Skip to main content

funder_partner: CGIAR

CRP Maize Annual Report 2020

The CGIAR Research Program on Maize (MAIZE) is proud to release its 2020 Annual Report.

Read the 2020 MAIZE Annual Report

Read the 2020 MAIZE Annual Report

In 2020, faced with the extraordinary challenges posed by the COVID-19 pandemic, MAIZE continued its mission to strengthen maize-based agri-food systems while improving the food security and livelihoods of the most vulnerable, especially resource-constrained smallholder farmers and their families.

MAIZE and its partners made great advances in the development of improved stress-tolerant maize varieties, the battle against fall armyworm (including the announcement of three first-generation fall armyworm-tolerant maize hybrids), testing and promoting of conservation agriculture and sustainable intensification, and in deepening our grasp of how to best empower women in the quest for gender equality and social inclusion in maize-based agri-food systems.

Led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Institute of Tropical Agriculture (IITA) as its main CGIAR Consortium partner, MAIZE focuses on increasing maize production for the 900 million poor consumers for whom maize is a staple food in Africa, South Asia and Latin America.

CRP Wheat Annual Report 2020

We are proud to present highlighted impacts from WHEAT’s research in our 2020 Annual Report, showcasing the shared accomplishments through global partnerships for the eighth year of the program.

Read the WHEAT 2020 Annual Report

Read a PDF version of the WHEAT 2020 Annual Report 

Read the WHEAT 2020 Technical Annual Report

In 2020, the COVID-19 crisis devastated communities, economies, and livelihoods, especially of the world’s most vulnerable populations. At the same time, climate change continued to threaten wheat systems around the world. Under unprecedented challenges, WHEAT scientists and partners responded swiftly, generating new research evidence, forming new partnerships, and improving access to conservation agriculture and farm mechanization technologies.

This web-based report focuses on some of the major impacts the program has had on sustainable intensification, gender and social inclusion, and technological innovations for more productive wheat-based farming. Although they are reported for 2020, these impacts reflect years of dedicated science and strong collaborative relationships with partners.

We are deeply grateful for our partners in the science, research, policymaking, and funding communities who have allowed us to continue our work in the face of urgent and powerful challenges. We hope you enjoy this year’s Annual Report as we look back upon our outcomes and achievements in 2020 and set our targets for the future.

CIMMYT announces new Director General ad interim

Bram Govaerts (left), Nicole Birrell (second from left) and Martin Kropff (right) stand for a group photo with José Francisco Gutiérrez Michel (second from right), Secretary of Agri-Food and Rural Development of Mexico's Guanajuato state.
Bram Govaerts (left), Nicole Birrell (second from left) and Martin Kropff (right) stand for a group photo with José Francisco Gutiérrez Michel (second from right), Secretary of Agri-Food and Rural Development of Mexico’s Guanajuato state.

Today the Board of Trustees of the International Maize and Wheat Improvement Center (CIMMYT) announced leadership changes.

The Board approved the appointment of Martin Kropff, current Director General of CIMMYT, as Global Director of Resilient Agrifood Systems of CGIAR. He will play a critical role in enabling an effective transition to the new structure of CGIAR and implementing the CGIAR 2030 Research and Innovation Strategy. In this role, Kropff will be hosted by the CGIAR System Management Organization and will be based in Montpellier, France.

“We congratulate Dr. Kropff on his new position. We are convinced that he will bring to CGIAR the same excellence in science, innovation and effective management that he brought to CIMMYT,” said Board of Trustees Outgoing Chair Nicole Birrell, who completes her term in October this year.

“Through my tenure as CIMMYT Director General, we built a strong and committed team. I am sure that — with the support of the Management Committee, the Executive Committee, the Board, and the three CGIAR Science Group directors — the work of CIMMYT will find a good place in CGIAR,” said Martin Kropff.

New Director General ad interim

Effective July 1, 2021, in accordance with CIMMYT’s Constitution, the Board of Trustees appointed Bram Govaerts as CIMMYT’s Director General ad interim.

Govaerts has been part of the CIMMYT family since 2007. He is Chief Operating Officer and Deputy Director General for Research (Sustainable Production Systems and Integrated Programs) ad interim. He is also the director of CIMMYT’s Integrated Development Program.

Govaerts is renowned for pioneering, implementing and inspiring transformational changes for farmers and consumers in meeting sustainable development challenges. He brings together multi-disciplinary science and development teams to integrate sustainable, multi-stakeholder and sector strategies that generate innovation and change in agri-food systems.

“On behalf of the full Board, we want to thank Dr. Govaerts for his leadership and willingness to ensure that the Center, our research and our operations continue to run smoothly to serve our mandate and mission, as well as the broader One CGIAR vision,” said Board of Trustees Incoming Chair Margaret Bath.

“The world needs CIMMYT and our mission now more than ever, to respond to the challenges that are ahead. We are ready to take up this role, as CIMMYT has done ever since Norman Borlaug and his talented team started their work in the service of the poorest. Let us continue celebrating his legacy by generating further impact through our science,” Govaerts said.

Govaerts is the ninth Director General to serve since CIMMYT was founded in 1966.

Waging war against the fall armyworm

The fall armyworm is an invasive pest that eats more than 80 different crops, but has a particular preference for maize.

It is native to the Americas. It was first reported in Africa in 2016, and quickly spread throughout the continent. It reached India in 2018. It has since been reported in many other countries across Asia and the Pacific, and it reached Australia in 2020.

Millions of families in these regions are highly dependent on maize for their income and their livelihoods. If the fall armyworm keeps spreading, it will have disastrous consequences for them.

Scientists at CIMMYT have been working hard to find solutions to help farmers fight fall armyworm. Researchers have developed manuals for farmers, with guidelines on how to manage this pest. They have also formed an international research consortium, where experts from diverse institutions are sharing knowledge and best practices. Consortium members share updates on progress in finding new ways to tackle this global challenge. Scientists are now working on developing new maize varieties that are resistant to fall armyworm.

The fall armyworm can’t be eradicated — it is here to stay. CIMMYT and its partners worldwide will continue to work on this complex challenge, so millions of smallholder farmers can protect their crops and feed their families.

For more information on the fall armyworm and CIMMYT’s work, please visit staging.cimmyt.org/fallarmyworm.

Annual Report 2020 launched

We began 2020 with grim news of the COVID-19 pandemic spreading from country to country, wreaking havoc on national economies, causing countless personal tragedies, and putting additional pressure on the livelihoods of the poor and hungry.

The global crisis exposed the enormous vulnerability of our food system.

If we have learned anything from the past year, it is that we need to urgently invest in science for renewed food systems that deliver affordable, sufficient, and healthy diets produced within planetary boundaries.

During this time, the dedication and resilience of the CIMMYT community allowed us to continue making important advances toward that vision.

We hope you enjoy reading our stories and will join us in actively working towards resilience, renewal and transition in our agri-food systems, to ensure that they are strong in the face of current and future crises.

Read the web version of the Annual Report 2020

Download the Annual Report 2020 in PDF format

Download the financial report 2020

Capturing a clearer picture

A new guidance note shines a brighter light on the role of women in wheat-based farming systems in the Indo-Gangetic Plains and provides actionable recommendations to researchers, rural advisory services, development partners, and policymakers on how to support working communities more effectively and knowledgeably. The publication, Supporting labor and managerial feminization processes in wheat in the Indo-Gangetic Plains: A guidance note, is based on a literature review, including work by researchers at and associated with the International Maize and Wheat Improvement Center (CIMMYT) and Pandia Consulting.

“Feminization of agriculture is happening in wheat-based systems in South Asia, but these processes are under-researched and their implications are poorly understood. This guidance note, focusing on Bangladesh, India, Nepal and Pakistan, highlights some of the commonalities and differences in feminization processes in each country,” said Hom Gartaula, gender and social inclusion specialist at CIMMYT, and one of the lead authors of the study.

This eight-page publication is based on research funded by the CGIAR Collaborative Platform on Gender Research, the International Development Research Centre (IDRC) and the CGIAR Research Program on Wheat (WHEAT).

How great innovations miss critical opportunities by ignoring women

Even the most well-intentioned agricultural interventions can have external costs that can hinder economic development in the long run. The guidance note cites a study that reveals, during India’s Green Revolution, that the introduction of high-yielding varieties of wheat actually “led to a significant decline in women’s paid hired labor because wheat was culturally defined as suited to male laborers. Male wages rose, and women’s wages fell.” Importantly, most women did not find alternative sources of income.

This is not to say that the high-yielding varieties were a poor intervention themselves; these varieties helped India and Pakistan stave off famine and produce record harvests. Rather, the lack of engagement with social norms meant that the economic opportunities from this important innovation excluded women and thus disempowered them.

Wheat farmers during a field day in Odisha, India. (Photo: Wasim Iftikar/CSISA)
Wheat farmers during a field day in Odisha, India. (Photo: Wasim Iftikar/CSISA)

A closer look at labor feminization and managerial feminization processes

The guidance note points out that it is not possible to generalize across and within countries, as gender norms can vary, and intersectionalities between gender, caste and other identities have a strong impact on women’s participation in fieldwork. Nevertheless, there seem to be some broad trends. The fundamental cross-cutting issue is that women’s contribution to farming is unrecognized, regardless of the reality of their work, by researchers, rural advisory services and policymakers. A second cross-cutting issue is that much research is lodged in cultural norms that reflect gender biases, rather than challenge them, through careful, non-judgemental quantitative and qualitative research.

In Bangladesh, women’s participation in agriculture is slowly increasing as off-farm opportunities decline, though it remains limited compared to women in the other countries examined. Hired agricultural work is an important income source for some women. Emerging evidence from work from CSISA and CIMMYT shows that women are becoming decision-makers alongside their husbands in providing mechanization services. Nevertheless, technical, economic and cultural barriers broadly constrain women’s effective participation in decision-making and fieldwork.

In India, agricultural labor is broadly feminizing as men take up off-farm opportunities and women take up more responsibilities on family farms and as hired laborers. Yet information derived from CIMMYT GENNOVATE studies cited in the guidance note shows that external actors, like rural advisory services and researchers, frequently make little effort to include women in wheat information dissemination and training events despite emerging evidence of women taking managerial roles in some communities. Some researchers and most rural advisory services continue to work with outdated and damaging assumptions about “who does the work” and “who decides” that are not necessarily representative of farmers’ realities.

Women in Nepal provide the bulk of the labor force to agriculture.  With men migrating to India and the Gulf countries to pursue other opportunities, some women are becoming de-facto heads of households and are making more decisions around farming. Still, women are rarely targeted for trainings in on-farm mechanization and innovation. However, there is evidence that simple gender-equality outreach from NGOs and supportive extension agents can have a big impact on women’s empowerment, including promoting their ability to innovate in wheat.

In Pakistan, male out-migration to cities and West Asia is a driving force in women’s agricultural involvement. Significant regional differences in cultural norms mean that women’s participation and decision-making varies across the country, creating differences regarding the degree to which their increased involvement is empowering. As in the other three countries, rural advisory services primarily focus on men. This weakens women’s ability to make good farming decisions and undermines their voice in intra-household decision-making.

Women in Nepal using agricultural machinery. (Photo: Peter Lowe/CIMMYT)
Women in Nepal using agricultural machinery. (Photo: Peter Lowe/CIMMYT)

Recommendations

Research should be conducted in interdisciplinary teams and mindsets, which helps design both qualitative and quantitative research free of assumptions and bias. Qualitative and quantitative researchers need to better document the reality of women’s agricultural work, both paid and unpaid.

National agricultural research systems, rural advisory services and development partners are encouraged to work with local partners, including women’s groups and NGOs, to develop gender-transformative approaches with farmers. Services must develop more inclusive criteria for participation in field trials and extension events to invite more women and marginalized communities.

Policymakers are invited to analyze assumptions in existing policies and to develop new policies that better reflect women’s work and support women’s decision-making in the agricultural sector. Researchers should provide policymakers with more appropriate and up-to-date gender data to help them make informed decisions.

These recommendations name a few of many suggestions presented in the guidance note that can ensure agricultural feminization process are positive forces for everyone involved in wheat systems of the Indo-Gangetic Plains. As a whole, acknowledging the reality of these changes well underway in South Asia — and around the world — will not just empower women, but strengthen wheat-based agri-food systems as a whole.

Cover photo: Farmer Bhima Bhandari returns home after field work carrying her 7-month-old son Sudarsan on her back in Bardiya, Nepal. (Photo: Peter Lowe/CIMMYT)

Bangladesh could largely reduce greenhouse gas emissions from agriculture while increasing efficiency in production

A graphic shows district-wide distribution of annual greenhouse gas mitigation potential through improved and more efficient fertilizer management in the crop sector of Bangladesh in 2030 and 2050. (Graphic: CIMMYT)

A number of readily-available farming methods could allow Bangladesh’s agriculture sector to decrease its greenhouse gas emissions while increasing productivity, according to a new study by the International Maize and Wheat Improvement Center (CIMMYT) and partners.

The study, published in Science of the Total Environment, measured the country’s emissions due to agriculture, and identified and analyzed potential mitigation measures in crop and livestock farming. Pursuing these tactics could be a win-win for farmers and the climate, and the country’s government should encourage their adoption, the research suggests.

“Estimating the greenhouse gas emissions associated with agricultural production processes — complemented with identifying cost-effective abatement measures, quantifying the mitigation scope of such measures, and developing relevant policy recommendations — helps prioritize mitigation work consistent with the country’s food production and mitigation goals,” said CIMMYT climate scientist Tek Sapkota, who led this work.

To determine Bangladesh’s agricultural greenhouse gas emissions, the researchers analyzed 16,413 and 12,548 datapoints from crops and livestock, respectively, together with associated soil and climatic information. The paper also breaks down the emissions data region by region within the country. This could help Bangladesh’s government prioritize mitigation efforts in the places where they will be the most cost-effective.

“I believe that the scientific information, messages and knowledge generated from this study will be helpful in formulating and implementing the National Adaptation Plan (NAP) process in Bangladesh, the National Action Plan for Reducing Short-Lived Climate Pollutants (SLCPs) and Nationally Determined Contributions (NDC),” said Nathu Ram Sarker, director general of the Bangladesh Livestock Research Institute.

Policy implications

Agriculture in Bangladesh is heavily intensified, as the country produces up to three rice crops in a single year. Bangladesh also has the seventh highest livestock density in the world. In all, the greenhouse gas output of agriculture in Bangladesh was 76.79 million metric tons of carbon dioxide equivalent (Mt CO2e) in 2014-15, according to the research. This emission is equivalent to the emission from fossil fuel burning by 28 million cars for a year.  At the going rate, total agricultural emission from Bangladesh are expected to reach 86.87 Mt CO2e by 2030, and 100.44 Mt CO2e by 2050.

By deploying targeted and often readily-available methods, Bangladesh could mitigate 9.51 Mt and 14.21 Mt CO2e from its agriculture sector by 2030 and 2050, respectively, according to the paper. Further, the country can reach three-fourths of these outcomes by using mitigation strategies that also cut costs, a boon for smaller agricultural operations.

Adopting these mitigation strategies can reduce the country’s carbon emissions while contributing to food security and climate resilience in the future. However, realizing the estimated potential emission reductions may require support from the country’s government.

“Although Bangladesh has a primary and justified priority on climate change adaptation, mitigation is also an important national priority. This work will help governmental policy makers to identify and implement effective responses for greenhouse gas mitigation from the agricultural sector, with appropriate extension programs to aid in facilitating adoption by crop and livestock farmers,” said Timothy Krupnik, CIMMYT country representative in Bangladesh and coauthor of the paper.

Mitigation strategies

The research focused on eight crops and four livestock species that make up the vast majority of agriculture in Bangladesh. The crops — potato, wheat, jute, maize, lentils and three different types of rice — collectively cover more than 90% of cultivated land in the nation. Between 64 and 84% of total fertilizer used in Bangladesh is used to cultivate these crops. The paper also focuses on the four major kinds of livestock species in the country: cattle, buffalo, sheep and goats.

For crops, examples of mitigation strategies include alternate wetting and drying in rice (intermittently irrigating and draining rice fields, rather than having them continuously flooded) and improved nutrient use efficiency, particularly for nitrogen. The research shows that better nitrogen management could contribute 60-65% of the total mitigation potential from Bangladesh’s agricultural sector. Other options include adopting strip-tillage and using short duration rice varieties.

For livestock, mitigation strategies include using green fodder supplements, increased concentrate feeding and improved forage/diet management for ruminants. Improved manure storage, separation and aeration is another potential tool to reduce greenhouse gas emissions. The mitigation options for livestock would make up 22 and 28% of the total potential emission reductions in the sector by 2030 and 2050, respectively.

RELATED RESEARCH PUBLICATIONS:

Quantifying opportunities for greenhouse gas emissions mitigation using big data from smallholder crop and livestock farmers across Bangladesh.

INTERVIEW OPPORTUNITIES:

Tek Sapkota, Agricultural Systems and Climate Change Scientist, CIMMYT

Tim Krupnik, Bangladesh Country Representative, CIMMYT

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Marcia MacNeil, Interim Head of Communications, CIMMYT. m.macneil@cgiar.org

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

Adult plant resistance (APR): the strategy to beat persistent pathogens

Scientists examine Ug99 stem rust symptoms on wheat. (Photo: Petr Kosina/CIMMYT)

The three rust diseases, yellow (stripe) rust, black (stem) rust, and brown (left) rust occur in most wheat production environments, causing substantial yield losses and under serious epidemics, can threaten the global wheat supply.

CIMMYT is one of the largest providers of elite germplasm to national partners in over 80 countries. CIMMYT nurseries, known for research in developing adaptive, high-yielding and high-quality germplasm, also carry resistance to several biotic and abiotic stresses, such as rust disease.

Through years of research and experience, CIMMYT has found that durable control of wheat rusts can be achieved by developing and deploying wheat varieties with complex adult-plant resistance (APR). A combination of both conventional and modern technologies in APR will enable breeders to address the problem of rusts and other diseases and continue progress in delivering higher genetic gains, a key goal of the Accelerating Genetic Gains in Maize and Wheat (AGG) project.

Learn more about CIMMYT’s APR strategy: CIMMYT Strategy for Adult Plant Resistance (APR)

For more information on CIMMYT’s APR strategy, contact CIMMYT’s Head of Wheat Rust Pathology and Molecular Genetics, Sridhar Bhavani.

New integrated methodology supports inclusive and resilient global food systems transformation

A multi-disciplinary team of agricultural researchers and development practitioners is proposing a new approach to tackle the shortcomings of global food production systems that degrade the environment, greatly contribute to climate change and fail to deliver healthy diets for a growing population.

The new methodology developed by the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with the Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) aims to transform national food systems by achieving consensus between multiple stakeholders and building on successful participatory agricultural research experiences.

According to a peer-reviewed paper published today in the journal PLOS ONE, the Integrated Agri-food System Initiative (IASI) “is designed to generate strategies, actions, and quantitative, [Sustainable Development Goals] SDGs-aligned targets that have [a significant] likelihood of supportive public and private investment”.

The IASI methodology is based on successful integrated development projects implemented by CIMMYT in Mexico and Colombia, the latter in partnership with the Alliance Bioversity-CIAT, which engaged multiple public, private and civil sector collaborators in local maize systems enhancement. These initiatives took advantage of sociopolitical “windows of opportunity” that helped build multiple stakeholder consensus around health, nutrition, food security and development aspirations in both countries.

“CIMMYT’s integrated development approach to maize systems transformation in Mexico and Colombia laid the foundations of the IASI methodology by overcoming government transitions, annual budget constraints and win-or-lose rivalry between stakeholders in favor of equity, profitability, resilience and sustainability,” said Bram Govaerts, chief operating officer and Integrated Development Program director at CIMMYT.

Ultimately, the IASI methodology offers public officials and development practitioners the possibility to transform food systems by scaling out innovative farming practices and technologies that lead to sustainably managed natural resources and improved nutrition and food security.

The main steps to implement the IASI methodology are:

  1. Diverse experts examine the current status and the business-as-usual scenario based on analysis of the socioeconomic, political, and sectoral context and model-based projections;
  2. Stakeholders determine a preferred future scenario based on assessment of national implications, and define drivers of change toward a desired scenario;
  3. Defined criteria are applied to stakeholder and expert inputs to validate drivers of change and to identify strategies and actions — for example, public policies, value chain and market interventions, and biotechnology applications — that can steer toward the preferred future scenario, which are then reviewed and prioritized by high-level decision makers;
  4. Stakeholders agree on measurable targets and tangible, time-bound actions toward the preferred future scenario;
  5. Stakeholders build shared commitment to a tactical implementation plan among traditional, non-traditional, and new partners;
  6. Ongoing stakeholder engagement is organized around an online dashboard that tracks actions and progress toward targets and supports course correction and coordinated investment.

Following these steps, the authors of the IASI methodology propose to build a “global food systems transformation network” to co-design and co-implement agricultural development projects that bring together multiple partners and donors for global agricultural systems transformation.

As the approach is refined and further applications are built, it is expected that this network will harness efforts to initiate a new field of research and global practice on “integrated methodologies for food system transformation and innovation” — analogous to the fields of business administration and organizational development.

IASI serves as the backbone of new CGIAR Regional Integrated Initiatives, which draw on capacities from regional international agricultural research centers and programs to deliver global agri-food system transformation.

Breaking Ground: Fatima Camarillo invests in education

It was clear to Fatima Camarillo Castillo from a young age that her future was in agriculture. She grew up on a farm in a small village in Zacatecas, Mexico, and recalls working in the fields alongside her father and siblings, helping with the harvests and milking the cows. And every year, her family ran into the same issue with their crops: droughts.

“Sometimes the harvest was okay, but sometimes we didn’t have any harvest at all,” says Camarillo. “For us that meant that, if we didn’t have enough harvest, then for the whole year my mother and father struggled to send us to school.”

But they did send her to school, and instead of escaping the persistent challenges that agriculture had presented her family in her young life, she was determined to solve them. “After elementary school we had to leave the farm to continue our education,” she explains. “I knew about all the challenges that small farmers face and I wanted to have an impact on them.”

To this day, Camarillo believes in the power of education. Her schooling took her all the way to the International Maize and Wheat Improvement Center (CIMMYT), where she is now not only a researcher, but an educator herself. After her extensive study of plant breeding, genetics and wheat physiology, Camarillo gained a master’s degree from the University of Massachusetts, Amherst, and a PhD from Texas A+M University.

She was a part of CIMMYT’s fellowship program while pursuing her doctorate, and she joined the organization’s wheat breeding team shortly afterward. Camarillo now splits her time between wheat research and organizing the training activities for CIMMYT’s Global Wheat Program (GWP) wheat improvement course.

Fatima Camarillo analyzes durum wheat in the field at CIMMYT’s experimental research station in Ciudad Obregón, Mexico. (Photo: CIMMYT)

A special legacy

CIMMYT’s wheat improvement course is an internationally recognized program where scientists from national agricultural research programs (NARS) from around the world travel to CIMMYT Headquarters in Texcoco, Mexico, and then to Ciudad Obregón, for a 16-week training. Participants observe an entire breeding cycle and learn about the latest technologies and systems for breeding.

“A crucial component of having an impact on farmers is establishing good relationships with national programs, where all the germplasm that CIMMYT develops is going to go,” says Camarillo. “But at the same time, these partners need training. They need to know what is behind these varieties and the process for developing them, and we try to keep them updated with the vision, the current technologies and the breeding pipeline.”

The organization’s university-focused training programs are also special to Camarillo for many reasons, having participated in one of them herself. In fact, her first ever exposure to CIMMYT was through the annual Open Doors day which she attended during her first year of university, watching the breeders and scientists that would eventually become her colleagues give talks on germplasm development and distribution.

The courses also give students a chance to see all how their theoretical education can be applied in the real world. “When you are in graduate school you care a lot about data analysis and the most recent molecular tools,” says Camarillo. “But there is something else out there, the real problems outside. By taking the breeding program course you understand these challenges and situations.”

Camarillo remembers being struck by the thought that something that happens in a research station in Mexico can have an impact on the whole world. “CIMMYT cares about how other countries will adopt new varieties, it’s not just about developing germplasm for the sake of it,” she explains. “We’re interested in how new varieties are going to reach the farmers who need them, and for that, training is essential.”

“At the end of the day, these researchers are the ones who will help us evaluate germplasm. If they’re well trained, the efficiency of the whole process will increase.”

Fatima Camarillo (standing, third from the right) in Ciudad Obregón, Mexico, with participants on the GWP’s 2019 training program. (Photo: CIMMYT)

Keeping an eye on the breeding pipeline

With one foot in education and the other in research, Camarillo has a unique perspective on CIMMYT’s strategy for bringing tools and findings out of the lab, and towards the next step in the impact pathway. A key part of her work involves helping to research physiological traits by developing new tools to increase phenotyping efficiency in the breeding pipeline.

In particular, she is working on a project to develop high-throughput phenotyping tools, which use hyperspectral sensors and cameras to measure several traits in plants. This can help reflect how the plant is responding to different stresses internally, and helps physiologists and breeders understand how the plant behaves within a specific environment, and then quickly integrate these traits into the breeding process.

“Overall it increases the efficiency of selection, so farmers will have better materials, better germplasm, and more reliable yield across environments in a shorter period of time,” says Camarillo.   

Sharing the recipe for success

Camarillo’s role in both breeding and training speaks to CIMMYT’s historic and proven strategy of working with national programs to effectively deliver improved seeds to the farmers who need them. In addition to developing friendships with trainees from around the world, she is helping CIMMYT to expand its global network of research and agriculture professionals.

As a product and purveyor of a great agricultural education, Camarillo is dedicated to it passing on. “I think we have to invest in education,” she says. “It is the only path to solve the current problems we face, not only in agriculture, but in every single discipline.”

“If we don’t invest and take the time for education, our future is very uncertain.”

Mapping the way to lower nitrous oxide emissions

Like many issues besetting contemporary agri-food systems, the question of nitrogen use appears to yield contradictory problems and solutions depending on where you look. Many parts of the globe are experiencing the environmental consequences of excessive and inefficient use of nitrogen fertilizers. Elsewhere nitrogen-poor soils are a hindrance to agricultural productivity.

Addressing these seemingly contradictory issues means ensuring that nitrogen is applied with maximum efficiency across the world’s croplands. Farmers should be applying as much nitrogen as can be taken up by their crops in any given agroecology. Apply more, and the excess nitrogen leads to nitrous oxide (N2O) emissions — a potent greenhouse gas (GHG) — and other environmental degradation. Apply less, and agricultural potential goes unmet. Given the twin challenges of global climate change and the projected need to increase global food production over 70% by 2050, neither scenario is desirable.

Maize and wheat agri-food systems are at the heart of this dilemma. These staple crops are critical to ensuring the food security of a growing population. They also account for around 35% of global nitrogen fertilizer usage. Tackling the problem first requires an accurate accounting of global N20 emissions from maize and wheat fields, followed by quantification of mitigation potential disaggregated by region. This is the task undertaken by a recent study published in Science of the Total Environment and co-authored by a team of researchers including scientists at the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

“Spatially explicit quantification of N2O emission and mitigation potential helps identify emission hotspots and priority areas for mitigation action through better nitrogen management consistent with location-specific production and environmental goals,” says Tek Sapkota, CIMMYT’s climate scientist and review editor of the Intergovernmental Panel on Climate Change (IPCC)’s sixth assessment report.

A map shows global hotspots for nitrogen emissions linked to maize and wheat production. (Graphic: Tesfaye et al./CIMMYT)

A model approach

Researchers compared N20 emissions estimates produced using four statistical models (Tropical N2O model, CCAF-MOT, IPCC Tier-1 and IPCC Tier-11). They also compared the models’ estimates against actual emissions as recorded at 777 globally distributed points. While all four models performed relatively well vis-à-vis the empirical measurements, the IPCC Tier-II estimates showed a better relationship to the measured data across both maize and wheat fields and low- and high-emissions scenarios.

Researchers found that, for both maize and wheat, emissions were highest in East and South Asia, as well as parts of Europe and North America. For maize, parts of South America also appeared to be emissions hotspots. In Asia, China, India, Indonesia and the Philippines were major emitters for both crops. Researchers also observed that China, along with Egypt, Pakistan and northern India have the highest excess nitrogen application (i.e., nitrogen in excess of what can be productively taken up by crops).

Trimming the excess

Specifically identifying hotspots of excess nitrogen application is important, as they represent promising areas to target for emissions reductions. For a given region, the volume of emissions may be a factor simply of large areas under maize or wheat cultivation coupled with of high levels of nitrogen usage. However, farmers in such regions may be not have much room to reduce nitrogen application without affecting yield. And reducing the area under cultivation may not be desirable or viable. Where the rate of excess nitrogen application is high, however, reducing the rate of application and increasing the efficiency of nitrogen use is a win-win.

A farmer in Ethiopia prepares to spread UREA fertilizer by hand in his field after the sowing of wheat. (Photo: CIMMYT)

The researchers estimate that a nitrous oxide emission reduction potential of 25-75% can be achieved through various management practices, such as the 4Rs, which stand for the right source, right timing, right placement and right application rate. Not only would such a reduction drastically reduce N2O emissions and lessen other environmental impacts of maize and wheat production, it would represent a significant cost savings to farmers. Improved efficiency in nitrogen application can also have positive effects on crop yield.

“Promoting integrated nitrogen management approaches through the right policies, institutional supports and good extension systems is essential to improving the use efficiency of nitrogen in order to meet food security, climate action and other sustainable development goals,” says Sapkota.

Kindie Tesfaye, a CIMMYT scientist and one of the authors of the paper, adds, “The policy importance of the study is that the estimated mitigation potentials from global maize and wheat fields are useful for hotspot countries to target fertilizer and crop management as one of the mitigation options in their Nationally Determined Contributions (NDCs) to the United Nations Framework Convention on Climate Change (UNFCCC).”

A challenge solved

Wheat stalks grow in a in India. (Photo: Saad Akhtar)
Wheat stalks grow in a field in India. (Photo: Saad Akhtar)

For scientists, determining how best to increase wheat yields to meet food demand is a persistent challenge, particularly as the trend toward sustainably intensifying production on agricultural lands grows.

The United Nations projects that the current global population of 7.6 billion will increase to more than 9.8 billion by 2050, making higher grain yield potential vital, particularly as climate instability increases due to global warming. International efforts are also focused on meeting the Zero Hunger target detailed in the UN Sustainable Development Goals before they expire in 2030.

Now, a new landmark research survey on the grain yield potential and climate-resilience of bread wheat (Triticum aestivum L.) has brought scientists a few strides closer to meeting their ambitions.

Grain yield has traditionally been an elusive trait in genomic wheat breeding because of its quantitative genetic control, which means that it is controlled by many genomic regions with small effects.

Challenges also include a lack of good understanding about the genetic basis of grain yield, inconsistent grain yield quantitative trait loci identified in different environments, low heritability of grain yield across environments and environment interactions of grain yield.

To dissect the genetic architecture of wheat grain yield for the purposes of the research, which appeared in Scientific Reports, researchers implemented a large-scale genome-wide association study based on 100 datasets and 105,000 grain yield observations from 55,568 wheat breeding lines developed by the International Maize and Wheat Improvement Center (CIMMYT).

They evaluated the lines between 2003 and 2019 in different sites, years, planting systems, irrigation systems and abiotic stresses at CIMMYT’s primary yield testing site, the Norman E. Borlaug Experimental Research Station, Ciudad Obregon, Mexico, and in an additional eight countries — including Afghanistan, India and Myanmar — through partnerships with national programs.

The researchers also generated the grain-yield associated marker profiles and analyzed the grain-yield favorable allele frequencies for a large panel of 73,142 wheat lines, resulting in 44.5 million data points. The marker profiles indicated that the CIMMYT global wheat germplasm is rich in grain yield favorable alleles and is a trove for breeders to choose parents and design strategic crosses based on complementary grain yield alleles at desired loci.

“By dissecting the genetic basis of the elusive grain-yield trait, the resources presented in our study provide great opportunities to accelerate genomic breeding for high-yielding and climate-resilient wheat varieties, which is a major objective of the Accelerating Genetic Gain in Maize and Wheat project,” said CIMMYT wheat breeder Philomin Juliana.

“This study is unique and the largest-of-its-kind focusing on elucidating the genetic architecture of wheat grain yield,” she explained, “a highly complex and economically important trait that will have great implications on future diagnostic marker development, gene discovery, marker-assisted selection and genomic-breeding in wheat.”

Currently, crop breeding methods and agronomic management put annual productivity increases at 1.2% a year, but to ensure food security for future generations, productivity should be at 2.4% a year.

So, the extensive datasets and results presented in this study are expected to provide a framework for breeders to design effective strategies for mitigating the effects of climate change, while ensuring food-sustainability and security.

Buying into new seed

Mary Nzau enters a mock agrodealer shop set up on a field on the outskirts of Tala town in Machakos County, Kenya. On display are nine 2kg bags of hybrid maize seed. She picks one. By the look of it, her mind is made up. After a quick scan of the shelf, she has in her hand the variety that she has been purchasing for years.

Regina Mbaika Mutua is less lucky. The variety she always buys is not on display in the mock shop. As part of the experiment, the research team has removed from the shelf the variety she indicated she usually buys. The team’s goal is to observe what factors influence her seed purchase decision in the absence of the variety she was expecting to purchase.

“Although I did not find the variety I was looking for, I picked an alternative as I have seen it perform well on a neighboring farm,” Mutua says, adding that she will plant it this season alongside recycled (farm-saved) seed on her one-acre farm.

Michael Mutua passes up the popular variety he has been planting for the previous two years. He picks one that has been advertised extensively on local radio. “I have heard about it severally on radio. I would like to experiment with this new seed and see how it performs on my farm. Should I like the results, I will give it a chance in ensuing seasons,” he says.

Pieter Rutsaert explains the study setup at a mock agrodealer shop. (Photo: Joshua Masinde/CIMMYT)
Pieter Rutsaert explains the study setup at a mock agrodealer shop. (Photo: Joshua Masinde/CIMMYT)

The big adoption conundrum

The goal of the out-of-stock study is to improve an understanding of how farmers make their maize seed choices, says Pieter Rutsaert, Markets and Value Chain Specialist at the International Maize and Wheat Improvement Center (CIMMYT).

“We do this by inviting farmers to a mock agrodealer store that we set up in their villages and give them a small budget to purchase a bag of seed. However, not all farmers walk into the same store: some will find their preferred variety, others won’t. Some will have access to additional trait information or see some varieties with price promotions while others don’t.”

Rutsaert acknowledges that breeding programs and their partner seed companies have done a great job at giving farmers access to maize hybrids with priority traits such as drought tolerance and high yield. CIMMYT then works closely with local seed companies to get varieties into the hands of farmers. “We want to extend that support by providing insights to companies and public breeding programs on how to get new varieties more quickly into the hands of farmers,” he says.

Pauline Muindi (left), gender research associate with CIMMYT, acts as a mock agrodealer clerk and attends a farmer. (Photo: CIMMYT)
Pauline Muindi (left), gender research associate with CIMMYT, acts as a mock agrodealer clerk and attends a farmer. (Photo: CIMMYT)

The hybrid maize seed sector in Kenya is highly competitive. Amid intensifying competition, new varieties face a daunting task breaking into the market, independent of their quality. While farmers now have more options to pick from, a major challenge has been how to get them to adopt new varieties.

“Moving farmers from something they know to something they don’t is not easy. They tend to stick with what they know and have been growing for years,” Rutsaert says.

Pauline Muindi, gender research associate with CIMMYT, acted as the stand-in clerk at the mock store. She noticed that farmers tend to spend very little time in the shop when their preferred variety is available. However, this all changes in the out-of-stock situation, pushing farmers to step out of their comfort zone and explore new options.

The first step to overcoming this challenge is to entice maize farmers to try a new seed variety, even just once, Rutsaert observes. If it is a good variety, farmers will see that and then the market will work in its favor: farmers will come back to that variety in subsequent years and tell others about it.

“The good news is that many of the varieties we are currently seeing on the market have performed well — that’s why they’re popular. But there are newer varieties that are even better, especially in terms of attributes like drought tolerance. We would like to understand how farmers can be convinced to try out these newer varieties. Is it about the need for more awareness on varietal traits? Can we use price promotions? Or are there other factors?” he says.

A researcher interviews Mary Nzau (right), a farmer from Tala town in Machakos County, after her mock purchase. (Photo: Joshua Masinde/CIMMYT)
A researcher interviews Mary Nzau (right), a farmer from Tala town in Machakos County, after her mock purchase. (Photo: Joshua Masinde/CIMMYT)

Does seed price matter?

“With today’s climate uncertainty, it is better to stick to a variety that is adapted to such climate rather than banking on a variety one is oblivious of. The risk is not worth it,” Nzau says. She adds that she would rather buy a higher-priced seed packet she knows and trusts than a lower-priced one that she has not used in the past. Radio promotions of new or other varieties have limited sway over her decision to make the switch.

Faith Voni, another farmer, agrees. “It is better to purchase a higher-priced variety whose quality I can vouch for than risk purchasing a lower-priced one that I know little about. I do not wish to take such a risk.” Voni says she would also be more inclined to experiment with another variety that she had seen perform well on a neighbor’s farm.

Michael Mutua holds a different view. “If there is an option of an equally good but new variety that is lower-priced than the variety I prefer, my wallet decides,” he says.

Vivian Hoffmann, an economist at the International Food Policy Research Institute (IFPRI) and collaborator on the study, says price can be key for convincing consumers to try a new product. “Our previous research on maize flour choice found that a provisional 10 percent discount boosted sales tremendously,” Hoffmann says. “Of course, that only gets your foot in the door; after that, a new variety will need to win farmers over based on its merits.”

Hoffmann is interested in the extent to which drawing farmers’ attention to key varietal attributes influences their seed choice. “This information is generally already available on seed packets, but we live in a world of information overload. Promoting certain attributes through in-store signage is an approach that is widely used to help consumers make more healthier food choices. Doing the same for new seed varieties makes a lot of sense.”

Michael Mutua (left) responds to preliminary questions from one of the research team members before proceeding to make his seed selection at the mock agrodealer shop. (Photo: Joshua Masinde/CIMMYT)
Michael Mutua (left) responds to preliminary questions from one of the research team members before proceeding to make his seed selection at the mock agrodealer shop. (Photo: Joshua Masinde/CIMMYT)

The value of drought tolerance

Situated on Kenya’s eastern region, Machakos is characterized by persistent water stress. Climate change induced erratic rainfall has pushed traits that can tolerate the unfavorable weather conditions in the favorite’s corner. While other traits such as high yield and disease resistance are equally important, the seed, when planted, must first withstand the effects of droughts or water stress in some seasons and germinate. This is the most crucial step in the long journey to either a decent, bare minimum or no yield. A lot of farmers still plant recycled seed alongside hybrid varieties. But these are no match to water stress conditions, which decimate fields planted with farmer-saved seed.

“If a variety is not climate resilient, I will likely not harvest anything at all,” says Nzau. She has planted a drought-tolerant variety for ten years now. Prior to that, she had planted about three other varieties as well as recycled seed. “The only advantage with recycled seed is that given the right amount of rainfall, they mature fast — typically within two months. This provides my family with an opportunity to eat boiled or roast maize,” she notes.

However, varieties need to do more than just survive harsh weather conditions. Breeders face a daunting task of incorporating as many traits as possible to cater to the overarching and the specific interests of multiple farmers. As Murenga Mwimali, a maize breeder at the Kenya Agricultural and Livestock Research Organization (KALRO) and collaborator in this research says, innovations in breeding technologies are making breeding more efficient.

“It is better to have a diversity of product profiles as different market niches are captured within a particular agroecological zones. This is such that farmers may not just benefit from the minimum traits like drought tolerance, but also more specific traits they are looking for,” Mwimali says.

Smallholder farmers continue to play a central role in the seed development process. Capturing what happens at the point of purchase, for instance, at the agrodealer, and understanding how they purchase seed offers valuable insights on the traits that are deemed essential in the breeding process. This work contributes to CIMMYT’s focus on fast-tracking varietal turnover by turning the levers towards a demand-driven seed system.

Cover photo: Pauline Muindi, gender research associate with CIMMYT, at the mock agrodealer shop where she acted as a clerk. (Photo: CIMMYT)

Four questions with CIMMYT’s Maize Genebank Curator

Seeds are a cornerstone of food security. That is why the maize and wheat genebanks have always been at the heart of the work of the International Maize and Wheat Improvement Center (CIMMYT).

Earlier this year, as the CIMMYT community wished farewell to Denise Costich, Terence (Terry) Molnar stepped into her shoes and took over the management of the world’s largest and most diverse collection of maize.

Molnar calls himself a curator, but unlike his counterparts at libraries and museums, his job is not only about registering and showcasing the 28,000 unique seed collections of maize. He and his team make sure that the rich maize biodiversity collected throughout time and geographies stays alive, viable and accessible to others.

We sat down with Molnar to learn more about his unique role and what we can do to celebrate biodiversity on the International Day for Biological Diversity — and every other day.