Skip to main content

funder_partner: CGIAR

How interactions among hidden enemies and drought effects grain yield and disease severity in bread wheat

In nature, plants are simultaneously exposed to a complex system of biotic and abiotic stresses that limit crop yield. The cereal cyst nematode Heterodera filipjevi and dryland crown rot, caused by Fusarium, are important diseases facing cereal production around the world that cause significant yield loss. Yield loss accelerates when those diseases coexist with other abiotic stresses, such as drought.

Hexaploid bread wheat (Triticum aestivum L.) is an essential staple food for a large part of the world’s population, covering around 20% of daily caloric intake in the human diet, with global production at about 670.8 million tons per year, produced over 215.4 million hectares of land worldwide. Therefore, the program studying soil-borne pathogens at the International Maize and Wheat Improvement Center (CIMMYT)’s Turkey office initiated a study to investigate the effect of soil borne diseases (H. filipjevi and Fusarium culmorum) individually and in combination with drought on some morphological and physiological traits in wheat germplasm with different genetic tolerances to the three studied factors.

In this study, yield components included thousand kernel weight, spike weight, seed per spike and total grain yield. Morphological parameters, including plant height, final plant number (seedling emergence), relative water content, leaf chlorophyll content, H. filipjevi cyst number and presence of crown rot, were studied under greenhouse conditions in Turkey.

The main findings of the study showed that the interaction among water stress, F. culmorum and H. filipjevi increased the damage on the wheat parameters studied when compared with each stress applied alone. One of the most significant damages was seen in high seedling mortality under the three combined stresses (56% seedling death rate), which indicates the damage on wheat yield might occur at the seedling stage rather than later stages. This reduces plant density per area, which was ultimately responsible for low grain yield produced. The known dryland disease, crown rot, caused by F. culmorum, was significantly pronounced under water-stressed conditions.

In all studied parameters, the lowest damage was found among the resistant cultivars to biotic or abiotic stresses. This underscores the importance of wheat breeding programs to develop resistant germplasm, and reminds farmers to replace their old, susceptible varieties with new, resistant ones.

Based on our intensive experience in the CWANA region, most wheat growers basically do not recognize soil borne pathogens as a problem. In fact, most of them do not know that what nematode or soil fungal species are in their fields affecting yield. The term “hidden enemy” perfectly applies to the problems in the region and beyond. Integrated pest management (IPM) is, however, not practiced in the entire region and soil borne pathogen-induced yield losses are simply accepted.

We can conclude from this study that yield reduction in wheat due to soil borne pathogens could be lessened by improving and understanding the concept of IPM in the region where the practice of winter mono-culturing of wheat is the norm. Management of cereal soil-borne pathogens, especially cereal cyst nematode and crown rot, could involve an integrated approach that includes crop rotation, genetic resistance, crop nutrition and appropriate water supply.

Cover photo: Four different test crops show different stresses: T1V8 = Drought, T2V8 = Drought and Nematodes, T3V8 = Drought and fungus, T4V8 = Drought and nematode and fungus together. (Credit: CIMMYT)

Climate change slows wheat breeding progress for yield and wide adaptation, new study finds

Nearly four decades of repeated crossing and selection for heat and drought tolerance have greatly improved the climate resilience of modern wheat varieties, according to new research emerging from a cross-continental science collaboration.

At the same time, climate change has likely slowed breeding progress for high-yielding, broadly adapted wheat, according to the new study, published recently in Nature Plants.

“Breeders are usually optimistic, overlooking many climate change factors when selecting,” said Matthew Reynolds, wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT) and co-author of the publication. “Our findings undermine this optimism and show that the amplified interaction of wheat lines with the environment due to climate change has made it harder for breeders to identify outstanding, broadly adapted lines.”

What do 10 million data points tell scientists?

Each year for nearly half a century, wheat breeders taking part in the CIMMYT-led International Wheat Improvement Network (IWIN) have tested approximately 1,000 new, experimental wheat lines and varieties at some 700 field sites in over 90 countries.

Promising lines are taken up by wheat breeding programs worldwide, while data from the trials is used to guide global breeding and other critical wheat research, explained Wei Xiong, CIMMYT crop modeler/physiologist based in China and lead author of the new paper.

“To date, this global testing network has collected over 10 million data points, while delivering wheat germplasm estimated to be worth several billion dollars annually in extra productivity to hundreds of millions of farmers in less developed countries,” Xiong said.

Xiong and his colleagues analyzed “crossover interactions” — changes in the relative rankings of pairs of wheat lines — in 38 years of data from four kinds of wheat breeding trials, looking for the extent to which climate change or breeding progress have flipped those rankings. Two of the trials whose data they examined focused on yield in bread wheat and durum wheat, while the other two assessed wheat lines’ performance under high temperatures and in semi-arid environments, respectively.

In addition to raising yields, wheat breeders are endowing the crop with added resilience for rising temperatures.

“We found that warmer and more erratic climates since the 1980s have increased ranking changes in global wheat breeding by as much as 15 percent,” Xiong said. “This has made it harder for breeders to identify superior, broadly adapted lines and even led to scientists discarding potentially useful lines.”

Conversely, wheat cultivars emerging from breeding for tolerance to environmental stresses, particularly heat, are showing substantially more stable yields across a range of environments and fostering wheat’s adaptation to current, warmer climates, while opening opportunities for larger and faster genetic gains in the future, according to the study.

Past research has shown that modern wheat varieties not only increase maximum yields but also guarantee more reliable yields, a benefit that adds millions of dollars each year to farm income in developing countries and greatly reduces farmers’ risk.

“Among other things, our findings argue for more targeted wheat breeding and testing to address rapidly shifting and unpredictable farming conditions,” Reynolds added.

Read the full study:
Increased ranking change in wheat breeding under climate change

Cover photo: Wheat fields at CIMMYT’s experimental station in Ciudad Obregón, Sonora state, Mexico. Photo: M. Ellis/CIMMYT.

Fruits and vegetables are essential, but there are three reasons why it takes cereals to feed the world

Fruits, vegetables and bread. Photo: Ella Olsson (CC BY 2.0)
Fruits, vegetables and bread. Photo: Ella Olsson (CC BY 2.0)

Like many development research and funding organizations, the Australian Centre for International Agricultural Research (ACIAR) is emphasizing a renewed commitment to a nutrition-sensitive approach to agricultural development projects.

As part of the International Year of Fruits and Vegetables, a recent blog proposed that one central issue of improved nutrition is consumption of more fruit and vegetables. We agree that a diverse diet including fruits and vegetables should be accessible to every person. Here we highlight the presence of a wider picture.

In the past decade, awareness has grown about the importance of diets that are rich in vitamins and minerals, and the need to combat micronutrient malnutrition which can lead to irreversible health outcomes impacting entire economies and perpetuating a tragic cycle of poverty and economic stagnation.

Lack of vitamins and minerals, often called “hidden hunger,” is not confined to lower-income food-insecure countries. In richer countries we clearly see a transition towards energy-rich, micronutrient-poor diets. In fact, populations throughout the world are eating more processed foods for reasons of convenience and price. To hit our global hunger and health targets we need to invest in nutrition-sensitive agricultural research and production as well as promoting affordable diets with varied and appealing nutrient-rich foods.

Alongside hunger, we have a pandemic of diet-related diseases that is partly caused by the over-consumption of energy-rich junk diets. This is because modern food formulations are often shaped towards addictive and unhealthy products. We see this in rising levels of obesity and diabetes, some cancers, heart diseases and chronic lung conditions.

Investing in agri-food research and improving nutrition will be much cheaper than treating these diet-related non-communicable diseases. Besides being healthier, many people will be much happier and able to live more productive lives.

Yet, the picture is bigger than micronutrient malnutrition. Even if new investments in research enable us to increase the production and delivery of fruits, vegetables and other nutrient-rich foods such as legumes and nuts, we will not have cracked the whole problem of food security, nutrition and health.

Besides “hidden hunger,” many hundreds of millions of people worldwide are hungry because they still lack the basic availability of food to live and work.

Women cook chapatis in Sani, Zanskar valley, India. Photo: SandeepaChetan's Travels (CC BY-NC-ND 2.0)
Women cook chapatis in Sani, Zanskar valley, India. Photo: SandeepaChetan’s Travels (CC BY-NC-ND 2.0)

Enter cereals. Wheat, maize and rice have been the major sources of dietary energy in the form of carbohydrates in virtually all societies and for thousands of years: recent research in the Middle East suggests that the original “paleo” diet was not just the result of hunting and gathering, but included cereals in bread and beer!

There are three reasons why cereals are essential to feeding the world:

  • First, nutritionists and medics tell us that cereals not only provide macronutrients — carbohydrates, proteins and fats — and micronutrients — vitamins and minerals. We now know that cereals are important sources of bioactive food components that are not usually classed as nutrients, but are essential to health all the same. These are compounds like carotenoids, flavonoids, phytosterols, glucosinolates and polyphenols, which are found naturally in various plant foods and have beneficial antioxidant, anticarcinogenic, anti-inflammatory and antimicrobial properties, likely to be important in mitigating and/or combating disease.
  • Second, whole-grain foods, especially wheat, are also a major source of dietary fibre, which is essential for efficient digestion and metabolism. Fibre from cereals also nourishes the human gut flora whose products such as short-chain fatty acids have many health benefits including combatting some cancers. Eating such carbohydrates also helps us recognise that we have eaten sufficiently, so that we know when “enough is enough.”
  • Third, cereal foods are relatively cheap to produce and to buy, and also easy to transport and preserve. Hence, supplies are relatively stable, and good nutrition from cereals is likely to remain accessible to less affluent people.

But all is not well with cereals these days. Cereals are under siege from climate change-related heat and drought, and new and more virulent forms of plant diseases, which threaten our agriculture and natural resources. There remains much research to undertake in this era of rapidly changing climatic conditions, and of economic and political stresses.

Here are a few strategies for agri-food research and its supporters:

  • We can further increase the nutritional content of cereal foods through biofortification during plant breeding.
  • We can produce disease- and heat-resilient varieties of grains that are efficient in the use of water and fertilizer, and whose production is not labor-intensive.
  • By working with communities, we can adapt new production technologies to local conditions, especially where women are the farmers.
  • We can enhance the quality of cereal foods through nutrient fortification during milling, and by better processing methods and food formulation.
  • Experts in all agri-food disciplines can work together to inform and “nudge” consumers to make healthy food purchasing decisions.

Cereals matter, but in an age of misinformation, we still have to be cautious: Some people are susceptible to certain components of cereals such as gluten. People who are medically diagnosed with cereal intolerances must shape their diets accordingly and get their carbohydrates and bioactive food components from other sources.

So, we cannot live on bread alone: We should aim for diets which are rich in diverse foods.

Such diets include fruits and vegetables that must be accessible to people in different regions, particularly to the most vulnerable, and that provide different macronutrients, micronutrients and essential bioactive components. For most of us, the health-promoting content of cereals means that they must remain a major part of the global diet.


Nigel Poole is Emeritus Professor of International Development at SOAS University of London and Consultant at the International Maize and Wheat Improvement Center (CIMMYT).

Rajiv Sharma is Senior Scientist at the International Maize and Wheat Improvement Center (CIMMYT).

Alison Bentley is the Director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT).

Agricultural research fights global food shocks

In an op-ed on Newsweek, CIMMYT director general Bram Govaerts wrote argues the best protection is actually reducing food system risks by building food system resilience against shocks. He highlighted how previous investments in agricultural research and development generated evidence-based strategies that mitigate global food price crisis.

High-yielding staple crops improve health and prosperity in developing countries

Several recent studies document the long-term health and economic benefits from the “Green Revolution” — the widespread adoption of high-yielding staple crop varieties during the last half of the 20th century — and argue for continued investment in the development and use of such varieties.

Analyzing data relating to more than 600,000 births between 1961 and 2000 across 37 developing countries, scientists led by the World Bank’s Jan von der Goltz found that the diffusion of modern crop varieties during the Green Revolution reduced infant mortality by 2.4 to 5.3 percentage points.

“Our estimates provide compelling evidence that the health benefits of broad-based increases in agricultural productivity should not be overlooked,” the authors state. “From a policy perspective, government subsidies for inputs leading to a green revolution as well as investments in extension and R&D programs seem to be important.”

Norman Borlaug (fourth from right) shows a plot of Sonora-64 wheat — one of the semi-dwarf, high-yield, disease-resistant varieties that was key to the Green Revolution — to a group of young international trainees at CIMMYT's experimental station in Ciudad Obregon, Sonora state, Mexico. (Photo: CIMMYT)
Norman Borlaug (fourth from right) shows a plot of Sonora-64 wheat — one of the semi-dwarf, high-yield, disease-resistant varieties that was key to the Green Revolution — to a group of young international trainees at CIMMYT’s experimental station in Ciudad Obregon, Sonora state, Mexico. (Photo: CIMMYT)

The COVID-19 pandemic exposed the fragility of the global food system and the need to transform it, increasing its environmental and economic resilience to withstand future threats, and underpinning healthier diets. The studies suggest that improved versions of cereal crops such as rice, wheat, and maize can play a key role.

“Our work speaks to the importance of supporting innovation and technology adoption in agriculture as a means of fostering economic development, improved health, and poverty reduction, said author Jan von der Goltz. “It also suggests that it is reasonable to view with some alarm the steady decline in funding for cereal crop improvement over the last few decades in sub-Saharan Africa, the continent with least diffusion of modern varieties.”

Likewise, a study co-authored by Prashant Bharadwaj of the University of California, San Diego, concluded that farmer adoption of high-yielding crop varieties (HYVs) in India reduced infant mortality dramatically across the country. Between 1960 and 2000, infant deaths dropped from 163.8 to 66.6 per 1,000 live births, and this occurred during the decades of India’s wheat productivity leap from 0.86 to 2.79 tons per hectare, as a result of HYV adoption and improved farming practices.

“What both of these papers do is to carefully establish a causal estimate of how HYVs affect infant mortality, by only comparing children born in the same location at different points in time, when HYV use was different, and by checking that mortality before arrival of HYVs was trending similarly in places that would receive different amount of HYVs,” Bharadwaj said.

“In the absence of a randomized control trial, these econometric techniques produce the best causal estimate of a phenomenon as important as the spread of HYVs during and after the Green Revolution,” he added. These thoughts were echoed by University of California San Diego professor Gordon McCord, a co-author of the global study.

A child buys fruits and vegetables from a street cart in Varanasi, India. (Photo: Gert-Jan Stads/International Food Policy Research Institute)
A child buys fruits and vegetables from a street cart in Varanasi, India. (Photo: Gert-Jan Stads/International Food Policy Research Institute) (CC BY-NC-ND 2.0)

Many knock-on effects

Recent studies indicate that the Green Revolution also had long-term economic impacts, which also affected health outcomes.

In a 2021 update to the 2018 paper “Two Blades of Grass: The Impact of the Green Revolution,” Douglas Gollin, Professor of Development Economics at Oxford University and co-authors found that, in 90 countries where high-yielding varieties were adopted between 1965 and 2010, food crop yields increased by 44% and that, had this adoption not occurred, GDP per capita in the developing world could be half of what it is today.

Even a 10-year delay of the Green Revolution would, in 2010, have cost 17% of GDP per capita in the developing world, with a cumulative GDP loss of $83 trillion, equivalent to one year of current global GDP.

These GDP and health impacts were boosted by a related reduction in population growth. By observing causal inference at country, regional and developing world levels, and using a novel long-term impact assessment method, the study authors detected a trend: as living standards improved for rural families, they generally wanted to invest more in their children and have fewer.

“Our estimates suggest that the world would have contained more than 200 million additional people in 2010, if the onset of the Green Revolution had been delayed for ten years,” Gollin and his co-authors stated.  This lower population growth seems to have increased the relative size of the working age population, which furthered GDP growth.

Ethiopian farmers give feedback to CGIAR researchers about durum wheat varieties. (Photo: C.Fadda/Bioversity International)
Ethiopian farmers give feedback to CGIAR researchers about durum wheat varieties. (Photo: C.Fadda/Bioversity International) (CC BY-NC-ND 2.0)

A long-term investment in system transformation

It takes time from the point of an intervention to when broad health impacts can be observed in the population, the authors note. For example, although the development of modern high-yielding varieties began in the 1950s and 60s, the rate of adoption did not speed up until the 1980s, 1990s, and even into the 2000s, with evidence from sub-Saharan Africa showing that variety adoption has increased by as much in the 2000s as in the four preceding decades.

In addition, any nutrition and food security strategy which aims to reach the second Sustainable Development Goal of feeding 9 billion by 2050 must incorporate wider system transformation solutions, such as zero-emissions agriculture, affordable, diverse diets and increased land conservation.

As Gollin explained, “The Green Revolution taught us that we need to approach productivity increases, especially in staple crop yields, differently. The challenge now is more complex: we need to get the same productivity increases, with fewer inputs and resources, more environmental awareness, and in larger quantities for more people.”

In part, this means increasing productivity on existing agricultural land with positive environmental and social impacts, according to Bram Govaerts, director general of the International Maize and Wheat Improvement Center (CIMMYT).

“Breeding and sharing more productive, hardy crop varieties is as important as ever,” Govaerts said, “but also engaging farmers — in our case, smallholders — in shared research and innovation efforts to bridge yield gaps, build climate-resilient farming systems, and open access to better nutrition and market opportunities.”

Cover photo: Children eat lunch at a mobile crĂšche outside Delhi, India. (Photo: Atul Loke/ODI) (CC BY-NC 2.0)

State-of-the-art maize doubled haploid facility inaugurated in India

Main building of CIMMYT’s maize doubled haploid facility in Kunigal, Karnataka state, India. (Photo: CIMMYT)
Main building of CIMMYT’s maize doubled haploid facility in Kunigal, Karnataka state, India. (Photo: CIMMYT)

On December 3, 2021, the International Maize and Wheat Improvement Center (CIMMYT) and its partners inaugurated a state-of-the-art maize doubled haploid (DH) facility in Kunigal, in India’s Karnataka state. The facility was established by CIMMYT in partnership with the University of Agricultural Sciences, Bangalore (UAS Bangalore), with financial support from the CGIAR Research Program on Maize (MAIZE).

It is the first public sector facility of its kind in Asia, fulfilling a very important need for maize breeding programs in the region. The facility, operated by CIMMYT, will provide DH production services for CIMMYT’s and UAS Bangalore’s breeding programs, as well as for national agricultural research institutions and small- and medium-sized seed companies engaged in maize breeding across tropical Asia. This is expected to result in accelerated development and deployment of a greater number of elite, climate-resilient and nutritionally-enriched maize hybrids in tropical Asia.

DH technology has the potential to enhance genetic gains and breeding efficiency, especially in combination with other modern tools and technologies, such as molecular markers and genomic selection. The facility occupies 12 acres of land at the Agricultural Research Station in Kunigal, in southwestern India. It is expected to produce at least 25,000-30,000 maize DH lines per year.

For more information, and to request these services, visit CIMMYT’s Maize Doubled Haploid Technology website.

R.S. Paroda (center) cuts the ribbon to inaugurate the maize doubled haploid facility in Kunigal, Karnataka state, India. He is flanked by S. Rajendra Prasad (left), vice chancellor of UAS Bangalore and B.M. Prasanna (right), director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize. (Photo: CIMMYT)
R.S. Paroda (center) cuts the ribbon to inaugurate the maize doubled haploid facility in Kunigal, Karnataka state, India. He is flanked by S. Rajendra Prasad (left), vice chancellor of UAS Bangalore and B.M. Prasanna (right), director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize. (Photo: CIMMYT)

Fast-track maize breeding in Asia

R.S. Paroda, who is a Padma Bhushan awardee in India and the chairman of the Trust for Advancement of Agricultural Sciences (TAAS) in New Delhi, thanked CIMMYT for its role in developing the facility. “The maize DH facility will revolutionize hybrid maize programs in both the public and private sectors in Asia, enabling fast-tracked development of climate-resilient and genetically diverse maize hybrids suitable for the rainfed maize-growing areas.”

S. Rajendra Prasad, vice chancellor of UAS Bangalore, appreciated the partnership between his institution and CIMMYT. “The facility will create opportunities to modernize maize breeding programs in India, besides serving as an educational and training hub for young students at the University,” he said. Members of UAS Bangalore Board of Management also participated in the formal opening of the facility.

B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize (MAIZE), spearheaded the process of establishing this important breeding facility. “Along with similar maize DH facilities in Mexico and Kenya, which respectively serve Latin America and Africa, this third facility for Asia rounds up CIMMYT’s commitment to strengthen tropical maize breeding programs across the globe,” he explained.

Bram Govaerts, CIMMYT’s director general, participated through a recorded video message.

Attending the ceremony were also 150 post-graduate students, faculty from UAS Bangalore, researchers from UAS Raichur and the Indian Institute of Maize Research, CIMMYT maize scientists, and private-sector members of the International Maize Improvement Consortium for Asia (IMIC-Asia).

R.S. Paroda, chairman of the Trust for Advancement of Agricultural Sciences (TAAS) in New Delhi, unveils the inauguration plaque for the maize doubled haploid facility in Kunigal, Karnataka state, India. (Photo: CIMMYT)
R.S. Paroda, chairman of the Trust for Advancement of Agricultural Sciences (TAAS) in New Delhi, unveils the inauguration plaque for the maize doubled haploid facility in Kunigal, Karnataka state, India. (Photo: CIMMYT)

Collaboration networks

A technical workshop titled “Transforming India’s Agriculture and Modernizing Maize Breeding Programs” was held the same day. The workshop featured talks by Paroda on the role of youth in Indian agriculture, Prasanna on modernizing maize breeding and enhancing genetic gain, CIMMYT scientist Vijay Chaikam on maize doubled haploid technology, and CIMMYT breeder Sudha Nair on genomic technologies for maize improvement.

IMIC-Asia held a General Body Meeting soon after the technical workshop, at which B.S. Vivek, maize breeder at CIMMYT, introduced the framework for the third phase of IMIC-Asia. Participants included representatives of the Indian Institute of Maize Research, the All-India Coordinated Maize Improvement Program, and private seed companies with membership in the consortium. Meeting participants expressed a keen interest in utilizing the new doubled haploid facility’s services.

CIMMYT trains next generation of scientists to tackle soil-borne pathogens

Two new students have graduated from the International Maize and Wheat Improvement Center’s (CIMMYT’s) Soil-Borne Pathogens program. The two new graduates, Khawla Mehalaine and Salah-Eddine Laasli, were supervised by CIMMYT senior scientist Abdelfattah Dababat.

He leads the Soil-Borne Pathogens program, which focuses on identifying the main soil-borne pathogens associated with cereals and developing an integrated pest management approach to combat them. The research team is particularly interested in finding novel sources of resistance against these pathogens.

Over the last two decades, CIMMYT scientists leading the Soil-Borne Pathogens program have trained tens of students which constitute the next generation of top researchers on this topic. Through this program, CIMMYT has also organized workshops and courses in North Africa, including a symposium on cereal nematodes held in Agadir, Morocco, in 2017.

Since soil-borne pathogens are exacerbated by water stress conditions, researchers have identified the Central and West Asia and North Africa regions as priority areas, due to their vulnerability to drought.

On March 1, 2021, Syngenta, in collaboration with CIMMYT and other partners, led the first One Earth Soil and Root Health Forum, an event which examined the importance of root and soil health to food security, climate resilience and livelihoods. The event also created a community for action on root and soil health.

Khawla Mehalaine celebrates graduating from her PhD. (Photo: handout)
Khawla Mehalaine celebrates graduating from her PhD. (Photo: handout)

Nematodes in Algeria

Mehalaine holds an engineering degree in agronomy and a master’s degree in plant protection from the Higher National School of Agronomy (ENSA) in Algeria. She successfully defended her PhD dissertation “Studies of cereal cyst nematodes of the genus Heterodera in the regions of northern Algeria” in June 2021, graduating from ENSA with honors.

She studied the behavior of four durum wheat varieties against cereal cyst nematodes through field surveys, molecular identification at species levels, and by evaluating the yield components of these wheat varieties.

She was promoted by ENSA professor Hammach M. and supervised by Dababat from CIMMYT, and professors Mustafa Imren and Göksel Özer from Abant Izzet Baysal University in Turkey.

“Completing my doctorate was a truly enriching experience and a challenging but rewarding journey,” Mehalaine said. “It was a collective effort and I am extremely grateful to Dr Abdelfattah Dababat for sharing his scientific skills, for his patience and support, and for all the opportunities I was given to further my research. Thanks to him, I got to know the world of nematodes. Special thanks to CIMMYT for funding the molecular study part.”

Salah-Eddine Laasli on his graduation day. (Photo: handout)
Salah-Eddine Laasli on his graduation day. (Photo: handout)

Root-lesion nematode and crown rot fungi

Laasli graduated with an International Master of Agronomic and Environmental Nematology (IMANEMA) from Ghent University, in collaboration with CIMMYT, the National Institute of Agricultural Research in Morocco and the Faculty of Agriculture at Abant Izzet Baysal University in Turkey.

His master thesis, entitled “Interaction of Root-Lesion Nematode (Pratylenchus thornei) and Crown Rot fungi (Fusarium culmorum) associated with wheat resistance under simulated field conditions,” was promoted by Wim Bert, a professor at the University of Ghent, and Dababat. The project was also supervised by Imren and Özer.

Laasli evaluated the host status of 150 spring wheat lines to both P. thornei and F. culmorum, and estimated the damage caused by the disease complex involving both pathogens at different infection scenarios. He found several lines that possessed multiple resistance to both diseases tested — which could be powerful sources of resistance for breeding program worldwide.

Cover photo: Irrigated wheat field. (Photo: S. Sukumaran/CIMMYT)

Mexico’s seed producers honor CIMMYT work to breed and spread high-yield maize

CIMMYT director general Bram Govaerts (left) presents during the AMSAC award ceremony in Playa del Carmen, Quintana Roo, Mexico. (Photo: Ricardo Curiel/CIMMYT)
CIMMYT director general Bram Govaerts (left) presents during the AMSAC award ceremony in Playa del Carmen, Quintana Roo, Mexico. (Photo: Ricardo Curiel/CIMMYT)

The Association of Mexican Seed Producers (Asociación Mexicana de Semilleros, A.C., or AMSAC) gave the International Maize and Wheat Improvement Center (CIMMYT) its annual Cesár Garza Award for work by MasAgro (Crops for Mexico), a project that develops and spreads high-yielding, climate resilient maize and improved farming practices in Mexico. MasAgro is operated by CIMMYT and Mexico’s Secretariat of Agriculture and Rural Development (SADER).

“We unanimously selected CIMMYT for having established an effective and inclusive network of some 100 Mexican testing sites to generate and spread hybrid seed adapted to the country’s diverse agro-ecologies,” said JosĂ© Luis Gastelum Careaga, president of the governing council of AMSAC, a group of more than 70 seed companies.

The award ceremony took place in Playa del Carmen, in Mexico’s Quintano Roo state, on November 4, 2021.

CIMMYT breeding research is behind the development of 70 new maize hybrids released in Mexico by dozens of small- and intermediate-scale seed companies, helping to double the maize yields of farmers who adopt them, according to Bram Govaerts, CIMMYT director general and leader of the Center’s work in MasAgro.

“AMSAC’s recognition comes at a crucial time, when public support for crop breeding, seed systems, and capacity building are more urgent than ever in the face of climate change and increased, pandemic-related food insecurity,” Govaerts said. “We’ll leverage this prestigious award and our strong partnership with AMSAC members to move toward an improved and more widespread version of MasAgro’s integrated approach for transforming Mexico’s cereal crop farming systems.”

Propelling public-private partnerships

CIMMYT director general Bram Govaerts (right) collects the CesĂĄr Garza Award given to the MasAgro (Crops for Mexico) project. (Photo: Ricardo Curiel/CIMMYT)
CIMMYT director general Bram Govaerts (right) collects the CesĂĄr Garza Award given to the MasAgro (Crops for Mexico) project. (Photo: Ricardo Curiel/CIMMYT)

Taking advantage of CIMMYT training and breeding lines, Mexican seed producers working with MasAgro have boosted their maize seed sales 33% — or 4.6% yearly — during 2011–20, Govaerts said.

This and the recent award illustrate CIMMYT’s success at sharing improved maize through powerful, decades-long partnerships with public and private entities. Small- and medium-scale seed companies have benefitted from access to CIMMYT breeding lines, technical support, business model training, and Center participation in efforts to foster competitive seed markets, according to a recently published book documenting 50 years of maize research by CIMMYT and the International Institute of Tropical Agriculture (IITA). Both centers are members of CGIAR, the world’s largest global agricultural innovation network.

“The increased number and market share of [small- and medium-scale] maize seed companies in Mexico and sub-Saharan Africa in recent years are strongly linked to the availability of stable, stress tolerant inbreds from CGIAR programs,” the book’s executive summary states. “The annual production 
 of over 130,000 tons of seed of CGIAR-derived stress-tolerant hybrids in Africa by [small- and medium-scale enterprises] 
 has addressed an important gap in seed markets not being met by multi-national companies.”

In 2015 more than a third of the area in sub-Saharan Africa was sown to new varieties and hybrids derived from CIMMYT and IITA breeding research, and adoption has accelerated since then, generating from $0.66 to 1.05 billion each year in economic benefits, according to a 2021 study.

As part of CIMMYT partnerships with large, multi-national seed companies, the Center has obtained royalty-free licenses to use proprietary technology and maize hybrids in specific areas of Africa, focusing on small-scale farmers. These partnerships, as well as similar agreements with advanced public research institutes, have fostered more widespread application for tropical maize of tools such as genomic selection, database software, and doubled haploids.

In Asia, building on collaborations from as far back as the 1960s, CIMMYT launched a maize improvement consortium in 2010 involving 25 mostly small- and medium-scale seed companies. For a modest annual fee to fund consortium management, members have access to early- and advanced-generation CIMMYT inbred lines and trait donors, as well as support services for hybrid development. This model has subsequently been copied in Mexico and in eastern and southern Africa (17 companies).

“CIMMYT science and support for maize and wheat farming systems span more than six decades and have brought impressive, well documented impacts in improved harvests and food security for those who grow and consume these globally-critical staple crops,” Govaerts said. “On behalf of the Center, I would like to recognize and thank those who fund our work, and especially the hundreds of skilled and committed partners without whom our efforts would not be possible.”

2021 GAP Report endorses CIMMYT’s integrated agri-food systems methodology

The 2021 Global Agricultural Productivity (GAP) Report warns that farmers and food workers globally face the intimidating challenge of producing food sustainably in a degrading environment. The global economic slowdown and climate change are making the situation even more difficult.

This year’s report, titled Strengthening the Climate for Sustainable Agricultural Growth, argues that “accelerating productivity growth at all scales of production is imperative to meet the needs of consumers and address current and future threats to human and environmental well-being.”

The report, produced by Virginia Tech, was presented at the 2021 Borlaug Dialogue, part of the World Food Prize events.

The International Maize and Wheat Improvement Center’s (CIMMYT) public–private partnership model for the Integrated Agri-food Systems Initiative (IASI) contributes to one of six key strategies that accelerate productivity growth, according to the 2021 GAP Report.

“Our integrated methodology engages farmers in participatory research and innovation efforts, effectively improving small-scale systems,” said Bram Govaerts, director general of CIMMYT. “This results-backed strategy bridges yield gaps and builds resilience to the effects of climate change, with the main objective of giving access to enhanced nutrition and new market opportunities.”

The skillset and cumulative knowledge of small farmers worldwide shapes CIMMYT’s integrated development projects.

“The Integrated Agri-food Systems Initiative (IASI) is designed to generate strategies, actions and quantitative, Sustainable-Development-Goals-aligned targets that have a significant livelihood of supportive public and private investment,” concludes the GAP Report.

The report argues that technology itself does not boost productivity and resilience. Instead, “partnerships play an important role in enhancing human capital: a set of skills and knowledge by producers and others in the agricultural value chain are essential in a time of pandemics.”

A decade of world-leading maize and wheat research

For over a decade, the CGIAR Research Programs on Maize (MAIZE) and Wheat (WHEAT) have been at the forefront of research-for-development benefiting maize and wheat farmers in the Global South, especially those most vulnerable to the shocks of a changing climate.

From 2012 to 2021, MAIZE has focused on doubling maize productivity and increasing incomes and livelihood opportunities from sustainable maize-based farming systems. Through MAIZE, scientists released over 650 elite, high-yielding maize varieties stacked with climate adaptive, nutrition enhancing, and pest and disease resistant traits.

The WHEAT program has worked to improve sustainable production and incomes for wheat farmers, especially smallholders, through collaboration, cutting-edge science and field-level research. Jointly with partners, WHEAT scientists released 880 high-yielding, disease- and pest-resistant, climate-resilient and nutritious varieties in 59 countries over the life of the program.

To document and share this legacy, the MAIZE and WHEAT websites have been redesigned to highlight the accomplishments of the programs and to capture their impact across the five main CGIAR Impact Areas: nutrition, poverty, gender, climate and the environment.

We invite you to visit these visually rich, sites to view the global impact of MAIZE and WHEAT, and how this essential work will continue in the future.

The new MAIZE legacy website (left) and WHEAT legacy website launched today.
The new MAIZE legacy website (left) and WHEAT legacy website launched today.

A visual celebration in Mexico City

CIMMYT’s relationship with Mexico is one of a kind: in addition to being the birthplace of the wheat innovations that led to the Green Revolution and the founding of CGIAR, Mexico is also where maize originated thousands of years ago, becoming an emblem of the country’s economy and identity.

Honoring this longstanding connection and celebrating Mexico’s key contribution to global wheat and maize production, Mexico City will host a photo exhibition from December 1, 2021, to January 15, 2022, in the Open Galleries Lateral, located on Paseo de la Reforma, one of city’s most iconic promenades.

Titled “Maize and Wheat Research in Focus: Celebrating a Decade of Research for Sustainable Agricultural Development Under the CGIAR Research Programs on Maize and Wheat,” the exhibition illustrates the impact of MAIZE and WHEAT over the last ten years. The selection of photographs documents the challenges faced by maize and wheat smallholders in different regions, and showcases innovative interventions made by national and regional stakeholders worldwide.

From pathbreaking breeding research on climate-smart varieties to helping farming families raise their incomes, the photos — taken by CGIAR photographers before the COVID-19 pandemic — capture both the breadth of the challenges facing our global agri-food systems and the spirit of innovation and cooperation to meet them head on.

Don’t miss the chance to visit the exhibition if you are in Mexico City!

The photo exhibition “Maize and Wheat Research in Focus: Celebrating a Decade of Research for Sustainable Agricultural Development Under the CGIAR Research Programs on Maize and Wheat” will be on display in Mexico City until January 15, 2022. (Photo: Alfonso CortĂ©s/CIMMYT)
The photo exhibition “Maize and Wheat Research in Focus: Celebrating a Decade of Research for Sustainable Agricultural Development Under the CGIAR Research Programs on Maize and Wheat” will be on display in Mexico City until January 15, 2022. (Photo: Alfonso CortĂ©s/CIMMYT)

From diagnosis to action on social equity

A group of farmers involved in participatory rice breeding trials near Begnas Lake, Pokhara, Nepal. (Photo: Neil Palmer/CIAT/CCAFS)
A group of farmers involved in participatory rice breeding trials near Begnas Lake, Pokhara, Nepal. (Photo: Neil Palmer/CIAT/CCAFS)

As CGIAR develops 33 exciting new research Initiatives, it is essential for its new research portfolio to move beyond “diagnosing gender issues” and to supporting real change for greater social equity. Gender-transformative research and methodologies are needed, co-developed between scientists and a wide range of partners.

To advance this vision, gender scientists from ten CGIAR centers and key partner institutions came together from October 25 to 27, 2021, in a hybrid workshop. Some participants were in Amsterdam, hosted by KIT, and others joined online from Canada, the Philippines and everywhere in between.

The workshop emerged from gender scientists’ desire to create a supportive innovation space for CGIAR researchers to integrate gender-transformative research and methodologies into the new CGIAR Initiatives.

The organizing team calls this effort GENNOVATE 2, as it builds on GENNOVATE, the trailblazing gender research project which ran across the CGIAR between 2014 and 2018.

GENNOVATE 2 promises to help CGIAR Initiatives achieve progress in the Gender, Youth and Social Inclusion Impact Area. It will also advance change towards Sustainable Development Goals 5 and 10 on gender and other forms of inequality.

In the workshop, participants sought to:

  • Share and develop ideas, methods and approaches to operationalize gender-transformative research and methodologies. Working groups focused on an initial selection of CGIAR Initiatives, representing all the Action Areas of CGIAR:
    • ClimBeR: Building Systemic Resilience against Climate Variability and Extremes; (Systems Transformation)
    • Securing the Asian Mega-Deltas from Sea-level Rise, Flooding, Salinization and Water Insecurity (Resilient Agrifood Systems)
    • Sustainable Intensification of Mixed Farming Systems (Resilient Agrifood Systems)
    • Market Intelligence and Product Profiling (Genetic Innovation)
  • Build on the significant investments, methods, data, and results from the original GENNOVATE.
  • Conceive a community of practice for continued sharing, learning and collaboration, across and within Initiatives, to accelerate progress on gender and social equity.
Participants at the GENNOVATE 2 workshop in Amsterdam, the Netherlands, in October 2021.
Participants at the GENNOVATE 2 workshop in Amsterdam, the Netherlands, in October 2021.

Joining a vibrant community

GENNOVATE 2 is envisioned to complement the CGIAR GENDER Platform and the proposed new CGIAR gender-focused research Initiative, HER+.

“We have several gender methodology assets in CGIAR, and GENNOVATE is one of them,” said Nicoline de Haan, Director of the CGIAR GENDER Platform, opening the workshop. “We want to make sure we cultivate and grow the efforts started during GENNOVATE and move forward important lessons and practices in the new CGIAR portfolio.”

The team of scientists behind GENNOVATE 2 wants to support a vibrant community of researchers who “work out loud.” They will document and share their research methodologies, experiences and insights, in order to accelerate learning on gender issues and scale out successes more quickly.

The ultimate objectives of GENNOVATE 2 are to:

  • Develop and deepen a set of methodologies expected to directly empower women, youth, and marginalized groups in the targeted agri-food systems
  • Contribute to normative change towards increased gender equality across different scales, ranging from households to countries.
  • Generate and build an evidence base on the relationship between empowering women, youth and marginalized people, and moving towards climate-resilient and sustainable agri-food systems — and vice versa.

“An example of the added value GENNOVATE 2 can bring to CGIAR Initiatives is understanding what maintains prevailing gender norms in research sites, and also at relevant institutional and political levels,” said Anne Rietveld, gender scientist at the Alliance of Bioversity International and CIAT, and co-organizer of the workshop. “This will enable CGIAR scientists, partners and policymakers to design locally relevant gender-transformative approaches and policies for more impact. We can do this by building on our GENNOVATE 1 evidence base, adapting methods from GENNOVATE 1 and co-developing new methods in GENNOVATE 2.”

Participants at the GENNOVATE 2 workshop in Amsterdam, the Netherlands, in October 2021.
Participants at the GENNOVATE 2 workshop in Amsterdam, the Netherlands, in October 2021.

What’s next?

The workshop showed that many scientists from CGIAR and partner institutes are motivated to invest in the vision of GENNOVATE 2. Achieving impact in the Gender, Youth and Social Inclusion Impact Area will require concerted efforts and inputs from scientists on the ground.

“There is a groundswell of experience and enthusiasm that you, we, this group brings. We need answers and we can and should work together to make this a reality,” remarked Jon Hellin, Platform Leader – Sustainable Impact in Rice-based Systems at the International Rice Research Institute (IRRI), and co-lead of the ClimBeR Initiative.

The organizing team listed concrete actions to follow the workshop:

  • Developing processes and spaces for discussing methodological advancements among the gender scientists in these four Initiatives which other Initiatives can tap into, contribute to and become part of.
  • To develop these shared and integrated methodologies and approaches into a GENNOVATE 2 conceptual and methodological roadmap — to contribute to the CGIAR Gender, Youth, and Social Inclusion Impact Area and guide other Initiatives, as well as bilateral research
  • To develop a position paper articulating what can be achieved through concerted efforts to integrate gender and social equity more effectively into the Initiatives, to showcase gender-transformative research methods for further development and implementation. The aim of the position paper is to influence global science leaders and CGIAR leadership in how they include issues of social equity in the Initiatives.
  • To support these conversations, learnings and harmonization processes through setting up a community of practice, where the “practice” to be improved is the practice of advancing gender research methodologies to go from diagnosis to action. This will start with a core group of enthusiastic researchers and then will expand as it gains momentum, so that all researchers in the various Initiatives interested in social equity can contribute
  • To seek funding opportunities to support the activities outlined above.

The GENNOVATE 2 organizing team welcomes the participation of interested CGIAR Initiatives as they move forward. The organizing team will also help strengthen interactions with external resource people and research networks, in to cross-pollinate new knowledge and innovations.

If you would like to know more about GENNOVATE 2, please contact Anne Rietveld, Gender Scientist at the Alliance of Bioversity International and CIAT and Hom Gartaula, Gender and Social Inclusion Specialist at the International Maize and Wheat Improvement Center (CIMMYT).

The GENNOVATE 2 workshop was supported with funds from the CGIAR Research Programs on Roots Tubers and Bananas, Maize, and Wheat.

Workshop organizers Anne Rietveld (Alliance), Cathy Rozel Farnworth (Pandia Consulting, an independent gender researcher), Diana Lopez (WUR) and Hom Gartaula (CIMMYT) guided participants. Arwen Bailey (Alliance) served as facilitator.

Participants were: Renee Bullock (ILRI); Afrina Choudhury (WorldFish); Marlene Elias (Alliance); Gundula Fischer (IITA); Eleanor Fisher (The Nordic Africa Institute/ClimBeR); Alessandra Galie (ILRI); Elisabeth Garner (Cornell University/Market Intelligence); Nadia Guettou (Alliance); Jon Hellin (IRRI); Deepa Joshi (IWMI); Berber Kramer (IFPRI); Els Lecoutere (CGIAR GENDER Platform); Angela Meentzen (CIMMYT); Gaudiose Mujawamariya (AfricaRice); Surendran Rajaratnam (WorldFish); Bela Teeken (IITA), among others.

External experts who provided methodological inputs were: Nick Vandenbroucke of Trias talking about institutional change; Shreya Agarwal of Digital Green talking about transformative data; Katja Koegler of Oxfam Novib talking about Gender Action Learning Systems (GALS) for community-led empowerment; and Phil Otieno of Advocates for Social Change (ADSOCK) talking about masculinities and working with men.

Science, technology and farmers, the three pillars of CIMMYT at COP26

From October 31 to November 12, all eyes and cameras turned to Glasgow, where the 26th Conference of the Parties of the United Nations Convention against Climate Change (COP26) took place in a hybrid format. With temperatures rising around the world and extreme weather events becoming increasingly frequent, country leaders and climate experts came together in Scotland to discuss the next steps in the fight against climate change.

Together with other CGIAR Centers, the International Maize and Wheat Improvement Center (CIMMYT) took part in this crucial conversation, drawing attention to the impact of climate change on smallholder agriculture and echoing CGIAR’s call for increased funding for agricultural research and innovation.

Here’s a summary of the events in which CIMMYT researchers and scientists participated.

“Because farmers feed us all: using climate for a resilient food system”

November 6, 2021

Sponsored by the UK Met Office, this event focused on the effects of climate change on the resilience of food systems and how this impact is factored into decision-making. Speakers discussed the real-life application of climate risk information, highlighting the importance of global collaboration and multi-stakeholder partnerships in developing context-specific climate services.

Focusing on CIMMYT’s work in Ethiopia, research associate Yoseph Alemayehu and senior scientist Dave Hodson provided some insights on the wheat rust early warning system. This revolutionary mechanism developed by CIMMYT and partners helps farmers in developing countries predict this disease up to a week in advance.

“COP26 highlighted the vulnerability of different agriculture sectors to climate change, including increased threats from pests and pathogens. From the work in Ethiopia on wheat rust early warning systems, strong partnerships and the application of advanced climate science can play an important role in mitigating some of the effects.” – Dave Hodson

“Developing Climate Resilient Food Systems Pathways: Approaches From Sub-Saharan Africa”

November 8, 2021

Putting an emphasis on participatory governance and community-centered technologies, this event showcased innovative approaches to strengthen the resilience of African food systems, calling for increased investment in the scale-up of climate-smart agriculture practices to meet growing demand.

Joining from Zimbabwe, Christian Thierfelder, Principal Cropping Systems Agronomist gave an overview of CIMMYT’s work in southern Africa, explaining how the introduction of conservation agriculture back in 2004 helped farmers overcome low crop yields and boost their incomes.

“If one thing was made clear at COP26, it is the urgent need for a change in the way we do agriculture. The status quo is not an option and we, as CIMMYT and part of the One CGIAR, will continue to generate the scientific evidence and climate-smart solutions to accelerate this change and address the climate challenges ahead of us, with farmers at the core of our work.” – Christian Thierfelder

“4 per 1000” Initiative Day

November 10, 2021

The “4 per 1000” Initiative, a multi-stakeholder partnership of more than 650 members on food security and climate change, held a day-long hybrid event to explore how healthy soils can help agriculture and forestry adapt to and mitigate climate change.

At the Partner Forum, Bram Govaerts, Director General of CIMMYT, stressed the urgent need to fund soil science to achieve its carbon sequestration potential, reiterating CIMMYT’s commitment to supporting this science with results-oriented actions that scale out sustainable practices and technologies.

“For me, the main take-away of the summit is the growing consensus and understanding that we need to transform agriculture and food systems to achieve global emissions targets on time.” – Bram Govaerts

Cover photo: The action zone and the globe at the Hydro, one of the venues in Glasgow where COP26 took place. (Photo: Karwai Tang/UK Government)

Harnessing the power of science to reduce poverty and malnutrition

Researchers at work at CGIAR’s International Institute of Tropical Agriculture campus in Ibadan, Nigeria. (Credit: Chris de Bode/CGIAR)

A five-year partnership being launched by the Innovative Genomics Institute (IGI)—a non-profit founded by Nobel Laureate Jennifer Doudna—and CGIAR, the world’s largest publicly-funded agricultural research partnership, will harness the power of science to help millions of people overcome poverty, hunger and malnutrition.

One in four people globally, and rising, are unable to afford a healthy diet. COVID-19 has exacerbated this trend by disrupting food production and distribution, driving up by 20 percent the number of people threatened by hunger in 2020. The pandemic is unfolding amidst an environmental and climate crisis which is undermining food production and our ability to nourish the world.

But global consensus is building for urgent action. At the COP26 meetings in November, 45 nations committed to shifting to more sustainable ways of farming and accelerate the deployment of green innovations. Similarly, in late September, many government representatives at the United Nations Food Systems Summit committed to accelerating the transformation of how we grow, transport, process, and consume food. Recognizing the centrality of science and innovation for driving that transformation, United Nations Secretary-General AntĂłnio Guterres called on the world to scale public and private investment in research for food.

According to Barbara Wells, Global Director for Genetic Innovation at CGIAR: “World-class science is vital for facilitating farmer adaptation and mitigating our food system’s contribution to climate change. Plant-breeding innovations can help ramp up food production while making farms more climate resilient, profitable and environmentally friendly”.

“Technologies such as gene editing, which enable scientists to make targeted changes to a crop’s DNA, can accelerate the development of more disease-resistant, water-efficient varieties that can improve food production and nutrition in areas that are especially vulnerable to climate change,” Dr. Wells explained.

CGIAR has produced and promoted innovations that are boosting the sustainable production of nutritious food in Africa, Asia and Latin America. Over the past five decades, CGIAR scientists and national partners have developed and disseminated robust and highly productive crop varieties and livestock breeds tailored to the needs of local men and women. Those innovations have helped hundreds of millions of people across the Global South overcome hunger and poverty.

The IGI is a collaboration of the University of California, Berkeley and the University of California, San Francisco with a mission to develop revolutionary genome-editing tools that enable affordable and accessible solutions in human health, climate, and agriculture. The IGI’s Climate & Sustainable Agriculture program focuses on developing crops that are resistant to pests and diseases, resilient to a changing climate, and less dependent on farmer inputs. Whereas the IGI is a pioneer in applied genomic research, CGIAR focuses on translating discoveries into improved crop varieties and cropping systems. This partnership provides an accelerated pipeline from upstream innovation to real-world impact.

“The IGI is testing technologies with great potential to benefit people in the countries where CGIAR is active, such as a way of removing the cyanide found in cassava—a staple upon which nearly a billion people depend—and fighting diseases in economically important crops like wheat, rice and bananas,” said Brian Staskawicz, the IGI Director of Sustainable Agriculture.

“The IGI is also pioneering new ways to reduce methane emissions from rice farming, which accounts for 2.5 percent of humanity’s contribution to global warming, by using genomic approaches to reduce methane production by soil microbes,” he added.

“By partnering with CGIAR, the IGI can ensure that the products of its research will benefit farmers and consumers in some of the world’s poorest countries, where CGIAR has been working for 50 years and has extensive partner networks,” said Dr. Melinda Kliegman, Director of Public Impact at the IGI. “Together we can accelerate the development and delivery of more climate-resilient, productive and nutritious crops for resource-poor farmers and consumers.”

Over the next five years, the IGI and CGIAR will use the latest breakthroughs in genomic science to enhance the resilience and productivity of farmers in low- and middle-income countries and improve the wellbeing and livelihoods of women and men in some of the world’s poorest communities.

Authored by CGIAR and the Innovative Genomics Institute (IGI)

Cover photo: Researchers at work at CGIAR’s International Institute of Tropical Agriculture campus in Ibadan, Nigeria. (Credit: Chris de Bode/CGIAR)

Throwing money at the problem won’t solve world hunger

In this op-ed, Harvard Professor Gabriela Soto Laveaga stresses the importance of tackling hunger as more than a technical problem to be addressed through scientific advancement alone, praising CGIAR for its community-centered & inclusive approach to food systems amid the climate crisis.

Read more: https://www.washingtonpost.com/outlook/2021/11/22/throwing-money-problem-wont-solve-world-hunger/