We report with great sadness the death of Ephrame Havazvidi, who passed away on May 14, 2022.
Havazvidi was one of the world’s pioneering wheat breeders. He served on the Independent Steering Committee of the CGIAR Research Program on Wheat (WHEAT) from 2015 to 2021. He was a renowned seed and crop scientist of the wheat industry in Zimbabwe and the wider region and a frequent expert contributor to projects of the International Maize and Wheat Improvement Center (CIMMYT) in the region.
WHEAT Independent Steering Committee chair John Porter said, “Ephrame will no longer be gracing us with his big beaming smile, bright eyes and gorgeous laughter. Ephrame was a unique person and did so much to promote food security in Zimbabwe. He always supported the WHEAT Independent Steering Committee and shared his pan-African perspective on wheat-based food security. It was a great pleasure to have had him on our team.”
“Ephrame was not only an outstanding partner of both CIMMYT’s maize and wheat programs, especially when it came to promoting drought-tolerant varieties, but first and foremost a lovely human being,” said Prasanna Boddupalli, director of CIMMYT’s Global Maize Program.
Born in Masvingo District on 22 September 1954, Havazvidi held Doctor of Philosophy, Master of Philosophy and Bachelor’s degrees, all obtained from the University of Zimbabwe.
Before joining the University of Zimbabwe (then University of Rhodesia) in 1974 to 1976, he was among the top academic achievers at Berejena Mission in Chibi and Goromonzi High School for his Cambridge GCE “O” and “A” level studies respectively. Havazvidi also completed a year-long Executive Development program at the University of Zimbabwe and attended several management developments programs that include SMI.
Havazvidi began his career as a cotton agronomist at the Cotton Research Institute under the Zimbabwe Department of Research and Specialist Services in the then Ministry of Agriculture in Kadoma in 1977. He then joined Seed Co Limited, then Seed Coop, as a seed production research agronomist in 1980, where he pioneered research on maize seed production. Shortly thereafter, he became Seed Co’s principal wheat breeder between 1982 and 2011; as Seed Co breeder, Ephrame released 28 high-yielding wheat varieties that improved farmer productivity in Southern African countries. The varieties for irrigated areas helped to reduce Zimbabwe’s import burden at the time.
He also developed several high high-yielding maize inbred lines for Seed Co. Havazvidi has written several journal articles and presented at several high-level symposia and conferences locally and globally including for the CIMMYT-led Drought Tolerant Maize for Africa (DTMA), Water Efficient Maize for Africa (WEMA), Improved Maize for African Soils (IMAS), and HarvestPlus Pro Vitamin A projects.
In 2020, he was recognized as one of 20 most influential plant breeders by the Southern African Plant Breeding Association (SAPBA).
Hazvidi is survived by his wife Elizabeth, four children — Charles, Happines, Kennedy and Rumbi – and grandchildren.
Our planet is facing a massive biodiversity crisis. Deeply entwined with our concurrent climate crisis, this crisis may well constitute the sixth mass extinction in Earth’s history. Increasing agricultural production, whether by intensification of extensification, is a major driver of biodiversity loss. Beyond humanity’s moral obligation to not drive other species to extinction, biodiversity loss is also associated with the erosion of critical processes that maintain the Earth system in the only state that can support life as we know it. It is also associated with the emergence of novel, zoonotic pathogens like the SARS-CoV-2 virus that is responsible for the current COVID-19 global pandemic.
Conservation ecologists have proposed two solutions to this challenge: sparing or sharing land. The former implies practicing a highly intensive form of agriculture on a smaller land area, thereby “sparing” a greater proportion of land for biodiversity. The latter implies a multifunctional approach that boosts the density of wild flora and fauna on agricultural land. Both have their weaknesses though: sparing often leads to agrochemical pollution of adjacent ecosystems, while sharing implies using more land for any production target.
In an article in Biological Conservation, agricultural scientists at the International Maize and Wheat Improvement Center (CIMMYT), argue that, while both land sharing and sparing are part of the solution, the current debate is too focused on trade-offs and tends to use crop yield as the sole metric of agricultural performance. By overlooking potential synergies between agriculture and biodiversity and ignoring metrics that may matter more to farmers than yield —for example, income, labor productivity, or resilience — the authors argue that the two approaches have had limited impact on the adoption by farmers of practices with proven benefits on both biodiversity and agricultural production.
Beyond the zero-sum game
At the heart of the debate around land sparing versus land sharing is a common assumption: there is a zero-sum relationship between wild species density and agricultural productivity per unit of land. Hence, the answer to the challenge of balancing biodiversity conservation with feeding a growing human population appears to entail some unpalatable trade-offs, no matter which side of the debate you side with. As the debate has largely been driven by conservation ecologists, proposed solutions often approach conserving biodiversity in ways that offer limited benefits, and often losses, to farmers.
On the land sparing side, the vision is to carve up rural landscapes almost as a planner would zone urban space: some areas would be zoned for highly intensive forms of agricultural production, largely devoid of wild species, while others would be zoned as biodiversity-rich areas. As the authors point out, however, such a strictly segregated view of land use is challenged by the natural migratory patterns of species, their need for diverse types of ecosystems over the course of the seasons or their lifecycles, and the high risk of pollution associated with intensive agriculture, such as run-off and leaching of agrochemicals, and pesticide drift.
Proponents of the land sharing view argue for a multifunctional approach to agricultural production that introduces a greater density of wild species onto agricultural land, thus integrating production and conservation into the same land units. This, however, inevitably diminishes agricultural productivity, as measured by yield.
This view, the article argues, overlooks the synergies between agriculture and biodiversity. Not only can biodiversity support agriculture through ecosystem services, but farmlands also support many species. For example, the patchiness created in the landscape by swidden agriculture or by grazing livestock supports more biodiversity than closed-canopy ecosystems, benefiting open-habitat species in particular. And except for rare forms of “controlled environment agriculture” such as hydroponics, all agricultural systems depend on the ecosystem services rendered by a multitude of organisms, from soil fertility maintenance to pollination and pest control.
Tzeltal farmers in Chiapas, Mexico. (Photo: Peter Lowe for CIMMYT)
“Agriculture is about flexibility and pragmatism,” said Frédéric Baudron, a system agronomist at CIMMYT and the lead author of the study. “Farmers need to be presented with a wider basket of solutions than the dichotomy of high-yielding and polluting agriculture versus low-input and low-yielding agriculture offered by land sharing/sparing. Virtually all production systems require both external inputs and ecosystem services. In addition, agricultural scientists have developed a variety of solutions, such as precision agriculture, to minimize the risk of pollution when using external inputs, and push-pull technology to harness ecosystem services for tangible productivity gains.
Similarly, an exclusive focus on yield as a measure of agricultural performance obscures ways in which greater biodiversity on agricultural land can support farmers’ livelihoods and economic wellbeing. The authors show, for example, that simplified landscapes in southern Ethiopia tend to have higher crop productivity. But more diverse landscape in the same area, while hosting more biodiversity, produce more fuelwood, support a higher livestock productivity, provide a greater dietary diversity, and are more resilient to environmental stresses and external economic shocks, all of which being highly valued by local people.
Imagining landscapes where biodiversity and people win
The land sharing versus sparing debate deserves enormous credit for bringing attention to the role of agriculture in biodiversity loss and for pushing the scientific community and policymakers to address the problem and think about how to balance agriculture and conservation. As the authors of this paper show, as researchers from a more diverse range of scientific disciplines join the debate, there is tremendous potential to move the conversation from a vision that pits agriculture against biodiversity and towards solutions that highlight the potential synergies between these activities.
“It is our hope that this paper will stimulate other agricultural scientists to contribute to the debate on how to feed a growing population while safeguarding biodiversity. This is possibly one of the biggest challenges of our rapidly changing agri-food systems. But we have the technologies and the analytics to face this challenge,” Baudron said.
Cover photo: Pilot farm in Yangambi, Democratic Republic of Congo. (Photo: Axel Fassio/CIFOR)
(Left to right) Bram Govaerts, Claudia Sadoff, Joaquín Lozano and Kevin Pixley stand for a group photo next to the Norman Borlaug sculpture at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Alfonso Cortés/CIMMYT)
Senior leadership from CGIAR had the opportunity to strengthen ties with senior leaders and researchers from the International Maize and Wheat Improvement Center (CIMMYT) during a visit on April 25–26, 2022. Claudia Sadoff, Executive Management Team Convener and Managing Director for Research Delivery and Impact, visited CIMMYT’s global headquarters in Texcoco, Mexico, and the experimental station in Toluca, west of Mexico City. Joining her was Joaquín Lozano, CGIAR’s Regional Director for Latin America and the Caribbean.
On April 25, 2022, scientists provided an overview of CIMMYT’s research in Africa and Asia and discussed with Sadoff how CIMMYT’s science and operations contribute to the One CGIAR 2030 Strategy. Examples included sustainable agri-food systems research in South Asia and maize research in Africa, with emphasis on work that aligns with CGIAR’s Action Areas and impact. These sessions underlined CIMMYT’s involvement in multiple CGIAR Initiatives, its influence on policy, and evidence of translating science into impact on the ground.
Lozano and Sadoff toured the facilities, including the CIMMYT Museum, the Wellhausen-Anderson Plant Genetic Resources Center, and the Applied Biotechnology laboratory. Along the way, scientists explained their latest research and answered questions about conservation agriculture, innovation hubs, climate-smart technologies, and scale-appropriate mechanization.
In the afternoon, CIMMYT and CGIAR representatives had targeted discussions on poverty reduction, gender equity and social inclusion, climate adaptation, environmental health and biodiversity,
The remainder of the first day was spent at the Bioscience complex, with visits to the wheat molecular breeding lab, the greenhouse, the wheat quality laboratory, and the maize quality laboratory, which hosted a discussion on nutrition and health.
(Left to right) Joaquín Lozano, Claudia Sadoff, Carolina Sansaloni, Bram Govaerts and Alberto Chassaigne stand for a group photo inside the germplasm bank at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Alfonso Cortés/CIMMYT)
Honoring our roots, growing into the future
On April 26, 2022, Lozano and Sadoff joined representatives from the Mexican and Indian governments, CIMMYT colleagues, and other partners at CIMMYT’s experimental station in Toluca for a dedication event for the late Sanjaya Rajaram.
In Sadoff’s speech, she praised CIMMYT’s highly committed staff and shared her honor at being invited to such an event. “Dr. Norman Borlaug, Dr. Sanjaya Rajaram, Dr. Ravi Singh, and many more talented researchers who have worked and continue to work at CIMMYT have built an outstanding international research organization that has been a role model for other CGIAR centers,” she said. “In view of this impressive history, it is very important that we all contribute to continue CIMMYT’s legacy and to multiply its impact worldwide, but also to honor those great colleagues who have truly inspired us with their impressive achievements.”
After the event, Lozano and Sadoff toured the station and praised the engaging program produced by CIMMYT.
For Lozano, it was his second visit to CIMMYT. “It was an honor to be back at CIMMYT HQ in Mexico this week with Claudia,” he said. “It’s evident that CIMMYT’s science, staff and partners support and proactively contribute to our global research strategy for a food-secure future. A big thanks to Bram Govaerts and the CIMMYT team for such a constructive dialogue and hospitality.”
CIMMYT scientists are using biodiversity, testing forgotten wheat varieties from across the world, to find those with heat- and drought-tolerant traits. The aim is to outpace human-made global heating and breed climate-resilient varieties so yields do not collapse, as worst-case scenarios predict.
Reporter Nina Lakhanivisited CIMMYT’s experimental station in Ciudad Obregon, in Mexico’s Sonora state, and witnessed CIMMYT’s unique role in fighting climate change through the development of resilient varieties as “international public goods”.
Kate Dreher, Data Manager at CIMMYT, presents to scientists, technicians, data management and support teams during the training on the Enterprise Breeding System (EBS) in Nairobi, Kenya. (Photo: Susan Umazi Otieno/CIMMYT)
Scientists overseeing breeding, principal technicians and data management and support staff from the International Maize and Wheat Improvement Center (CIMMYT) learned about the Enterprise Breeding System (EBS) at a training in Nairobi, Kenya, on May 4–6, 2022. This was the first in-person training on this advanced tool held in Eastern Africa.
Kate Dreher, Data Manager at CIMMYT, was the primary trainer. Dreher sought to ensure that scientists and their teams are well equipped to confidently use the EBS for their programs, including the creation and management of trials and nurseries. During the training, participants had the opportunity to test, review and give feedback on the system.
“The EBS is an online comprehensive system that brings together different types of data, including field observations and genotypic data, to harmonize processes across all teams and enable optimized decision-making in the short term and continuous learning for the long term,” Dreher said.
She explained that the EBS is more efficient than the former approach of using the Excel-based Maize Fieldbook software, even though it managed several useful processes.
The EBS is currently available to registered breeding and support team members and data managers from CIMMYT, IITA, IRRI and AfricaRice, across all geographies where related programs are implemented. Currently, the EBS is used by programs in maize, rice and wheat crops.
A more streamlined approach
“Although teams sent germplasm and phenotypic data for centralized storage in two databases (IMIS-GMS and MaizeFinder) managed by the data management team in Mexico in the past, this required curation after the data had already been generated,” Dreher said. “The EBS will enable teams to manage their germplasm and trial nursery data directly within one system.”
The EBS stores information on germplasm and linked seed inventory items. It is also designed to house and perform analyses using phenotypic and genotypic data. Users can also capture metadata about their trials and nurseries, such as basic agronomic management information and the GPS coordinates of sites where experiments are conducted.
Yoseph Beyene, Regional Maize Breeding Coordinator for Africa and Maize Breeder for Eastern Africa at CIMMYT, observed that the training gave him firsthand information on the current capabilities and use of the live version to search germplasm and seed, and the capabilities to create nurseries and trials.
“In the AGG project, we have one primary objective which focuses on implementing improved data management, experimental designs and breeding methods to accelerate genetic gain and improved breeding efficiency. Therefore, implementing EBS is one of the top priorities for AGG project,” said Yoseph, who leads the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods Project (AGG).
Lourine Bii, an Assistant Research Associate who recently joined CIMMYT and the only female research technician on the Global Maize program based in Kenya, also found the training useful. “The EBS is a fantastic system that enables an individual to create experiments. The system links a team, for instance a product development team, to get live updates on the various stages of creating an experiment, reducing back and forth by email.”
The system’s software development is ongoing. The development team continues to add and enhance features based on feedback from users.
A climate change hotspot region that features both small-scale and intensive farming, South Asia epitomizes the crushing pressure on land and water resources from global agriculture to feed a populous, warming world. Continuous irrigated rice and wheat cropping across northern India, for example, is depleting and degrading soils, draining a major aquifer, and producing a steady draft of greenhouse gases.
Through decades-long Asian and global partnerships, the International Maize and Wheat Improvement Center (CIMMYT) has helped to study and promote resource-conserving, climate-smart solutions for South Asian agriculture. Innovations include more precise and efficient use of water and fertilizer, as well as conservation agriculture, which blends reduced or zero-tillage, use of crop residues or mulches as soil covers, and more diverse intercrops and rotations. Partners are recently exploring regenerative agriculture approaches — a suite of integrated farming and grazing practices to rebuild the organic matter and biodiversity of soils.
Along with their environmental benefits, these practices can significantly reduce farm expenses and maintain or boost crop yields. Their widespread adoption depends in part on enlightened policies and dedicated promotion and testing that directly involves farmers. We highlight below promising findings and policy directions from a collection of recent scientific studies by CIMMYT and partners.
Getting down in the dirt
A recent scientific review examines the potential of a suite of improved practices — reduced or zero-tillage with residue management, use of organic manure, the balanced and integrated application of plant nutrients, land levelling, and precise water and pest control — to capture and hold carbon in soils on smallholder farms in South Asia. Results show a potential 36% increase in organic carbon in upper soil layers, amounting to some 18 tons of carbon per hectare of land and, across crops and environments, potentially cutting methane emissions by 12%. Policies and programs are needed to encourage farmers to adopt such practices.
Another study on soil quality in India’s extensive breadbasket region found that conservation agriculture practices raised per-hectare wheat yields by nearly half a ton and soil quality indexes nearly a third, over those for conventional practices, as well as reducing greenhouse gas emissions by more than 60%.
Ten years of research in the Indo-Gangetic Plains involving rice-wheat-mungbean or maize-wheat-mungbean rotations with flooded versus subsoil drip irrigation showed an absence of earthworms — major contributors to soil health — in soils under farmers’ typical practices. However, large earthworm populations were present and active under climate-smart practices, leading to improved soil carbon sequestration, soil quality, and the availability of nutrients for plants.
The field of farmer Ram Shubagh Chaudhary, Pokhar Binda village, Maharajganj district, Uttar Pradesh, India, who has been testing zero tillage to sow wheat directly into the unplowed paddies and leaving crop residues, after rice harvest. Chaudhary is one of many farmer-partners in the Cereal Systems Initiative for South Asia (CSISA), led by CIMMYT. (Photo: P. Kosina/CIMMYT)
Rebooting marginal farms by design
Using the FarmDESIGN model to assess the realities of small-scale, marginal farmers in northwestern India (about 67% of the population) and redesign their current practices to boost farm profits, soil organic matter, and nutritional yields while reducing pesticide use, an international team of agricultural scientists demonstrated that integrating innovative cropping systems could help to improve farm performance and household livelihoods.
More than 19 gigatons of groundwater is extracted each year in northern India, much of this to flood the region’s puddled, transplanted rice crops. A recent experiment calibrated and validated the HYDRUS-2D model to simulate water dynamics for puddled rice and for rice sown in non-flooded soil using zero-tillage and watered with sub-surface drip irrigation. It was found that the yield of rice grown using the conservation agriculture practices and sub-surface drip irrigation was comparable to that of puddled, transplanted rice but required only half the irrigation water. Sub-surface drip irrigation also curtailed water losses from evapotranspiration and deep drainage, meaning this innovation coupled with conservation agriculture offers an ecologically viable alternative for sustainable rice production.
Given that yield gains through use of conservation agriculture in northern India are widespread but generally low, a nine-year study of rice-wheat cropping in the eastern Indo-Gangetic Plains applying the Environmental Policy Climate (EPIC) model, in this case combining data from long-term experiments with regionally gridded crop modeling, documented the need to tailor conservation agriculture flexibly to local circumstances, while building farmers’ capacity to test and adapt suitable conservation agriculture practices. The study found that rice-wheat productivity could increase as much as 38% under conservation agriculture, with optimal management.
Key partner organizations in this research include the following: Indian Council of Agricultural Research (ICAR); Central Soil Salinity Research Institute (CSSRI), Indian Agricultural Research Institute (IARI), Indian Institute of Farming Systems Research (IIFSR), Agriculture University, Kota; CCS Haryana Agricultural University, Hisar; Punjab Agricultural University, Ludhiana; Sri Karan Narendra Agriculture University, Jobner, Rajasthan; the Borlaug Institute for South Asia (BISA); the Trust for Advancement of Agricultural Sciences, Cornell University; Damanhour University, Damanhour, Egypt; UM6P, Ben Guerir, Morocco; the University of Aberdeen; the University of California, Davis; Wageningen University & Research; and IFDC.
Generous funding for the work cited comes from the Bill & Melinda Gates Foundation, The CGIAR Research Programs on Wheat Agri-Food Systems (WHEAT) and Climate Change, Agriculture and Food Security (CCAFS), supported by CGIAR Fund Donors and through bilateral funding agreements), The Indian Council of Agricultural Research (ICAR), and USAID.
Cover photo: A shortage of farm workers is driving the serious consideration by farmers and policymakers to replace traditional, labor-intensive puddled rice cropping (shown here), which leads to sizable methane emissions and profligate use of irrigation water, with the practice of growing rice in non-flooded soils, using conservation agriculture and drip irrigation practices. (Photo: P. Wall/CIMMYT)
Written by Bea Ciordia on . Posted in Uncategorized.
The Mining Useful Alleles for Climate Change Adaptation from CGIAR Genebanks project, led by the International Maize and Wheat Improvement Center (CIMMYT), is expanding the use of biodiversity held in the world’s genebanks to develop new climate-smart crop varieties for millions of small-scale farmers worldwide. It aims to identify plant accessions in genebanks that contain alleles, or gene variations, responsible for characteristics such as heat, drought or salt tolerance, and to facilitate their use in breeding climate-resilient crop varieties.
Through this project, breeders will learn how to use genebank materials more effectively and efficiently to develop climate-smart versions of important food crops, including cassava, maize, sorghum cowpea, and rice.
Building on 10 years of support to CIMMYT from the Mexican government, CGIAR Trust Fund contributors, and the UK Biotechnology and Biological Sciences Research Council, the Mining Useful Alleles for Climate Change Adaptation from CGIAR Genebanks project combines the use of cutting-edge technologies and approaches, high-performance computing, GIS mapping, and new plant breeding methods to identify and use accessions with high value for climate-adaptive breeding of varieties needed by farmers and consumers.
Support faster and more cost-effective discovery and deployment of climate -adaptive alleles from the world’s germplasm collections
Test integrated approaches for five major crops (i.e., cassava, maize, sorghum, cowpea, and rice), providing a scalable model for the rapid and cost-effective discovery and deployment of climate-adaptive alleles.
Written by Bea Ciordia on . Posted in Uncategorized.
The Accelerating Impacts of CGIAR Climate Research for Africa (AICCRA) project is an initiative that will enhance access to climate information services and validated climate-smart agriculture technologies in Africa.
AICCRA aims to support farmers and livestock keepers to better anticipate climate-related events and take preventative actions, with better access to climate advisories linked to information about effective response measures.
Spot blotch, a major biotic stress challenging bread wheat production is caused by the fungus Bipolaris sorokiniana. In a new study, scientists from the International Maize and Wheat Improvement Center (CIMMYT) evaluate genomic and index-based selection to select for spot blotch resistance quickly and accurately in wheat lines. The former approach facilitates selecting for spot blotch resistance, and the latter for spot blotch resistance, heading and plant height.
Genomic selection
The authors leveraged genotyping data and extensive spot blotch phenotyping data from Mexico and collaborating partners in Bangladesh and India to evaluate genomic selection, which is a promising genomic breeding strategy for spot blotch resistance. Using genomic selection for selecting lines that have not been phenotyped can reduce the breeding cycle time and cost, increase the selection intensity, and subsequently increase the rate of genetic gain.
Two scenarios were tested for predicting spot blotch: fixed effects model (less than 100 molecular markers associated with spot blotch) and genomic prediction (over 7,000 markers across the wheat genome). The clear winner was genomic prediction which was on average 177.6% more accurate than the fixed effects model, as spot blotch resistance in advanced CIMMYT wheat breeding lines is controlled by many genes of small effects.
“This finding applies to other spot blotch resistant loci too, as very few of them have shown big effects, and the advantage of genomic prediction over the fixed effects model is tremendous”, confirmed Xinyao He, Wheat Pathologist and Geneticist at CIMMYT.
The authors have also evaluated genomic prediction in different populations, including breeding lines and sister lines that share one or two parents.
Spot blotch susceptible wheat lines (left) and resistant lines. (Photo: Xinyao He and Pawan Singh/CIMMYT)
Index selection
One of the key problems faced by wheat breeders in selecting for spot blotch resistance is identifying lines that are genetically resistant to spot blotch versus those that escape and exhibit less disease by being late and tall. “The latter, unfortunately, is often the case in South Asia”, explained Pawan Singh, Head of Wheat Pathology at CIMMYT.
A potential solution to this problem is the use of selection indices that can make it easier for breeders to select individuals based on their ranking or predicted net genetic merit for multiple traits. Hence, this study reports the first successful evaluation of the linear phenotypic selection index and Eigen selection index method to simultaneously select for spot blotch resistance using the phenotype and genomic-estimated breeding values, heading and height.
This study demonstrates the prospects of integrating genomic selection and index-based selection with field based phenotypic selection for resistance in spot blotch in breeding programs.
Spot blotch, caused by the fungus Biopolaris sorokiniana poses a serious threat to bread wheat production in warm and humid wheat-growing regions globally, affecting more than 25 million hectares and resulting in huge yield losses.
Chemical control approaches, including seed treatment and fungicides, have provided acceptable spot blotch control. However, their use is unaffordable to resource-poor farmers and poses a hazard to health and the environment. In addition, “abiotic stresses like heat and drought that are widely prevalent in South Asia compound the problem, making varietal genetic resistance the last resort of farmers to combat this disease,” according to Pawan Singh, Head of Wheat Pathology at the International Maize and Wheat Improvement Center (CIMMYT). Therefore, one of CIMMYT’s wheat research focus areas is developing wheat varieties that carry genetic resistance to the disease.
Signs of spot blotch on wheat. (Photo: Philomin Juliana/CIMMYT)
The study’s results are positive and confirmed that:
Many advanced CIMMYT breeding lines have moderate to high resistance to spot blotch.
Resistance to the disease is conferred quantitatively by several minor genomic regions that act together in an additive manner to confer resistance.
There is an association of the 2NS translocation from the wild species Aegilops ventricosa with spot blotch resistance.
There is also an association of the spot blotch favorable alleles at the 2NS translocation, and two markers on the telomeric end of chromosome 3BS with grain yield evaluated in multiple environments, implying that selection for favorable alleles at these markers could help obtain higher grain yield and spot blotch resistance.
“Considering the persistent threat of spot blotch to resource-poor farmers in South Asia, further research and breeding efforts to improve genetic resistance to the disease, identify novel sources of resistance by screening different germplasm, and selecting for genomic regions with minor effects using selection tools like genomic selection is essential,” explained Philomin Juliana, Molecular Breeder and Quantitative Geneticist at CIMMYT.
Cover photo: Researchers evaluate wheat for spot blotch at CIMMYT’s experimental station in Agua Fría, Jiutepec, Morelos state, Mexico. (Photo: Xinyao He and Pawan Singh/CIMMYT)
Wheat leaves showing symptoms of heat stress. (Photo: CIMMYT)
Across South Asia, including major wheat-producing regions of India and Pakistan, temperature extremes are threatening wheat production. Heatwaves have been reported throughout the region, with a century record for early onset of extreme heat. Monthly average temperatures across India for March and April 2022 exceeded those recorded over the past 100 years.
Widely recognized as one of the major breadbaskets of the world, the Indo-Gangetic Plains region produces over 100 million tons of wheat annually, from 30 million hectares in Bangladesh, India, Nepal and Pakistan, primarily supporting large domestic demand.
The optimal window for wheat planting is the first half of November. The late onset of the 2021 summer monsoon delayed rice planting and its subsequent harvest in the fall. This had a knock-on effect, delaying wheat planting by one to two weeks and increasing the risk of late season heat stress in March and April. Record-high temperatures over 40⁰C were observed on several days in March 2022 in the Punjabs of India and Pakistan as well as in the state of Haryana, causing wheat to mature about two weeks earlier than usual.
In-season changes and effects
Prior to the onset of extreme heat, the weather in the current season in India was favorable, prompting the Government of India to predict a record-high wheat harvest of 111 million tons. The March heat stress was unexpected and appears to have had a significant effect on the wheat crop, advancing the harvest and likely reducing yields.
Departure of the normalized difference vegetation index (NDVI) during the period from March 22 to April 7 from the average of the previous five years. The NDVI is a measure of the leaf area and the greenness of vegetation. The yellow areas in the Punjabs of India and Pakistan, as well as in the state of Haryana, indicate that wheat matured earlier than normal due to elevated temperatures. Maximum temperatures reached 40⁰C on March 15 and remained at or above this level throughout the wheat harvesting period. (Map: Urs Schulthess/CIMMYT).
In the North-Western Plains, the major wheat basket of India, the area of late-sown wheat is likely to have been most affected even though many varieties carry heat tolerance. Data from CIMMYT’s on-farm experiments show a yield loss between 15 to 20% in that region. The states of Haryana and Punjab together contribute almost 30% of India’s total wheat production and notably contribute over 60% of the government’s buffer stocks. In the North-Eastern Plains, in the states of Bihar and Uttar Pradesh, around 40% of the wheat crop was normal or even early sown, escaping heat damage, whilst the remainder of late-sown wheat is likely to be impacted at a variable level, as most of the crop in this zone matures during the third and fourth week of March.
The Government of India has now revised wheat production estimates, with a reduction of 5.7%, to 105 million tons because of the early onset of summer.
India has reported record yields for the past 5 years, helping it to meet its goal of creating a reserve stock of 40 million tons of wheat after the 2021 harvest. It went into this harvest season with a stock of 19 million tons, and the country is in a good position to face this year’s yield loss.
In Pakistan, using satellite-based crop monitoring systems, the national space agency Space & Upper Atmosphere Research Commission (SPARCO) estimated wheat production reduction close to 10%: 26 million tons, compared to the production target of 29 million tons, for the 2021-22 season.
We recommend that systematic research be urgently undertaken to characterize and understand the impacts of elevated temperatures on the health of field-based workers involved in wheat production. This is needed to develop a holistic strategy for adapting our global cropping systems to climate change.
India had pledged to provide increased wheat exports to bolster global supplies, but this now looks uncertain given the necessity to safeguard domestic supplies. During the COVID-19 pandemic, the Indian government supported domestic food security by providing free rations — mainly wheat and rice — to 800 million people over several months. This type of support relies on the availability of large buffer stocks which appear stable, but may be reduced if grain production and subsequent procurement levels are lower than desired.
We are already seeing indications of reduced procurement by governments with market prices running higher than usual. However, although the Food Corporation of India has procured 27% less wheat grain in the first 20 days of the wheat procurement season compared to the same period last year, the Government of India is confident about securing sufficient wheat buffer stocks.
As with the COVID-19 pandemic and the war in Ukraine, it is likely that the most marked effects of both climate change and shortages of staple crops will hit the poorest and most vulnerable communities hardest.
A chain reaction of climate impacts
The real impacts of reduced wheat production due to extreme temperatures in South Asia demonstrate the realities of the climate emergency facing wheat and agricultural production. Direct impacts on farming community health must also be considered, as our agricultural workforce is pushed to new physical limits.
Anomalies, which are likely to become the new normal, can set off a chain reaction as seen here: the late onset of the summer monsoon caused delays in the sowing of rice and the subsequent wheat crop. The delayed wheat crop was hit by the unprecedented heatwave in mid- to late March at a relatively earlier stage, thus causing even more damage.
Preparing for wheat production tipping points
Urgent action is required to develop applied mitigation and adaptation strategies, as well as to plan for transition and tipping points when key staple crops such as wheat can no longer be grown in traditional production regions.
A strategic design process is needed, supported by crop and climate models, to develop and test packages of applied solutions for near-future climate changes. On-farm evidence from many farmers’ fields in Northwestern India indicates that bundled solutions — no-till direct seeding with surface retention of crop residues coupled with early seeding of adapted varieties of wheat with juvenile heat tolerance — can help to buffer terminal heat stress and limit yield losses.
Last but not least, breeding wheat for high-temperature tolerance will continue to be crucial for securing production. Strategic planning needs to also encompass the associated social, market and political elements which underpin equitable food supply and stability.
Zhuang Qiaosheng (center) receives CIMMYT delegations in Beijing in 1997. (Photo: CIMMYT)
Zhuang Qiaosheng passed away in Beijing on May 8, 2022, at the age of 105. He was the most celebrated wheat breeder in China and enjoyed a high reputation in the international community.
As a leader of Wheat Breeding Program at Chinese Academy of Agricultural Sciences (CAAS), Zhuang developed 20 high-yielding and disease-resistant winter wheat varieties from 1947 to 1995, with a total planting area of 28 million hectares in achieving notable yield increase.
Zhuang served as a member of the Board of Trustees of the International Maize and Wheat Improvement Center (CIMMYT) from 1984 to 1987. He made great contributions to the collaboration between CIMMYT and China, including the opening of the CIMMYT office in China and the establishment of a shuttle breeding project for improving scab resistance.
Zhuang Qiaosheng (center) with Sanjaya Rajaram (left) and Tom Lumpkin in Beijing in 2017. (Photo: CIMMYT)
He did everything possible to enlarge CIMMYT activities in China before fully retiring in 2015.
He was a close friend to many CIMMYT staff, including the late distinguished scientist Sanjaya Rajaram. He also strongly recommended He Zhonghu, distinguished scientist and CIMMYT Country Representative for China, to work at CIMMYT as a postdoctoral fellow in 1990.
The CIMMYT community sends its deepest condolences to the Zhuang family.
Workshop participants stand for a group photo. (Photo: Danny Ward/John Innes Centre)
On April 26–29, 2022, researchers from Nepal participated in a workshop on the use of MARPLE Diagnostics, the most advanced genetic testing methodology for strain-level diagnostics of the deadly wheat yellow rust fungus. Scientists from the International Maize and Wheat Improvement Center (CIMMYT) and the John Innes Centre trained 21 researchers from the Nepal Agricultural Research Council (NARC) and one from iDE. The workshop took place at NARC’s National Plant Pathology Research Centre in Khumaltar, outside the capital Kathmandu.
“The need for new diagnostic technologies like MARPLE and the critical timing of the workshop was highlighted by the severe yellow rust outbreak observed this season in the western areas of Nepal,” commented Dave Hodson, Senior Scientist at CIMMYT and project co-lead. “Having national capacity to detect the increasing threats from yellow rust using MARPLE will be an important tool to help combat wheat rusts in Nepal”.
The yellow rust fungus can cause grain yield losses of 30–80 % to wheat, Nepal’s third most important food crop.
Current diagnostic methods for wheat rust used in Nepal are slow, typically taking months between collecting the sample and final strain identification. They are also costly and reliant on sending samples overseas to highly specialized labs for analysis.
MARPLE (Mobile and Real-time PLant disEase) Diagnostics is the first method to place strain-level genetic diagnostics capability directly into the hands of Nepali researchers, generating data in-country in near-real time, for immediate integration into early warning systems and disease management decisions.
“This is a fantastic opportunity to bring the latest innovations in plant disease diagnostics for the wheat rust pathogens to where they are needed most, in the hands of researchers in the field working tirelessly to combat these devastating diseases,” commented Diane Saunders, Group Leader at the John Innes Centre and project co-lead.
Diane Saunders (left), Group Leader at the John Innes Centre and project co-lead, observes workshop participants during the use of MARPLE. (Photo: Danny Ward/John Innes Centre)
Suraj Baidya senior scientist and chief of the National Plant Pathology Research Centre at NARC noted the worrying recent geographical expansion of yellow rust in Nepal. “Due to global warming, yellow rust has now moved into the plain and river basin area likely due to evolution of heat tolerant pathotypes. MARPLE Diagnostics now gives us the rapid diagnostics needed to help identify and manage these changes in the rust pathogen population diversity,” he said.
The highly innovative MARPLE Diagnostics approach uses the hand-held MinION nanopore sequencer, built by Oxford Nanopore, to generate genetic data to type strains of the yellow rust fungus directly from field samples.
Beyond MARPLE Diagnostics, Saunders noted that “the workshop has also opened up exciting new possibilities for researchers in Nepal, by providing local genome-sequencing capacity that is currently absent.”
MARPLE (Mobile and Real-time PLant disEase) Diagnostics is a revolutionary mobile lab kit. It uses nanopore sequence technology to rapidly diagnose and monitor wheat rust in farmers’ fields. (Photo: Danny Ward/John Innes Centre)
What’s next for MARPLE Diagnostics in Nepal?
Following the successful workshop, Nepali researchers will be supported by CIMMYT and the John Innes Centre to undertake MARPLE Diagnostics on field samples collected by NARC. “The current plan includes monitoring of yellow rust on the summer wheat crop planted at high hill areas and then early sampling in the 2022/23 wheat season,” Hodson noted.
“We were struck by the enthusiasm and dedication of our colleagues to embrace the potential offered by MARPLE Diagnostics. Looking forward, we are excited to continue working with our Nepali colleagues towards our united goal of embedding this methodology in their national surveillance program for wheat rusts,” Saunders remarked.
MARPLE Diagnostics is supported by the Feed the Future Innovation Lab for Current and Emerging Threats to Crops, funded by the United States Agency for International Development (USAID), the UK Biotechnology and Biological Sciences Research Council (BBSRC) Innovator of the Year Award, the CGIAR Big Data Platform Inspire Challenge, the Bill & Melinda Gates Foundation and the United Kingdom’s Foreign, Commonwealth and Development Office.
Stripe rust, also known as yellow rust, on wheat with droplets of rain. (Photo: A. Yaqup/CIMMYT)
Robust and resilient agrifood systems begin with healthy crops. Without healthy crops the food security and livelihoods of millions of resource-constrained smallholder famers in low- and middle-income countries would be in jeopardy. Yet, climate change and globalization are exacerbating the occurrence and spread of devastating insect-pests and pathogens.
Each year, plant diseases cost the global economy an estimated $220 billion — and invasive insect-pests at least $70 billion more. In addition, mycotoxins such as aflatoxins pose serious threats to the health and wellbeing of consumers. Consumption of mycotoxin-contaminated food can cause acute illness, and has been associated with increased risk of certain cancers and immune deficiency syndromes.
Effective plant health management requires holistic approaches that strengthen global and local surveillance and monitoring capacities, and mitigate negative impacts through rapid, robust responses to outbreaks with ecologically friendly, socially-inclusive and sustainable management approaches.
Over the decades, CGIAR has built a strong foundation for fostering holistic plant health protection efforts through its global network of Germplasm Health Units, as well as pathbreaking rapid-response efforts to novel transboundary threats to several important crops, including maize, wheat, rice, bananas, cassava, potatoes and grain legumes.
On May 12, 2022, CGIAR is launching the Plant Health and Rapid Response to Protect Food Security and Livelihoods Initiative (Plant Health Initiative). It presents a unified and transdisciplinary strategy to protect key crops — including cereals, legumes, roots, tubers, bananas and vegetables — from devastating pests and diseases, as well as mycotoxin contamination. CGIAR Centers will pursue this critical work together with national, regional and international partner institutions engaged in plant health management.
A comprehensive strategy
Prevention. When and where possible, prevention is always preferable to racing to find a cure. Reactive approaches, followed by most institutions and countries, generally focus on containment and management actions after a pest outbreak, especially pesticide use. These approaches may have paid off in the short- and medium-term, but they are not sustainable long-term. It has become imperative to take proactive actions on transboundary pest management through globally coordinated surveillance, diagnostics and deployment of plant health solutions, as well as dynamic communications and data sharing.
To this end, under this Initiative CGIAR will produce a diagnostics and surveillance toolbox. It will include low-cost and robust assays, genomics- and bioinformatics-based tools for pathogen diagnosis and diversity assessment, as well as information and communications technologies for real-time data collection and crowdsourcing. This will be complemented by the development of interoperable databases, epidemiological and risk assessment models, and evidence-based guidance frameworks for prioritizing biosecurity measures and rapid response efforts to high-risk insect-pests and diseases.
Integrated pest management strategies have been key in dealing with fall armyworm in Africa and Asia. (Photo: B.M. Prasanna/CIMMYT)
Adoption of integrated approaches. The goal of integrated pest and disease management is to economically suppress pest populations using techniques that support healthy crops. An effective management strategy will judiciously use an array of appropriate approaches, including clean seed systems, host-plant resistance, biological control, cultural control and the use of environmentally safer pesticides to protect crops from economic injury without adversely impacting the environment.
Through the Plant Health Initiative, CGIAR will promote system-based solutions using ecofriendly integrated pest and disease management innovation packages to effectively mitigate the impact of major insect-pests and diseases affecting crop plants. It will also implement innovative pre- and post-harvest mycotoxin management tools and processes.
Integrating people’s mindsets. The lack of gender and social perspectives in plant health surveillance, technology development, access to extension services and impact evaluation is a major challenge in plant health management. To address this, CGIAR will prioritize interdisciplinary data collection and impact evaluation methods to identify context-specific social and gender related constraints, opportunities and needs, as well as generate evidence-based recommendations for policy makers and stakeholders.
Interface with global and regional Initiatives. The Plant Health Initiative will build on the critical, often pioneering work of CGIAR. It will also work closely with other CGIAR global initiatives — including Accelerated Breeding, Seed Equal, Excellence in Agronomy and Harnessing Equality for Resilience in Agrifood Systems — and Regional Integrated Initiatives. Together, this network will help support CGIAR’s work towards developing and deploying improved varieties with insect-pest and disease resistance, coupled with context-sensitive, sustainable agronomic practices, in a gender- and socially-inclusive manner.
Targeting localized priorities with strategic partnerships
Effective plant health monitoring and rapid response efforts rely on the quality of cooperation and communication among relevant partner institutions. In this Initiative, CGIAR places special emphasis on developing and strengthening regional and international networks, and building the capacity of local institutions. It will enable globally and regionally coordinated responses by low- and middle-income countries to existing and emerging biotic threats.
To this end, CGIAR will work closely with an array of stakeholders, including national plant protection organizations, national agricultural research and extension systems, advanced research institutions, academia, private sector, and phytosanitary coordination networks.
The geographic focus of interventions under this Initiative will be primarily low- and middle-income countries in Latin America, South and Southeast Asia, and sub-Saharan Africa.
Coupled with CGIAR’s commitment to engaging, mobilizing and empowering stakeholders at various scales across the globe, the Plant Health Initiative represents an enormous step towards integrating people’s mindsets, capacities and needs towards holistic and sustainable plant health management. It will ultimately protect the food and nutritional security and livelihoods of millions of smallholders and their families.
With the participation of more than 30 researchers from four CGIAR Centers located in the Americas, a planning workshop for a new CGIAR Research Initiative, AgriLAC Resiliente, was held on April 4–6, 2022. Its purpose was to define the implementation of activities to improve the livelihoods of producers in Latin America, with the support of national governments, the private sector, civil society, and CGIAR’s regional and global funders, and partners.
“This workshop is the first face-to-face planning meeting aimed at defining, in a joined-up manner and map in hand, how the teams across Centers in the region will complement each other, taking advantage of the path that each Center has taken in Latin America, but this time based on the advantage of reaching the territories not as four independent Centers, but as one CGIAR team,” says Deissy Martínez Barón, leader of the Initiative from the Alliance of Bioversity International and CIAT.
AgriLAC Resiliente is an Initiative co-designed to transform food systems in Latin America and the Caribbean. It aims to increase resilience, ecosystem services and the competitiveness of agrifood innovation systems in the region. Through this Initiative, CGIAR is committed to providing a regional structure that enhances its effectiveness and responds better to national and regional priorities, needs and demands.
This Initiative is one of a number that the CGIAR has in Latin America and the Caribbean and consists of five research components:
Climate and nutrition that seeks to use collaborative innovations for climate-resilient and nutritious agrifood systems;
Digital agriculture through the use of digital and inclusive tools for the creation of actionable knowledge;
Competitiveness with low emissions, focused on agroecosystems, landscapes and value chains, low in sustainable emissions;
Innovation and scaling with the Innova-Hubs network for agrifood innovations and their scaling up;
Science for timely decision making and the establishment of policies, institutions and investments in resilient, competitive and low-emission agrifood systems.
The regional character of these CGIAR Initiatives and of the teams of researchers who make them a reality in the territories with the producers, was prominent in the minds of the leadership that also participated in this workshop. Martin Kropff, Global Director, Resilient Agrifood Systems, CGIAR; Joaquín Lozano, Regional Director, Latin America and the Caribbean, CGIAR; Óscar Ortiz, Acting Director General of the International Potato Center; Jesús Quintana, Manager for the Americas of the Alliance of Bioversity International and CIAT; and Bram Govaerts, Director General of the International Maize and Wheat Improvement Center (CIMMYT), all stated the importance of CGIAR being central to every discussion in which the teams are co-constructing a greater consensus on what AgriLAC Resliente is, what it wants to achieve, the approach it will use, and the goals it aims to achieve through synergies among its five components.
Acting as an integrated organization is also an opportunity for CGIAR to leverage co-developed solutions and solve local challenges in the global South related to climate change and agrifood systems transformation. “Building the new CGIAR involves tons of collaboration and coordination. In this AgriLAC Resiliente workshop, we have had a dialogue full of energy focused on achieving real impact” highlighted Bram Govaerts. He continued, “this is an occasion to strengthen teamwork around this CGIAR Initiative in which the Integrated Agrifood System Initiative approach will be applied in the Latin American region, which is a very interconnected region” he pointed out.
One of the main results of this workshop is an opportunity to carry out the integration of the CGIAR teams in the implementation of the AgriLAC Resiliente Initiative, with applied science and the decisive role of the partners at each point of the region, as mechanisms for change.
In 2022, the research teams will begin to lay the groundwork for implementing the Initiative’s integrative approach to strengthen the innovations to be co-developed with partners and collaborators in the Latin American region, that encompass the interconnected nature of the global South.