Development (USAID).

The maize component of the project brings together diverse partners, including the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA) as co-implementers; national agricultural research systems (NARS); and small and medium-sized (SME) seed companies.

Read more here: https://africabusinesscommunities.com/agribusiness/news/agg-project-to-ramp-up-genetic-gains-in-maize-for-better-livelihoods/

New project to ramp up genetic gains in maize for better livelihoods

A new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG), seeks to achieve these results by speeding up genetic gains in maize and wheat breeding to deliver improved, stress resilient, nutritious seed to smallholders in 13 countries in sub-Saharan Africa (SSA) and four in South Asia. The 5-year AGG project is funded by the Bill & Melinda Gates Foundation, the UK Department for International Development (DFID) and the U.S. Agency for International Development (USAID).

Read more here: http://www.therwandan.com/new-project-to-ramp-up-genetic-gains-in-maize-for-better-livelihoods/

Work to develop high yielding Striga tolerant maize seed is bearing fruit

Striga, an invasive parasitic weed with purple-colored flowers, looks striking and harmless. But, beyond that mark of beauty, is a nutrient-sucking monster that stunts crops such as maize and sorghum, leaving affected farmers counting losses.

Witchweed thrives in poor soils with low rainfall conditions. It is prevalent in farming systems with poor crop management practices and in communities where farmers use minimal or no fertilizer. Once maize begins germinating in Striga-prevalent soil, it stimulates Striga seeds to germinate. Striga then attaches to the roots of the host plant, sapping nutrients from the plant, leading to stunting. The potential yield loss can reach up to 100%. Some farmers attempt to uproot it once they notice it germinating alongside their maize plantation, but this is often too late because damage is done as soon as the parasite attaches to the maize roots. When mature, the weed deposits tens of thousands of tiny seeds into the soil. This makes it very difficult for farmers to get rid of it.

To tackle this challenge, farmers need to apply inorganic fertilizer, which is not always affordable, or animal manure to enrich the soil before planting. They are also advised by researchers and extensionists to practice crop rotation or intercropping with legumes such as beans, soybean or groundnuts that restrict Striga’s germination.  In the Assessment of Management Options on Striga Infestation and Maize Grain Yield in Kenya, for example, researchers recommend that Striga control measures include a combination of herbicide-resistant or maize varieties with native genetic resistance intercropped with legumes.

Nevertheless, while a few control measures have been moderately successful, the problem still persists, especially in western Kenya, eastern Uganda and lake zone of Tanzania, where farmers have frequently voiced their frustrations at the ubiquity of this invasive weed.

“While crop rotation with crops such as soybean or beans may break the cycle of Striga, its seed can stay in the soil and remain viable for up to 10 years,” says Dan Makumbi, a maize breeder with the International Maize and Wheat Improvement Center (CIMMYT), who is leading research efforts against the witchweed.

A sorghum field infested with Striga in Siaya County. (Photo: Joshua Masinde/CIMMYT)
A sorghum field infested with Striga in Siaya County. (Photo: Joshua Masinde/CIMMYT)
Norah Kayugi on a Striga-infested farm in Siaya County. (Photo: Joshua Masinde/CIMMYT)
Norah Kayugi on a Striga-infested farm in Siaya County. (Photo: Joshua Masinde/CIMMYT)
Norah Kayugi holds a bunch of Striga weeds she has uprooted on a farm she works as a casual laborer in Siaya. (Photo: Joshua Masinde/CIMMYT)
Norah Kayugi holds a bunch of Striga weeds she has uprooted on a farm she works as a casual laborer in Siaya. (Photo: Joshua Masinde/CIMMYT)

A blow to optimal yield potential

Maize is a staple crop that is predominantly cultivated by smallholder farmers in western Kenya and the lake region. It is an important source of food security and livelihoods of millions of people in the region, but constraints such as Striga prevent farmers from obtaining the crop’s ideal potential.

“The yield loss would have been adequate to cover my family’s food requirements for a year,” Naliaka said. “From two farming seasons, I could harvest a sufficient quantity of maize and sell some surplus to pay my children’s school fees. With the Striga menace, all that is but a dream.”

Just like Naliaka, Norah Kayugi, a 40-year-old widowed mother of six children from Siaya County in Kenya, has seen her maize production fall to less than 8 bags of 90kgs per acre. In normal circumstances, they would obtain at least 16 bags of maize per acre. The significant yield loss sets back many affected households in a big way, as they experience food shortage only a few months after harvest. Some divert their reduced incomes for food purchases, possibly leaving other priorities such as health and education of their children unattended.

Kayugi, who has been a farmer since 1997, now takes on casual jobs to supplement her farming in order to support her family, being the sole breadwinner following her husband’s demise years ago. “I plant vegetables, beans and maize to sustain my family. My one-acre farm yields about 10 bags of 90ks each. But I know for sure that were it not for this weed, the yield potential could reach 30 bags of 90kgs each per acre.”

A young, yet-to-flower Striga weed at the CIMMYT-KALRO Kibos Research Station in Kisumu. (Photo: Joshua Masinde/CIMMYT)
A young, yet-to-flower Striga weed at the CIMMYT-KALRO Kibos Research Station in Kisumu. (Photo: Joshua Masinde/CIMMYT)

Standing up to multiple farming stresses

These smallholders, like their counterparts elsewhere in sub-Saharan Africa, already face other farming challenges, including climate change-induced droughts, pests such as the fall armyworm, diseases like maize lethal necrosis (MLN), and declining soil fertility, among others. While CIMMYT has registered breakthroughs in developing maize varieties that tolerate such stresses, on-going efforts against Striga are also taking shape, challenges notwithstanding.

The development and deployment of the imazapyr-resistant (IR) maize has been one such instance of effective Striga control. With this method, herbicide-resistant maize seeds are coated with herbicide.  The seed germinates and absorbs some of the herbicide used to coat it. The germinating maize stimulates Striga to germinate and as it attaches to the maize root, it is killed before it can cause any damage. Despite its effectiveness, sustaining this technology presented a major challenge to seed companies.

“It was costly for seed companies, as they needed to establish and sustain the operation of separate seed treatment units dedicated to production of the herbicide-coated maize seed. Once you establish a line to dress the seed with the chemical, you cannot use it to treat any other seeds as the chemical will destroy them,” said Makumbi.

Seed companies — like NASECO in Uganda, Kenya Seed Company in Kenya, Western Seed Company and FreshCo in Kenya, and Meru Agro in Tanzania — obtained financial and technical support from a partnership initiative coordinated by African Agricultural Technology Foundation (AATF) and backed by CIMMYT to scale commercialisation of StrigAwayTM maize in East Africa. The initiative was funded by USAID’s Feed the Future Partnering for Innovation program through Fintrac and it supported the seed companies to establish seed treatment facilities to handle herbicide resistant maize. This allowed each of the companies to have a fully dedicated facility for herbicide resistant maize seed processing. “Right now, herbicide resistant maize hybrid seed is available on the market in Kenya, Tanzania and Uganda,” Makumbi said.

CIMMYT field technician Carolyne Adhiambo at a maize field experiment showing promise of Striga tolerance or resistance the Kibos Research station in Kisumu. (Photo: Joshua Masinde/CIMMYT)

Native hope

In the past few years, Makumbi and his team, in collaboration with the International Institute for Tropical Agriculture (IITA) and the Kenya Agricultural and Livestock Research Organization (KALRO), have redirected their efforts towards breeding for native genetic resistance to Striga. This means developing seeds which are naturally resistant to Striga, reducing the need for herbicides. The early indication is that there are several parental lines showing potential to tolerate or resist Striga, and these are being used to develop hybrids. The hybrids, which offer multiple benefits for farmers, are under wide scale testing in Kenya.

“In our tests, we are not only looking at Striga resistance alone but also other important traits such as good yield under optimal conditions, drought stress and low soil fertility, resistance to major foliar diseases including gray leaf spot, Turcicum leaf blight, maize streak virus and ear rots,” Makumbi noted.

As these breeding efforts continue, there is light at the end of the tunnel. The hope of farmers taking back full control of their maize farms from Striga’s “bewitching ways” in the near future remains alive.