Skip to main content

funder_partner: CGIAR

Madhulika Singh

Madhulika Singh is an agricultural scientist working with CIMMYT in India.

Being the change you wanted to see as a young girl

In the traditional Indian society Madhulika Singh grew up in, girls choosing to study science, technology, engineering or mathematics (STEM) was as radical as choosing a life partner on their own.

“They say women hold up half the sky. I believe they should hold up as much and contribute equally in STEM too,” says Singh, now an agriculture specialist at the International Maize and Wheat Improvement Center (CIMMYT).

In her early teens she saw her mother, a school headmaster, comfortably navigate her career along with her domestic responsibilities without a sweat. She later saw a similar example in her sister-in-law. “I grew up thinking ‘there is so much that a woman is capable of,’ whether at home or her workplace,” Singh recalls.

This strong idea of women’s potential led her to pursue studies in science. “Many women before me, like my mother’s generation, were encouraged to take up [careers in] humanities — become a teacher, or pursue home management courses — to ensure a smooth transition once married,” Singh explains. She hoped this would change during her time and that following a career in STEM would be a matter of choice — not gender.

Singh’s goals and ambitions were very clear from the very beginning. In school, she was interested in biology, particularly plant studies and botany. Her inquisitive nature was reflected in her projects and presentations, scoring her high grades. She demonstrated a thorough understanding of plant physiology and her passion for the subject. The budding scientist always wanted to know more and to do more, which Singh feels resonates with her current research and publications.

A popular quote attributed to Mahatma Gandhi says “Be the change you want to see in the world.” When Singh chose to take up plant science in graduate school and then agriculture science for her doctorate, she became the change she had hoped to see in her home and society as a young girl. With the support from her family but a skeptical society, she went ahead and pursued a career in STEM, beginning her research on maize genotypes and conservation agriculture. In 2013 she joined CIMMYT as a physiologist.

CIMMYT researcher Madhulika Singh takes notes while talking to farmers about their rice-wheat cropping practice in Nalanda, Bihar state, India. (Photo: CIMMYT)
CIMMYT researcher Madhulika Singh takes notes while talking to farmers about their rice-wheat cropping practice in Nalanda, Bihar state, India. (Photo: CIMMYT)

Helping farmers transition to conservation agriculture

Singh currently works in her home state of Bihar for the Cereal Systems Initiative for South Asia (CSISA), led by CIMMYT. She is engaged with over ten thousand farmers from the states of Bihar and Uttar Pradesh, supporting the adoption of  conservation agriculture practices.

Farming is vital for the region, as nearly 70% of the population is engaged in agriculture and extension services. However, food and livelihoods are threatened by the small size of farms, low incomes, and comparatively low levels of agricultural mechanization, irrigation and productivity.

Singh and her colleagues have led the transition from traditional farming to sustainable intensification practices — like early wheat sowing, zero tillage and direct-seeded rice — which have helped smallholder farmers increase their yield potential substantially.

“We believe a project like CSISA, along with the government and partners, can help advance and support in realizing the full agriculture potential of these regions,” Singh explains.

Roots in the soil

Her grandparents were farmers. “To be able to care for the land that provided you nourishment and a living was always admired upon,” she says. As a crop scientist, Singh’s family acknowledges her work as an extension of the services her grandparents practiced.

Sustained by this motivation and encouragement, Singh feels reassured of her role: joining other scientists, partners and farmers to make agriculture sustainable and our communities food-secure.

“The fact that the data we generate from our experiments serve as building blocks in the generation of knowledge and help farmers optimize the cost of inputs and increase their productivity is fulfilling and enriching to me,” Singh expresses.

Apart from working to build the capacity of farmers and extension workers, Singh supports the implementation of field trials and community-based technology demonstrations. She also helps refine key agricultural innovations, through participatory testing, and optimizes cropping systems in the region.

Leading the way for for the next generation

A true representative of the STEM community, Singh is always learning and using her experience to give back to society. She has co-authored numerous books and contributed to journals, sharing her knowledge with others.

Other women leaders in STEM have inspired Singh in her professional life, including CIMMYT’s former deputy director general for research Marianne Banziger. Singh believes Banziger was trailblazing and that young girls today have many female role models in STEM that can serve as inspiration.

The change is already here and many more young women work in STEM, pursuing excellence in agriculture sciences, engineering and research studies contributing to as well as claiming “half the sky.”

Cover photo: CIMMYT researcher Madhulika Singh (center-right) stands with farmers from self-help groups in the village of Nawtanwa, West Champaran, in India’s Bihar state. CIMMYT works on gender inclusion and participation through partnerships with other organizations and self-help groups. (Photo: CIMMYT)

Explore our coverage of International Women’s Day 2022.

CRP Wheat Annual Report 2021

The newly released CGIAR Research Program on Wheat 2021 Technical Annual Report highlights joint achievements in making wheat more affordable, nutritious and available for consumers and producers worldwide.

Download the PDF

Over the course of ten years, WHEAT worked with hundreds of research and development partners worldwide to release high-yielding, disease-resistant, nutritious and climate-resilient wheat varieties, and efficient, sustainable wheat-based cropping systems.

This final report from 2021 shares important research on staple cereals’ role in global efforts towards food security, the number and distribution of wheat farms, the expected impact of climate change on wheat productivity, nitrogen-in-agriculture research, nutrition, and the most critical, immediate effects of COVID-19 on food systems, and more.

With its national partners, WHEAT released 70 new CGIAR-derived wheat varieties to farmers in 13 countries in 2021, and developed 18 innovations in the areas of genetics, biophysics, farm management, research and communication methods, or social sciences.

 

Supporting the growth of local maize seed industries: Lessons from Mexico

Over the past several decades, maize breeders have made considerable strides in the development and deployment of new hybrids. These offer higher yields compared to older varieties and reduce the risks farmers face from the vagaries of a changing climate and emerging pest and disease threats. But, for small-scale farmers to adopt new, improved climate-resilient and stress-tolerant maize hybrids at scale, they must be first available, accessible and their benefits need to be widely understood and appreciated. This is where vibrant national seed industries potentially play an important role.

Prior to the 1990s, government agencies tended to play the lead role in hybrid production and distribution. Since then, expectations are that the private sector — in particular locally owned small-scale seed enterprises — produce maize hybrids and distribute them to farmers. When successful, local seed industries are able to produce quality new hybrids and effectively market them to farmers, such that newer hybrids replace older ones in agrodealer stores in relatively short periods of time. If small seed enterprises lack capacities or incentives to aggressively market new hybrids, then the gains made by breeding will not be realized in farmers’ fields. By monitoring seed sales, breeders at CIMMYT and elsewhere, as well as seed business owners, gain insights into smallholders’ preferences and demands.

A recent publication in Food Security assesses the capacities of 22 small and medium-sized seed enterprises in Mexico to produce and market new maize hybrids. The study draws on the experience of the MasAgro project, a decade-long development whereby the International Maize and Wheat Improvement Center (CIMMYT), in partnership with Mexico’s Department of Agriculture and Rural Development (SADER), engaged with dozens of locally owned seed businesses to expand their portfolio of maize hybrids.

The authors, led by CIMMYT senior economist Jason Donovan, highlight the critical role the MasAgro project played in reinvigorating the portfolios of maize seeds produced by small and medium-sized enterprises. MasAgro “filled a gap that had long existed in publicly supported breeding programs” by providing easy access to new cultivars, available to local seed companies without royalties or branding conditions, and without the need for seed certification. The enterprises, in turn, showed a remarkably high capacity to take up new seed technology, launching 129 commercial products between 2013 and 2017.

“Without doubt the MasAgro project can be considered a success in terms of its ability to get new maize germplasm into the product portfolios of small seed companies throughout Mexico,” Donovan said.

The authors also delve into the challenges these maize enterprises faced as they looked to scale the new technologies in a competitive market that has long been dominated by multinational seed enterprises. They observed a lack of access to physical capital, which in turn evidenced a lack of financial capital or access to credit, as well as limited marketing know-how and capacity to integrate marketing innovations into their operations. While most maize enterprises identified the need to expand sales of new commercial products, “signs of innovation in seed marketing were limited” and most of them relied heavily on sales to local and state governments.

According to Donovan, “The MasAgro experience also shows that a strong focus on the demand side of formal seed systems is needed if breeding programs are to achieve greater impact in less time. This implies more attention to how farmers decide on which seed to purchase and how seed companies and seed retailers market seed to farmers. It also implies strong coordination between public sector to make building the local seed industry a national imperative.”

Beyond the Mexican context, the paper’s findings may be of particular interest to development organizations looking to supply local seed industries facing strong competition from regional and multinational companies. One example is the effort to support small seed businesses in Nepal, which face strong competition from larger Indian companies with long histories of engagement in Nepalese seed markets. There are also important lessons for policymakers in eastern and southern Africa, where strict controls over seed release and certification potentially lead to higher production costs and slower rates of introduction of new products by local maize seed companies.

Read the full article:
Capacities of local maize seed enterprises in Mexico: Implications for seed systems development

This paper is complemented by two CIMMYT-led publications in a special issue of Outlook on Agriculture that highlights experiences in sub-Saharan Africa. That special issue grew out of the CGIAR Community of Excellence for Seed Systems Development where CIMMYT led the discussion on seed value chains and private sector linkages.

Cover image: Farmers in Mexico attend a workshop organized by CIMMYT to build their capacity in seed production. (Photo: X. Fonseca/CIMMYT)

Gender-transformative research for sustainable food systems

This international Women’s Day, March 8, 2022, the International Maize and Wheat Improvement Center (CIMMYT) celebrates the essential role that women play in agriculture and food systems, and acknowledges that gender equality is essential to achieve a sustainable future. The burden of climate change impacts women disproportionately, even though we rely on them to drive change in climate adaptation, mitigation and solutions.

For example, in the last year, CIMMYT research found that educating women farming wheat in Bihar, India, increases the adoption of climate-smart agricultural practices, which, in turn, reduces greenhouse gas emissions, and boosts nitrogen productivity, eco-efficiency and yield. Additionally, in Mexico, a CIMMYT study found that women are less likely to default on agricultural credit than men, but seldom receive loans. Connecting women to financial capital to obtain agricultural inputs is an essential step in boosting their decision-making in food production.

Read more about our pathbreaking work in gender research in the collection of stories below!

Gender equality for climate-resilient, sustainable food systems

The CGIAR GENDER platform is hosting a side event on the margins of the Commission on the Status of Women (CSW66), on March 14, 2022: Women’s and girls’ empowerment: Key to equitable food systems in a changing climate?

Registration is open now.

You can also join a Twitter chat hosted by @CGIARgender on March 8, 2022.

GENDER CSW66 IWD2022

Bending gender norms

CIMMYT social researcher Pragya Timsina discusses how women’s participation in agriculture is evolving across the Eastern Gangetic Plains and a new, forthcoming study: “Necessity as a driver of bending agricultural gender norms in South Asia.”

A community gathers to shell maize by hand in Rangpur district, Bangladesh. (Photo: Sam Storr/CIMMYT)
A community gathers to shell maize by hand in Rangpur district, Bangladesh. (Photo: Sam Storr/CIMMYT)

From diagnosis to action on social equity

Building on impact of GENNOVATE, scientists recommend integrating gender-transformative research and methodologies into the new CGIAR Initiatives.

A group of farmers involved in participatory rice breeding trials near Begnas Lake, Pokhara, Nepal. (Photo: Neil Palmer/CIAT/CCAFS)
A group of farmers involved in participatory rice breeding trials near Begnas Lake, Pokhara, Nepal. (Photo: Neil Palmer/CIAT/CCAFS)

Gender mainstreaming on climate-smart agriculture

New research explores how the adoption of climate-smart agricultural practices can help address environmental issues, reduce out-migration and ensure household food security.

A farmer weeds a maize field in Pusa, Bihar state, India. (Photo: M. DeFreese/CIMMYT)
A farmer weeds a maize field in Pusa, Bihar state, India. (Photo: M. DeFreese/CIMMYT)

Gender-responsive and gender-intentional maize breeding

A new paper by CIMMYT researchers takes stock of lessons learnt on gender inclusivity and maize breeding in Africa. Scientists also assess knowledge gaps that need to be filled to effectively support gender-responsive and gender-intentional breeding and seed systems work.

Alice Nasiyimu stands in front of a drought-tolerant maize plot at her family farm in Bungoma County, in western Kenya. (Photo: Joshua Masinde/CIMMYT)
Alice Nasiyimu stands in front of a drought-tolerant maize plot at her family farm in Bungoma County, in western Kenya. (Photo: Joshua Masinde/CIMMYT)

Towards gender-transformative research in the CGIAR

Gender scientists from ten CGIAR centers and key partner institutions came together in a hybrid workshop to integrate gender-transformative research and methodologies into the new CGIAR Initiatives. In this series of videos, GENNOVATE partners share their insights on this topic.

Cover image: Marcelo Ortiz/CIMMYT

CIMMYT scientist receives award for weed research

Ram Kanwar Malik (center) with his team in Bihar, India, during a field visit.
Ram Kanwar Malik (center) with his team in Bihar, India, during a field visit.

Today the Weed Science Society of America (WSSA) announced the Honorary Member award for Ram Kanwar Malik, senior scientist at the International Maize and Wheat Improvement Center (CIMMYT). This award is given every year to a person who has made outstanding contributions to weed science “through their research, teaching, publishing and outreach.”

Malik’s early engagement in agricultural sustainability led to initiatives exploring herbicide resistance evolution and management, zero tillage, and other resource-conservation technologies. At the Cereal Systems Initiative for South Asia (CSISA) — a regional project led by CIMMYT — Malik and his colleagues helped promote the practice of early wheat sowing to beat terminal heat stress, resulting in increased wheat yield in India’s eastern Indo-Gangetic Plains.

“WSSA’s Honorary Member award is one of the highest recognitions bestowed by the Weed Science Society of America,” said Krishna Reddy, Chair of the WSSA 2022 Award Committee. “[The] Honorary Member is selected for meritorious service to weed science, among non-members from North America or any weed scientist from other countries. Only one person per year is awarded this membership. Dr. Malik’s significant research in weed science and his collaborative effort to deliver solutions for farmers in developing countries like India is inspirational.”

The award was presented virtually at the 2022 annual meeting of WSSA, held in Vancouver, Canada.

Transforming rice–wheat systems

<em>Phalaris minor</em> is a pernicious weed that affects crops like wheat and substantially reduces its yield potential.
Phalaris minor is a pernicious weed that affects crops like wheat and substantially reduces its yield potential.

Malik has worked extensively in the Indo-Gangetic Plains, leading many initiatives and innovations over the years, in collaboration with national and international partners. The WSSA award highlights Malik’s inspiring work in tackling herbicide resistance problems, first reported in India by his team in 1993. Malik was instrumental in developing a management solution for herbicide-resistant Phalaris minor, a pernicious weed in wheat crops. The integrated weed management system he helped develop raised wheat yield capacity significantly for farmers in the Indo-Gangetic Plains.

“The WSSA Honorary Member award reiterates the importance of agronomic management for sustained weed control strategies across cropping systems,” Malik said. “CIMMYT and partners, including the Australian Centre for International Agricultural Research (ACIAR), were the first to introduce zero tillage in wheat as part of a strategy to manage weed resistance problems in India. It is an honor that WSSA has recognized this collective work of ours,” he acknowledged.

Malik has devoted more than thirty years to transforming agricultural systems in the Indo-Gangetic Plains, working closely with farmers and partners, and building the capacity of national agricultural and research extension systems. he is a firm believer in farmers’ participation: “Large-scale adoption of sustainable agricultural practices is possible when we work together to leverage technologies which are mutually agreed by partners and meet farmers’ needs.”

Malik is a fellow of the Indian Society of Agronomy and the Indian Society of Weed Science (ISWS), which granted him the Lifetime Achievement Award. He has also received the Outstanding Achievement Award from the International Weed Science Society (IWSS) and the 2015 Derek Tribe Award from the Crawford Fund.

He remains passionate about and invested in changing the lives of farmers through better-bet agronomy and by leading innovative research at CIMMYT.

About the Weed Science Society of America (WSSA)

Founded in 1956, WSSA is a nonprofit scientific society that encourages and promotes the development of knowledge concerning weeds and their impact on the environment.

CIMMYT deeply regrets the passing of leading agriculture and forestry research expert Barbara H. Wells

Barbara Wells (Photo: CGIAR)
Barbara Wells (Photo: CGIAR)

The International Maize and Wheat Improvement Center (CIMMYT) mourns the passing of our much respected and admired colleague, agriculture, forestry and global development leader, Barbara H. Wells.

Wells held the positions of Global Director of Genetic Innovation of CGIAR and Director General of the International Potato Center (CIP). She had over 30 years of experience in multiple areas of research and management of innovations in the agriculture and forestry sectors. Barbara also served at several senior executive positions in the private sector throughout her outstanding career.

“We are deeply saddened by the news of Barbara’s passing and send our heartfelt condolences to her family, friends and colleagues at our sister center CIP,” said CIMMYT Director General Bram Govaerts.

CIP’s projects and activities flourished under her leadership, opening new collaboration opportunities with local partners and fellow CGIAR centers, particularly with those based in the Americas.

In their partnership, CIMMYT and CIP have successfully collaborated in several areas of research and capacity building for the benefit of smallholder farmers throughout the region; including:

  • Building resilience through poverty- and food security-based safety nets, including links to productive programs;
  • Rural financial inclusion, including different types of savings, loans, and credit instruments, management of risk, and remittances;
  • New financial arrangements and governance structures in value chains;
  • Public-policy institutional mechanisms for dialogue on policymaking;
  • Successful R&D and extension projects funded by local governments at both national and state levels;
  • A regional approach to agricultural policies and role of sub-national governments and intermediate cities; and
  • Delivery and monitoring instruments, including use of ICT technology.

“We want our colleagues and friends throughout the world to know that we will honor Barbara’s legacy by redoubling our efforts for those who really mattered to her, the farmers,” Govaerts said.

Md Abdul Matin

Md Abdul Matin is a Mechanization Specialist at the International Maize and Wheat Improvement Center (CIMMYT), SARO, Zimbabwe.

He has over 20 years of R&D experience in design, development, assessment and commercialization of farm machinery for smallholder farmers. He completed his BSc Agri. Engg and MS in Farm Power & Machinery degrees from the Bangladesh Agricultural University and a PhD from the Agricultural Machinery Research & Design Centre, University of South Australia, Adelaide, Australia. Matin has intensive experience working with national agricultural research institutes, other government and private sector partners (including manufacturers) in the mechanization value and supply chains.

Q&A: Spotlighting gender mainstreaming in agriculture

On this International Day of Women and Girls in Science, CIMMYT speaks to Tripti Agarwal, whose research paper delves into the impact of Climate-Smart Agricultural Practices (CSAPs) on women and farming households in Bihar, India. CSAPs offer a promising solution to address environmental issues through gender-inclusive technological interventions. As we celebrate the achievements of women in science today, we see CSAPs bridging the gender gap and empowering women.

Hello Tripti, it’s great to talk to you about labor migration and how the adoption of CSAPs ensures household food security. Could you share how this approach influences gender equality in farming households? 

My paper is titled “Gendered impacts of climate-smart agriculture on household food security and labor migration: insights from Bihar, India.” Bihar is highly vulnerable to hydro-meteorological natural disasters that cause agricultural production loss. The issue is that the male workforce migrates to other cities to seek different employment opportunities and improve their families’ livelihoods, often leaving the women behind to farm. Women left behind are then responsible for household and farming activities, making them overburdened. Therefore, Climate Smart Agricultural Practices (CSAPs) could play a vital role in safeguarding the loss in production and supporting livelihoods. The concept of Climate-Smart Villages (CSVs) links this, acknowledging the gender gap and striving to promote gender-equitable approaches in knowledge enhancement, capacity development, and better practices. CSAPs empower women to support farming decision-making and a better utilization of resources

That is interesting. Would you also tell us how the CSV program addresses climatic risks from technological and social perspectives? 

As per the study I mentioned earlier, climatic stress that affects crop production directly impacts a household’s food security and, more severely, women’s food security. The CSV program promotes adopting climate-resilient practices and technologies that mitigate the risk of crop loss and ensure enough food for the household. CSV is a promising solution to address environmental issues through gender-inclusive technological interventions.

Ensuring food for the household is the most important thing. We also see that this paper highlighted the knowledge gaps between men and women farmers in terms of CSAPs. What action plan is needed to have a more equitable gender-responsive environment at the policy level? 

The paper attempts to drive the concentration of the state/policymakers in providing more opportunities to women in having access to resources. Policies or strategies — driven towards ensuring female education, knowledge and capacity building — are likely to play a significant role in providing access and control of resources to women across their lifetimes in varied areas of work.

As per the research paper, the probability of out-migration is reduced by 21% with the adoption of CSAPs. What factors do you think are the critical indicators of this trend? 

The increase in knowledge about CSAPs, both for men and women, supports household decision-making in adopting CSAPs. With the adoption of CSAPs, the increase in agricultural production reduced the compulsion of males to migrate, and better female literacy also had a negative and significant effect on male out-migration

The study also reveals that the farmer’s education has a direct impact on the adoption of CSAPs. Is there any plan to bridge this gap? Or a suggestion for the policy makers to address this issue? 

There are two steps to be covered on this front. First, to have gender-equitable knowledge dissemination and to ensure that women receive the required and necessary information about CSAPs. For this, the role of women in society needs to be strengthened and would primarily come from (i) support from the family & society and (ii) right to education. Second, knowledge alone is not enough to contribute to economic activities. Gender-inclusive strategies need to be framed and implemented to provide women the required access and control over resources. For this, multi-sectoral efforts are necessary, like having policies from the government, corporates supporting the cost of efforts, specialized agencies providing the expertise, NGO partners working with the community, and foremost, support from the society.

Very rightly said, and we hope that some strong measures are taken at the policy level. Today, women play a huge role in agriculture; thus, it becomes vital to enhance their capacities, especially in newer technologies. In this context, what approaches can you suggest to strengthening their skills and knowledge to achieve a gender-empowered agricultural domain? 

There is no limit to enhancing the skills and capacities of an individual. And when we talk about women, especially in rural/agricultural contexts, we see that support from the family is critical for them. To ensure that, we need ways to educate men on how women can support them in providing better livelihoods. Creating plans and roadmaps for women would help achieve a gender-empowered agricultural domain, but we must also bring behavior change among men towards a more accepting role of women in farming and decision making.

One last question related to this special day. Why do you love your work? And how is science exciting for you?

I was assigned the position of Project Administrator; however, after working for many years with a team of experts, my interest in research slowly ignited. Thanks to the support I received, I decided to work closely on the subject and identify the areas where I may add value. Linking my knowledge and field studies, I started contributing to relevant publications like this one, which is the output of my years of experience at CIMMYT. I received a lot of support from my team, especially from Dr. M.L. Jat, who has been a great mentor throughout my journey of learning and growth.

M.L. Jat is a Principal Scientist at CIMMYT and co-author of the article. Building on this publication, CIMMYT’s gender research will be further strengthened under the One CGIAR Regional Integrated Initiative on Transforming Agri-Food Systems in South Asia (TAFSSA), which has a core learning site in Bihar.

Plant breeding innovations

What is plant breeding?

Emerging in the last 120 years, science-based plant breeding begins by creating novel diversity from which useful new varieties can be identified or formed. The most common approach is making targeted crosses between parents with complementary, desirable traits. This is followed by selection among the resulting plants to obtain improved types that combine desired traits and performance. A less common approach is to expose plant tissues to chemicals or radiation that stimulate random mutations of the type that occur in nature, creating diversity and driving natural selection and evolution.

Determined by farmers and consumer markets, the target traits for plant breeding can include improved grain and fruit yield, resistance to major diseases and pests, better nutritional quality, ease of processing, and tolerance to environmental stresses such as drought, heat, acid soils, flooded fields and infertile soils. Most traits are genetically complex — that is, they are controlled by many genes and gene interactions — so breeders must intercross and select among hundreds of thousands of plants over generations to develop and choose the best.

Plant breeding over the last 100 years has fostered food and nutritional security for expanding populations, adapted crops to changing climates, and helped to alleviate poverty. Together with better farming practices, improved crop varieties can help to reduce environmental degradation and to mitigate climate change from agriculture.

Is plant breeding a modern technique?

Plant breeding began around 10,000 years ago, when humans undertook the domestication of ancestral food crop species. Over the ensuing millennia, farmers selected and re-sowed seed from the best grains, fruits or plants they harvested, genetically modifying the species for human use.

Modern, science-based plant breeding is a focused, systematic and swifter version of that process. It has been applied to all crops, among them maize, wheat, rice, potatoes, beans, cassava and horticulture crops, as well as to fruit trees, sugarcane, oil palm, cotton, farm animals and other species.

With modern breeding, specialists began collecting and preserving crop diversity, including farmer-selected heirloom varieties, improved varieties and the crops’ undomesticated relatives. Today hundreds of thousands of unique samples of diverse crop types, in the form of seeds and cuttings, are meticulously preserved as living catalogs in dozens of publicly-administered “banks.”

The International Maize and Wheat Improvement Center (CIMMYT) manages a germplasm bank containing more than 180,000 unique maize- and wheat-related seed samples, and the Svalbard Global Seed Vault on the Norwegian island of Spitsbergen preserves back-up copies of nearly a million collections from CIMMYT and other banks.

Through genetic analyses or growing seed samples, scientists comb such collections to find useful traits. Data and seed samples from publicly-funded initiatives of this type are shared among breeders and other researchers worldwide. The complete DNA sequences of several food crops, including rice, maize, and wheat, are now available and greatly assist scientists to identify novel, useful diversity.

Much crop breeding is international. From its own breeding programs, CIMMYT sends half a million seed packages each year to some 800 partners, including public research institutions and private companies in 100 countries, for breeding, genetic analyses and other research.

A field worker removes the male flower of a wheat spike, as part of controlled pollination in breeding. (Photo: Alfonso Cortés/CIMMYT)
A field worker removes the male flower of a wheat spike, as part of controlled pollination in breeding. (Photo: Alfonso Cortés/CIMMYT)

A century of breeding innovations

Early in the 20th century, plant breeders began to apply the discoveries of Gregor Mendel, a 19th-century mathematician and biologist, regarding genetic variation and heredity. They also began to take advantage of heterosis, commonly known as hybrid vigor, whereby progeny of crosses between genetically different lines will turn out stronger or more productive than their parents.

Modern statistical methods to analyze experimental data have helped breeders to understand differences in the performance of breeding offspring; particularly, how to distinguish genetic variation, which is heritable, from environmental influences on how parental traits are expressed in successive generations of plants.

Since the 1990s, geneticists and breeders have used molecular (DNA-based) markers. These are specific regions of the plant’s genome that are linked to a gene influencing a desired trait. Markers can also be used to obtain a DNA “fingerprint” of a variety, to develop detailed genetic maps and to sequence crop plant genomes. Many applications of molecular markers are used in plant breeding to select progenies of breeding crosses featuring the greatest number of desired traits from their parents.

Plant breeders normally prefer to work with “elite” populations that have already undergone breeding and thus feature high concentrations of useful genes and fewer undesirable ones, but scientists also introduce non-elite diversity into breeding populations to boost their resilience and address threats such as new fungi or viruses that attack crops.

Transgenics are products of one genetic engineering technology, in which a gene from one species is inserted in another. A great advantage of the technology for crop breeding is that it introduces the desired gene alone, in contrast to conventional breeding crosses, where many undesired genes accompany the target gene and can reduce yield or other valuable traits. Transgenics have been used since the 1990s to implant traits such as pest resistance, herbicide tolerance, or improved nutritional value. Transgenic crop varieties are grown on more than 190 million hectares worldwide and have increased harvests, raised farmers’ income and reduced the use of pesticides. Complex regulatory requirements to manage their potential health or environmental risks, as well as consumer concerns about such risks and the fair sharing of benefits, make transgenic crop varieties difficult and expensive to deploy.

Genome editing or gene editing techniques allow precise modification of specific DNA sequences, making it possible to enhance, diminish or turn off the expression of genes and to convert them to more favorable versions. Gene editing is used primarily to produce non-transgenic plants like those that arise through natural mutations. The approach can be used to improve plant traits that are controlled by single or small numbers of genes, such as resistance to diseases and better grain quality or nutrition. Whether and how to regulate gene edited crops is still being defined in many countries.

The mobile seed shop of Victoria Seeds Company provides access to improved maize varieties for farmers in remote villages of Uganda. (Photo: Kipenz Films for CIMMYT)
The mobile seed shop of Victoria Seeds Company provides access to improved maize varieties for farmers in remote villages of Uganda. (Photo: Kipenz Films for CIMMYT)

Selected impacts of maize and wheat breeding

In the early 1990s, a CIMMYT methodology led to improved maize varieties that tolerate moderate drought conditions around flowering time in tropical, rainfed environments, besides featuring other valuable agronomic and resilience traits. By 2015, almost half the maize-producing area in 18 countries of sub-Saharan Africa — a region where the crop provides almost a third of human calories but where 65% of maize lands face at least occasional drought — was sown to varieties from this breeding research, in partnership with the International Institute of Tropical Agriculture (IITA). The estimated yearly benefits are as high as $1 billion.

Intensive breeding for resistance to Maize Lethal Necrosis (MLN), a viral disease that appeared in eastern Africa in 2011 and quickly spread to attack maize crops across the continent, allowed the release by 2017 of 18 MLN-resistant maize hybrids.

Improved wheat varieties developed using breeding lines from CIMMYT or the International Centre for Agricultural Research in the Dry Areas (ICARDA) cover more than 100 million hectares, nearly two-thirds of the area sown to improved wheat worldwide, with benefits in added grain that range from $2.8 to 3.8 billion each year.

Breeding for resistance to devastating crop diseases and pests has saved billions of dollars in crop losses and reduced the use of costly and potentially harmful pesticides. A 2004 study showed that investments since the early 1970s in breeding for resistance in wheat to the fungal disease leaf rust had provided benefits in added grain worth 5.36 billion 1990 US dollars. Global research to control wheat stem rust disease saves wheat farmers the equivalent of at least $1.12 billion each year.

Crosses of wheat with related crops (rye) or even wild grasses — the latter known as wide crosses — have greatly improved the hardiness and productivity of wheat. For example, an estimated one-fifth of the elite wheat breeding lines in CIMMYT international yield trials features genes from Aegilops tauschii, commonly known as “goat grass,” that boost their resilience and provide other valuable traits to protect yield.

Biofortification — breeding to develop nutritionally enriched crops — has resulted in more than 60 maize and wheat varieties whose grain offers improved protein quality or enhanced levels of micro-nutrients such as zinc and provitamin A. Biofortified maize and wheat varieties have benefited smallholder farm families and consumers in more than 20 countries across sub-Saharan Africa, Asia, and Latin America. Consumption of provitamin-A-enhanced maize or sweet potato has been shown to reduce chronic vitamin A deficiencies in children in eastern and southern Africa. In India, farmers have grown a high-yielding sorghum variety with enhanced grain levels of iron and zinc since 2018 and use of iron-biofortified pearl millet has improved nutrition among vulnerable communities.

Innovations in measuring plant responses include remote sensing systems, such as multispectral and thermal cameras flown over breeding fields. In this image of the CIMMYT experimental station in Obregón, Mexico, water-stressed plots are shown in green and red. (Photo: CIMMYT and the Instituto de Agricultura Sostenible)
Innovations in measuring plant responses include remote sensing systems, such as multispectral and thermal cameras flown over breeding fields. In this image of the CIMMYT experimental station in Obregón, Mexico, water-stressed plots are shown in green and red. (Photo: CIMMYT and the Instituto de Agricultura Sostenible)

The future

Crop breeders have been laying the groundwork to pursue genomic selection. This approach takes advantage of low-cost, genome-wide molecular markers to analyze large populations and allow scientists to predict the value of particular breeding lines and crosses to speed gains, especially for improving genetically complex traits.

Speed breeding uses artificially-extended daylength, controlled temperatures, genomic selection, data science, artificial intelligence tools and advanced technology for recording plant information — also called phenotyping — to make breeding faster and more efficient. A CIMMYT speed breeding facility for wheat features a screenhouse with specialized lighting, controlled temperatures and other special fixings that will allow four crop cycles — or generations — to be grown per year, in place of only two cycles with normal field trials. Speed breeding facilities will accelerate the development of productive and robust varieties by crop research programs worldwide.

Data analysis and management. Growing and evaluating hundreds of thousands of plants in diverse trials across multiple sites each season generates enormous volumes of data that breeders must examine, integrate, and co-analyze to inform decisions, especially about which lines to cross and which populations to discard or move forward. New informatics tools such as the Enterprise Breeding System will help scientists to manage, analyze and apply big data from genomics, field and lab studies.

Following the leaders. Driven by competition and the quest for profits, private companies that market seed and other farm products are generally on the cutting edge of breeding innovations. The CGIAR’s Excellence in Breeding (EiB) initiative is helping crop breeding programs that serve farmers in low- and middle-income countries to adopt appropriate best practices from private companies, including molecular marker-based approaches, strategic mechanization, digitization and use of big data to drive decision making. Modern plant breeding begins by ensuring that the new varieties produced are in line with what farmers and consumers want and need.

Cover photo: CIMMYT experimental station in Toluca, Mexico. Located in a valley at 2,630 meters above sea level with a cool and humid climate, it is the ideal location for selecting wheat materials resistant to foliar diseases, such as wheat rust. Conventional plant breeding involves selection among hundreds of thousands of plants from crosses over many generations, and requires extensive and costly field, screenhouse and lab facilities. (Photo: Alfonso Cortés/CIMMYT)

New research highlights opportunities to deepen engagement with private sector for increasing impact from cereal breeding

A worker uses a machine to seal a bag of maize seed at the Sementes Nzara Yapera Lda warehouse in Catandika, Mozambique. Photo: CIMMYT/Kipenz Films.
A worker uses a machine to seal a bag of maize seed at the Sementes Nzara Yapera Lda warehouse in Catandika, Mozambique. Photo: CIMMYT/Kipenz Films.

A newly published special issue in the journal Outlook on Agriculture features views and experiences on seed systems performance in Sub-Saharan Africa and options to drive faster uptake of new crop varieties. The contributions reflect the breadth of perspectives and expertise within CGIAR and beyond and make the case for the need for more demand-oriented variety development and seed delivery.

A seed system refers to the various actors, processes, and relationships that allow for the production, conservation, exchange and use of propagation materials for crops, trees, forages, livestock, and fish. For the International Maize and Wheat Improvement Center (CIMMYT), seed systems involve private seed companies, retailers, and government research agencies, among others, that are involved in the design, testing, production and distribution of high-yielding, climate-resilient, and pest- and disease-resistant maize hybrids.

“A well-functioning seed system is critical for ensuring that farmers have reliable access to the quality seeds that they want. It forms the critical link between breeders and the small-scale farmers responsible for much of the food production in Sub-Saharan Africa, Latin America and South Asia,” said CIMMYT Senior Economist Jason Donovan, who co-authored the introductory article.

“The papers in this collection raise important issues which up to now have not received enough attention, to include the strategies, capacities and incentives of the private sector to invest in the distribution of new varieties. The topics discussed have implications for the One CGIAR in its ongoing efforts to develop a coherent and coordinated seed system research program that supports accelerated varietal uptake and turnover through effective seed delivery,” he added.

CIMMYT researchers contributed two papers, one which looks at the role of different types of seed producers and traders in shaping seed systems performance and another which proposes new directions for research on gender and formal maize seed systems. The special edition grew out of the CGIAR Community of Excellence for Seed Systems Development where CIMMYT led the discussion on seed value chains and private sector linkages.

One consensus among the authors is that a wider range of partnerships will be required to reenforce the potential of seed systems to delivery more new varieties to small-scale farmers in less time.

The full special series is available here: https://journals.sagepub.com/toc/OAG/current

New CIMMYT maize hybrids available from Eastern Africa Breeding Program

How does CIMMYT's improved maize get to the farmer?
How does CIMMYT’s improved maize get to the farmer?

The International Maize and Wheat Improvement Center (CIMMYT) is offering a new set of elite, improved maize hybrids to partners for commercialization in eastern Africa and similar agro-ecological zones. National agricultural research systems (NARS) and seed companies are invited to apply for licenses to register and commercialize these new hybrids, in order to bring the benefits of the improved seed to farming communities.

The deadline to submit applications to be considered during the first round of allocations is February 11, 2022. Applications received after that deadline will be considered during the following round of product allocations.

Information about the newly available CIMMYT maize hybrids from the Latin America breeding program, application instructions and other relevant material is available in the CIMMYT Maize Product Catalog and in the links provided below.

Product Profile Newly available CIMMYT hybrids Basic traits Nice-to-have / Emerging traits
Eastern Africa Product Profile 1A

(EA-PP1A)

CIM20EAPP1-01-38 Intermediate-maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and MSV MLN, Striga, FAW
CIM20EAPP1-01-1
CIM20EAPP1-01-16

 

You can download the full text and trial data summary for the CIMMYT Eastern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2020 to 2021 Seasons and Product Announcement.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

Wheat titan honored posthumously by India

India has conferred posthumously upon Sanjaya Rajaram, 2014 World Food Prize laureate and former wheat breeder and Director of the Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), its prestigious 2022 Padma Bhushan Award in “Science and Engineering” in recognition of “distinguished service of high order.”

Among the most successful crop breeders in history, Rajaram, who passed away in 2021, personally oversaw the development of nearly 500 high-yielding and disease-resistant wheat varieties that were grown on at least 58 million hectares in over 50 countries, increasing global wheat production by more than 200 million tons and especially benefiting hundreds of millions of the resource-poor whose diets and livelihoods depend on this critical crop. In India and the neighboring South Asian nations of Bangladesh, Nepal, and Pakistan, inhabitants consume more than 120 million tons of wheat and wheat-based foods each year.

“Dr. Rajaram was a true titan of wheat breeding and an inspiration for young researchers, training and mentoring more than 700 scientists from developing countries worldwide,” said Bram Govaerts, CIMMYT director general. “He was also a complete gentleman, comporting himself with modesty and grace despite his many honors and accomplishments; his first priority was helping and crediting others. Rajaram is an example today for all of us to keep working with the final stakeholder — the farmer — in mind.”

The rise from rural beginnings

Born on a small farm in District Varanasi, Uttar Pradesh, India, in 1943, Rajaram studied genetics and plant breeding at the Indian Agricultural Research Institute in New Delhi. After receiving his Ph.D. from the University of Sydney, he joined CIMMYT in 1969, working as a wheat breeder alongside Nobel Prize Laureate and CIMMYT scientist Norman Borlaug in Mexico. Recognizing his talent and initiative, Borlaug appointed Rajaram as head of CIMMYT’s wheat breeding program at just 29 years of age.

The Padma Bhushan Award was announced by President Ram Nath Kovind of India on the country’s Republic Day, January 26. In 2015, Rajaram received the Pravasi Bharatiya Samman award, the highest honor conferred on Indians overseas. In 2001 he accepted the Padma Shri award from the government of India and, in 1998, the Friendship Award from the government of China.

Sanjaya Rajaram (Photo: Xochil Fonseca/CIMMYT)
Sanjaya Rajaram (Photo: Xochil Fonseca/CIMMYT)

Though a plant breeder and scientist by profession, Rajaram used the platform of his 2014 World Food Prize to promote an expansive, integrated vision for agricultural development. “If we want to make a change, research won’t do it alone; we need to work directly with farmers and to train young agronomists, ensuring they have a broad vision to address the problems in farmers’ fields,” Rajaram said at a news conference in Mexico City in 2014.

Rajaram also served as Director of the Integrated Gene Management Program at the International Center for Agricultural Research in the Dry Areas (ICARDA) before formally retiring in 2008. In his retirement, he continued as a special scientific advisor to CIMMYT and ICARDA.

Longstanding partners pushing forward for farmers

“India’s agricultural research community is proud of the distinguished achievements of Dr. Rajaram,” said Trilochan Mohapatra, Director General of the Indian Council of Agricultural Research (ICAR) and Secretary of the Department of Agricultural Research and Education (DARE), of India’s Ministry of Agriculture and Farmers’ Welfare. “ICAR greatly appreciates its valuable collaborations with CIMMYT to help farmers grow better crops and conserve resources under increasingly challenging conditions.”

The partnership of India with CIMMYT harks back to the 1960s-70s, when Indian farmers tripled national wheat yields in a few years by growing Borlaug’s high-yield wheat varieties and adopting improved farming practices.

In 2011, India and CIMMYT jointly launched the Borlaug Institute for South Asia (BISA) to improve cropping systems and food security, helping farmers to confront climate change and natural resource scarcities, among other challenges.

S. Ayyappan, former ICAR Director General who signed the joint declaration of intent for BISA’s establishment in India, has been honored with the 2022 Padma Shri Award.

CIMMYT is a non-profit international agricultural research and training organization focusing on two of the world’s most important cereal grains, maize and wheat, and related cropping systems and livelihoods. Wheat varieties derived from CIMMYT and ICARDA research cover more than 100 million hectares — nearly two-thirds of the area sown to improved wheat worldwide — and bring benefits in added grain worth as much as $3.8 billion each year.

New publications: Genome-wide breeding to curtail wheat blast

A recent publication in the journal Frontiers of Plant Science provides results of the first-ever study to test genomic selection in breeding for resistance to wheat blast, a deadly disease caused by the fungus Magnaporthe oryzae that is spreading from its origin in Brazil to threaten wheat crops in South Asia and sub-Saharan Africa.

Genomic selection identifies individual plants based on the information from molecular markers, DNA signposts for genes of interest, that are distributed densely throughout the wheat genome. For wheat blast, the results can help predict which wheat lines hold promise as providers of blast resistance for future crosses and those that can be advanced to the next generation after selection.

In this study, scientists from the International Maize and Wheat Improvement Center (CIMMYT) and partners evaluated genomic selection by combining genotypic data with extensive and precise field data on wheat blast responses for three sets of genetically diverse wheat lines and varieties, more than 700 in all, grown by partners at locations in Bangladesh and Bolivia over several crop cycles.

The study also compared the use of a small number of molecular markers linked to the 2NS translocation, a chromosome segment from the grass species Aegilops ventricosa that was introduced into wheat in the 1980s and is a strong and stable source of blast resistance, with predictions using thousands of genome-wide markers. The outcome confirms that, in environments where wheat blast resistance is determined by the 2NS translocation, genotyping using one-to-few markers tagging the translocation is enough to predict the blast response of wheat lines.

Finally, the authors found that selection based on a few wheat blast-associated molecular markers retained 89% of lines that were also selected using field performance data, and discarded 92% of those that were discarded based on field performance data. Thus, both marker-assisted selection and genomic selection offer viable alternatives to the slower and more expensive field screening of many thousands of wheat lines in hot-spot locations for the disease, particularly at early stages of breeding, and can speed the development of blast-resistant wheat varieties.

Read the full study:
Genomic Selection for Wheat Blast in a Diversity Panel, Breeding Panel and Full-Sibs Panel

The research was conducted by scientists from the International Maize and Wheat Improvement Center (CIMMYT), the Bangladesh Wheat and Maize Research Institute (BWMRI), the Instituto Nacional de Innovación Agropecuaria y Forestal (INIAF) of Bolivia, the Borlaug Institute for South Asia (BISA) and the Indian Council of Agricultural Research (ICAR) in India, the Swedish University of Agricultural Sciences (Alnarp), and Kansas State University in the USA. Funding for the study was provided by the Bill & Melinda Gates Foundation, the Foreign and Commonwealth Development Office of the United Kingdom, the U.S. Agency for International Development (USAID), the CGIAR Research Program on Wheat (WHEAT), the Indian Council of Agricultural Research (ICAR), the Swedish Research Council, and the Australian Centre for International Agricultural Research (ACIAR).

Cover photo: A researcher from Bangladesh shows blast infected wheat spikes and explains how the disease directly attacks the grain. (Photo: Chris Knight/Cornell University)