Jill Cairns in front of CIMMYT headquarters. (Photo: Sam Storr/CIMMYT)
Three scientists from the International Maize and Wheat Improvement Center (CIMMYT) are included in Clarivateâs 2022 Analysis of the most highly cited academic papers.
Members of Umoja, Tuaminiane, Upendo and Ukombozi groundnut farming groups in Naliendele, Tanzania showing their groundnut harvests in May 2022. (Photo: Susan Otieno/CIMMYT)
The Accelerated Varietal Improvement and Seed Delivery of Legumes and Cereals in Africa (AVISA) project has developed draft national groundnut target product profiles in Malawi, Mozambique, Sudan, Tanzania, Uganda and Zambia.
Groundnut is grown in eastern and southern Africa, where it remains an important food and oil crop from small holder farmers.
The new findings from the project are a result of work from groundnut crop breeding and improvement teams from the National Agricultural Research and Extension Systems (NARES) representatives from the six largest groundnut producing countries in the eastern and southern Africa region.
Their important research was carried out with the support of representatives from the Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA) and CGIAR.
Developing target product profiles for groundnut
For the first time, through the International Maize and Wheat Improvement Center (CIMMYT)-led AVISA program, funded by the Bill & Melinda Gates Foundation, groundnut breeding teams discussed and documented country level priorities at a meeting in Dar es Salaam, Tanzania.
The groundnut breeding teams also shared information on current groundnut production metrics and trends in the six national programs. This also helped to establish a common understanding of countriesâ level research priorities.
Futhi Magagula from CCARDESA and Elailani Abdalla, Mohamed Ahmed and Abdelrazeg Badadi from ARC-Sudan deliberate on groundnut market segments for Sudan. (Photo: Biswanath Das/CIMMYT)
Agnes Gitonga, market strategist at CGIAR Genetic Innovations Action Area, who led the team in understanding and applying the template, explained that the quality of a target product profile (TPP) is dependent on how well market segments are defined. âTo ensure target product profiles are an accurate reflection of customer needs, who include farmers, consumers, and processors,â she said.
âNational groundnut teams nominated Country Product Design Teams that will meet nationally before the end of 2022 to review and update country TPPs. These multi-stakeholder teams will ensure that the needs of diverse groups are captured and that breeding efforts are accurately focused.â.
Harish Gandhi, Breeding Lead, Dryland Legumes and Cereals (DLC) at CIMMYT, further explained that a bottom-up approach for defining country and regional priorities was used, where each country defined market segments and target product profile based on the use of the produce and growing conditions of farmers. This strategy involved each country defining its market segments and TPP, which was based on the use of the produce and growing conditions of farmers.
Building on the draft national target product profiles that were defined at the meeting, participants went on to prioritize traits such as diseases, nutrition and stress tolerance. These factors can be critical at regional level and important in identifying potential locations for conducting phenotyping. The phenotyping locations are distributed based on capacity of stations in different countries to screen for traits, such as late leaf spot disease screening in Msekera in Zambia, which is a known hotspot for the disease.
âWe had a good opportunity to consider grower needs as well as consumer needs in each country for purposes of defining the relevant groundnuts market segments. I believe this will have a positive impact on future work in groundnuts in the East and Southern Africa region,â reflected Gitonga.
The collaboration of the teams involved was a key factor for the projectâs success so far and will be crucial in working towards its goals in the future.
âInvolving different stakeholders in designing target product profile was an effective way of enabling transformation of individual preferences (area of interest) to collective preferences (targeted product) with consumer needs and markets in mind,â said Happy Daudi, Groundnut Breeding lead at the Tanzania Agricultural Research Institute (TARI).
Tanzania Agricultural Research Institute (TARI) Naliendele Station Groundnut Research Team ((L-R) Bakari Kidunda, Gerald Lukurugu, Anthony Bujiku and Dr. Happy Daudi) deliberate on national groundnut breeding priorities. (Photo: Biswanath Das/CIMMYT)
Strengthening groundnut breeding programs in east and southern Africa
The projectâs first meeting will provide an important foundation for future research, which will use the new findings as a blueprint.
Biswanath Das, Plant Breeder, Groundnut for East and Southern Africa region and NARES Coordinator and Programming lead for EiB said, âDefining national TPPs, identifying regionally important traits and mapping a testing network are fundamental building blocks of a modern breeding program.â
At the meeting, a schedule was laid out for peer-to-peer assessments of breeding programs within the regional network to take stock of current efforts and gaps. This step helps to develop customized capacity development plans for each network partner.
âThrough targeted and demand led capacity development, the East and Southern Africa groundnut crop improvement network aspires to strengthen the role of each network member in collaborative, regional breeding efforts,â Das said.
The meeting laid the ground for coordinated regional groundnut breeding and took steps towards formalizing a regional NARES-CGIAR-SME groundnut crop improvement network. By building on excellent connections that already exist among national groundnut breeding teams. Das underscored that the move will strengthen alignment of NARES, CGIAR and regional research efforts around a common vision of success.
In addition, David Okello who leads groundnut research at National Agriculture Research Organization (NARO) Uganda, noted that the meeting provided a good opportunity for consolidating the existing network. He also looked forward to welcoming more groundnut improvement programs in the region on board.
COP27, the UN Climate Change Conference for 2022, took place this year in Sharm El-Sheikh, Egypt, between November 6-18. Scientists and researchers from the International Maize and Wheat Improvement Center (CIMMYT) represented the organization at a wide range of events, covering gender, genebanks, soil health, and digital innovations.
Gender and food security
In an ICC panel discussion on Addressing Food Security through a Gender-Sensitive Lens on November 7, Director General Bram Govaerts presented on CIMMYTâs systems approach to address gender gaps in agriculture. This event formed part of the ICC Make Climate Action Everyoneâs Business Forum, which aimed to bring together experts to determine solutions to the planetâs biggest environmental challenges.
Govaerts highlighted the importance of extension and training services targeting female farmers, particularly those delivered by women communicators. This can be achieved through training female leaders in communities, which encourages other women to adopt agricultural innovations. He also emphasized the obstacles to global food security caused by conflict, climate change, COVID-19, and the cost-of-living crisis, which will in turn create more challenges for women in agriculture.
Hearne explained that the development of current and future varieties is dependent upon breeders sourcing and repackaging native genetic variation in high value combinations. The CGIAR network of germplasm banks holds vast collections of crops that are important for global food and feed supplies. Among the diversity in these collections is currently unexplored and unused native variation for climate adaptation.
Through strong partnerships, multi-disciplinary activities, and the harnessing of diverse skillsets in different areas of applied research and development work, the sprint will help to identify genetic variations of potential value for climate change adaptation and move that variation into products that breeders globally can adopt in their variety development work. Through these efforts, the sprint improves access to specific genetic variation currently sat in the vaults of germplasm banks and facilitates crop improvement programs to develop the varieties that farmers demand.
The sprint is a clear example of the shift in paradigms we are looking for, so that people in the year 2100 know we took the right decisions in 2022 for them to live in a better world, said Govaerts. He continued by emphasizing the need for the initiative to be integrated within the systems it aims to transform, and the importance of accelerating farmersâ access to seeds.
The initiative is only possible because of the existence of the genebank collections that have been conserved for humanity, and due to cross-collaboration across disciplines and sharing of data and resources.
Addressing soil fertility management
Tek Sapkota, senior scientist, presented at Taking Agricultural Innovation to the Next Level to Tackle the Climate Crisis, the AIM4C partner reception on November 11, which gathered critical actors committed to making agriculture one of the most impactful climate solutions. Hosted on the one-year anniversary of the AIM4C launch at COP26 and on the eve of the COP27 day on adaptation and agriculture, the event was a celebration of progress made to date to address the climate crisis by 2025.
Sapkota, who leads a project that is part of CIMMYTâs AIM4C innovation sprint submission, presented alongside the Minister of Climate Change and Environment from the United Arab Emirates, the Secretary of Agriculture for the United States, and the Regional Director for Central Asia, West Asia and North Africa at CGIAR.
In the Global South, farmers are being affected by unreliable weather patterns caused by climate change, which means they can no longer rely on their traditional knowledge. However, demand climate services can fill this vacuum, enabling meteorological agencies to produce accurate climate information, co-create digital climate services for agricultural systems, and support sustainable and inclusive business models.
Cover photo: A CIMMYT staff member at work in the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center, as featured in a session on Fast Tracking Climate Solution from Genebank Collections at COP27. (Photo: Xochiquetzal Fonseca/CIMMYT)
Kevin Pixley, Deputy Director General for Research (Breeding and Genetics), a.i., and Director of the Genetic Resources Program, said, âThis was not easy due to the challenges of gathering and analyzing complex data, but itâs a very important milestone for CIMMYT. Peer review in a highly respected journal is a gold standard that gives external critique and endorsement to the impact assessment methods used and estimates reported for CIMMYT and IITAâs work with partners in Africa.â
Around 60 percent of the 1,345 maize varieties released in this twenty-year period had a known CGIAR parentage.
Approximately 34 percent of the total maize area in 2015 was cultivated with CGIAR-related maize varieties from 1995 onwards, equivalent to 9.5 million hectares (ha); 13 percent of the maize area was under CGIAR-related varieties released before 1995.
The new maize varieties hold an economic benefit for the region, with an estimated value of US $1.1-1.6 billion in 2015 equally attributed to CGIAR, public-sector national research and extension programs, and private sector partners. With maximum annual investment in CGIAR maize breeding sitting at US $30 million, the estimated benefit-cost ratio for investment was between 12:1-17:1, depending on the underlying assumptions.
âThis paper is a valuable contribution to literature on impact assessment, highlighting the real challenges and approaches to quantify impact of work that is a collaboration among many,â continued Pixley. âBoth the methodologies and impact estimates will be valuable to researchers and funders of plant breeding programs.â
âTo meet expected wheat demand for 2050, production will need to double, which means increasing harvests nearly 70 kilograms per hectare each year,â said Leonardo Crespo-Herrera, CIMMYT wheat scientist and 2022 Japan Award recipient. âBreeding will be a major contributor, but better agronomic practices and policies will also be critical.â (Photo: CIMMYT)
International science to save wheat â a crucial food grain for 2.5 billion of the worldâs poor â from a rising tide of insect pests known as aphids was lauded on November 22 with the 2022 Japan International Award for Young Agricultural Researchers (the Japan Award).
The 2022 Japan Award recognized novel breeding approaches to identify and select for genetic resistance in wheat to two species of aphids that cause wheat grain losses reaching 20% and whose rapid spread is propelled by rising temperatures.
Aphid resistant wheat can contribute to more sustainable food production, protecting farmersâ harvests and profits, while reducing the need to use costly and harmful insecticides, said Leonardo Crespo-Herrera, bread wheat improvement specialist for the International Maize and Wheat Improvement Center (CIMMYT) and one of the three 2022 Japan Award recipients.
âIn addition to genetic yield potential, CIMMYT wheat breeding focuses on yield stability, disease resistance, and nutritional and end-use quality,â Crespo-Herrera explained. âAdding another target trait â aphid resistance â makes wheat breeding much more challenging.â
Efficient and effective field testing to confirm the genetics
Crespo-Herrera and his CIMMYT colleagues managed to identify and characterize genome segments responsible for aphid resistance in wheat and its near relatives, as well as running innovative field tests for a set of elite wheat breeding lines that were predicted to carry that resistance.
âWith the aphid species called the greenbug, its feeding causes yellowing and necrotic spots on wheat, so we could actually measure and score wheat plants in plots that we deliberately infested with the aphids, keeping the resistant lines and throwing out the susceptible ones,â said Crespo-Herrera.
For the other species, the bird cherry-oat aphid, the only visible feeding damage is when the plants become stunted and die, so Crespo-Herrera and colleagues instead measured biomass loss and reduced growth in 1,000 artificially infested wheat lines, identifying a number of lines that had low scores for those measurements. Given that the lines tested came from a set that had already shown resistance to the greenbug, some of the successful lines feature resistance to both aphid species.
For the bird cherry-oat aphid, in two years of additional field tests, Crespo-Herrera and his team found that aphid populations were lower in plots sown with resistant wheat lines. âThe experiments included remote sensing measurements that identified certain spectral signatures correlated with aphid populations; this may help us to assess resistance in future field trials.â
The researchers also found that a cutting-edge approach known as âgenomic predictionâ provided good estimations regarding promising, aphid-resistant wheat breeding lines.
Motivating young researchers in research and development
Established in 2007, the Japan Award is an annual prize organized by the Agriculture, Forestry and Fisheries Research Council (AFFRC) of Japanâs Ministry of Agriculture, Forestry and Fisheries (MAFF) and supported by the Japan International Research Center for Agricultural Sciences (JIRCAS). Awardees receive a $5,000 cash prize.
In an excerpt of an official note regarding Crespo-Herreraâs research, those agencies said  ââŠThis study has been highly evaluated for developing (wheat) lines that have been distributed worldwide for use in wheat breeding, and the methods of this study have been applied to develop varieties with resistance mechanisms against various kinds of insects, not only aphids.â
Crespo-Herrera thanked JIRCAS and MAFF for the award. âI feel honored to have been selected.â
Over the next 10 years, maize is due to become the most widely grown and traded crop globally and is already the cereal with the highest production volume. Its versatility offers multiple purposes â as a livestock feed in both developed and developing economies, as a key component of human diets in several low- and middle-income countries in sub-Saharan Africa, Latin America and Asia, and for an array of non-food uses worldwide.
The study primarily focused on the Global South, where intensive work is being done to transform the agrifood systems in which maize plays a key role. Through scientific advancements over time, maize yields have increased, although heterogeneously, while the area under cultivation of maize has also expanded due to sharply growing demand.
Research determined that this transformation offers opportunities for investment in maize research and development (R&D) to determine ways that production and productivity can be significantly improved without expanding maize area or creating negative impacts on the environment.
Events of the past year have underscored the correlation of food supply chains, and weaknesses that need to be addressed. Tackling threats to global food security caused by COVID-19, conflict, and climate change require joint action and long-term commitments, with approaches based on partnerships, collaborative research and information sharing, and involvement from all actors within agrifood systems.
These topics and potential solutions were integral to the 2022 Norman E. Borlaug International Dialogue, hosted between October 18-20, 2022. With a theme of Feeding a Fragile World and overcoming shocks to the global food system, seminars and workshops explored scalable solutions for adaptation and mitigation to limit global warming and meet the UN Sustainable Development Goals (SDGs).
Ag4Peace is built on the understanding that without peace there is no food, and without food there is no peace. Conflicts and violence severely disrupt agricultural processes and limit access to food, which in turn forces people to take increasingly perilous actions as they attempt to secure their lives and those of their families. High food prices and hunger cause instability, migration, and civil unrest as people become more desperate.
Using a collaborative approach, partners will design holistic strategies that encompass the multi-faceted nature of agrifood systems and their interconnections with nature, nutrition, and livelihoods. This requires broad-based collaborations, so the Ag4Peace partners welcome other institutions, private sector, and non-governmental organizations that share their aspirations to join them.
Partners are co-constructing the Cross-Sector Collaboration to Advance Resilient Equitable Agrifood Systems (CC-AREAS), the first operational plan for the platform. This is a 10-year proof-of-concept program that applies a holistic, systems approach to achieve resilient agrifood systems and accelerate development of the circular bioeconomy in five low- and middle-income countries (LMICs) that are increasingly exposed to food security risks due to climate change and reliance on imported staple foods.
They will support national efforts to upgrade agrifood systems, adopt regenerative agriculture and climate-smart strategies, expand the circular bioeconomy, and achieve nutrition and food security goals.
In all aspects of the initiative (science, planning, implementation, and evaluation), participation priority will be given to small-scale farmers, women, and socially diverse groups, which will maximize positive outcomes and ensure inclusivity.
Benefits for farmers, communities, value chain participants, consumers, and ecosystems will be demonstrated throughout to encourage adoption and continued use of improved technologies and practices and demonstrate effectiveness.
Partner support for Ag4Peace
After the concept was introduced by Bram Govaerts, Director General of CIMMYT and recipient of the 2014 Norman Borlaug Award for Field Research and Application, a roundtable discussion with a diverse panel of experts began.
Speakers included Manuel Otero, Director General of the Inter-American Institute for Cooperation on Agriculture (IICA), Hon. Sharon E. Burke, Global Fellow of Environmental Change and Security Program at the Wilson Center, Per Pinstrup-Anderson, Professor and World Food Prize Laureate, and Alice Ruhweza, Africa Regional Director of the World Wildlife Fund (WWF).
Moderated by Margaret Bath, Chair of CIMMYT Board of Trustees, the panelists conveyed Ag4Peaceâs aims of building productive, sustainable, and resilient agrifood systems, improving livelihoods for small-scale producers and other value chain actors, and deliver nutritious, affordable diets.
âHunger is part of the picture of conflict,â explained Burke. âThese strapped communities are often competing for resources with each other, within their own boundaries, and sometimes food is a weapon in these places, just as destructive as a bomb or a gun. Without food there is no peace, in the near or the long-term.â
Trade-offs versus win-wins
Pinstrup-Anderson ruminated on the importance of win-wins, which are solutions that work for supporting human health and protecting our natural environment without sacrificing results in one area for results in another. âWe do not have to give up improving nutrition just to save the climate or save the earth â we can do both,â he said.
The significance of strong partnerships arose multiple times, such as when Otero explained, âIt is not a matter of working just with the agriculture ministers but also with other ministers â foreign affairs, social development, environmental â because agriculture is a sector that crosses across all these institutions.â
Ruhweza explored whether threats to food security, such as COVID-19, conflict, and climate change, can also bring opportunities. âThe right action on food systems can also accelerate the delivery of all our goals on climate and nature,â she said. âWWF is looking forward to partnering with this initiative.â
Final remarks from Julie Borlaug, President of the Norman Borlaug Foundation, where the platform will be housed, reiterated a call for more partners to join the coalition. âThis is a learning lesson as we go. We will iterate over and over until we get it right, so we need all of you to be involved in that,â said Borlaug. âJoin us as we move forward but let us know as weâre going sideways.â
Govindaraj received the award for his leadership in mainstreaming biofortified crops, particularly high-yielding, high-iron, and high-zinc pearl millet varieties. This work has contributed to improved nutrition for thousands of farmers and their communities in India and Africa, and estimates show that, by 2024, more than 9 million people in India will be consuming iron- and zinc-rich pearl, benefiting from improved nutrition.
Cover photo: The historical moment when Manuel Otero, Director General of IICA, joins the Agriculture for Peace initiative with Bram Govaerts, Director General of CIMMYT. (Photo: Liesbet Vannyvel/CIMMYT)
IITA women nutrition scientists perfecting a new recipe. (Photo: IITA)
The CGIAR Women in Research and Science (WIRES) employee-led resource group recently had a virtual engagement to discuss the progress and new happenings in the group. The meeting, themed âConnecting and Mentoring, Whatâs new with WIRES!â was held on October 24.
Giving the opening remarks, The Alliance of Bioversity International and CIAT Knowledge Sharing Specialist Arwen Bailey stated that the group was launched in July 2020 to empower and increase the visibility of women research and science professionals across CGIAR.
Explaining the vision and mission of the group, Das stated that WIRES aims to provide tools and knowledge that support professional development. She added that this would create visibility for CGIAR women in science and research so their voices are heard and their contributions recognized. âWe are an open community that accommodates both men and women who are willing to support the vision of WIRES,â she said.
HarvestPlus Cassava Breeder Dr Elizabeth Parkes is one of the WIRES coordinators. (Photo: IITA)
Discussing her reason for sponsoring WIRES, CGIAR Executive Managing Director Claudia Sadoff said she admires the efforts and engagement of the team in supporting women despite having other personal life activities. She added that the increase in the percentage of women scientists calls for more effort to train and empower these women. âThanks for allowing me to be your sponsor,â she said. International Livestock Research Institute (ILRI) Director General Jimmy Smith, also a sponsor, stated that his motivation to join the cause stems from his experience raising daughters.
Highlighting how intending volunteers can support WIRES, Das spoke on mentorship as a promising strategy to advance Gender, Diversity and Inclusion (GDI) in the workplace as it offers access and advocacy for women. Explaining the criteria for engagement, she stated that a mentor must be passionate about advancing GDI, while the mentee must be a middle to senior-level career woman researcher/scientist with an appetite to learn. âRegistration for the program will begin in November, and the program will kick off in December. Interested mentors and mentees who meet the criteria can register and be trained,â she said.
Other new WIRES initiatives coming up before the end of 2022 include âRandom coffee,â where members can schedule to meet physically or virtually to build a vibrant relationship and network, and âFocus groupsâ for discussions that will ensure continuous improvement for WIRES.
Closing out the meeting, CGIAR Global Director of People and Culture, Fiona Bourdin-Farrell, summarized ways volunteers can help to advance women in science and research in CGIAR. She mentioned that it starts with joining the WIRES team, being a part of the mentoring program, engaging in the random coffee pilot, and joining focus groups. âYou can contribute to the information in the newsletter. You can also register as both mentor and mentee as long as you meet the criteria,â she concluded.
Learning to evaluate wheat stem rust, a significant cause of crop loss, in the field in Kenya. (Photo: Petr Kosina/CIMMYT)
With rising demand for food, it is more critical than ever to address the challenge of crop losses due to pests and diseases. Current limited understanding of the extent of the problem prevents the advancement and implementation of plant health solutions. Global scientific collaboration is integral to ensure policy recommendations are well-informed by robust evidence and therefore more likely to succeed in the long-term.
The issue of global burden of crop loss closely correlates with the objectives of the One CGIAR Plant Health Initiative, which aims to prevent and manage major pest and disease outbreaks through the development and deployment of inclusive innovations and by building effective national, regional, and global networks. The Initiative, which is being led by the International Maize and Wheat Improvement Center (CIMMYT), will support low- and middle-income countries in Africa, Asia, and Latin America to reduce crop losses due to pests and diseases, and improve food security and livelihoods for smallholder farmers.
Data-driven approaches
The Global Burden of Crop Loss project, which is run by the Centre for Agriculture and Bioscience International (CABI), is working to ensure that there is accurate data on the challenges posed by plant pests and diseases. Questions to understand include where crop losses are the highest, the causes behind these losses, and how best these they can be addressed.
Cambria Finegold, Global Director, Digital Development, CABI said, âIf you are not measuring crop loss well, then you donât know if the extraordinary $25.8 billion spent annually on agricultural research and development is working, or if we are spending it in the right ways.â
Research by the Plant Health Initiative will play a significant role in collecting and disseminating data on some major pests and diseases, which can guide scientists on which areas to prioritize, thereby contributing to an impactful research agenda.
Once data is gathered, CABI aims to inform decision-making for actors at the top levels of the plant health system and ensure that appropriate action is taken to safeguard global food security with the limited resources available.
Integrated pest management strategies have been key in dealing with fall armyworm in Africa and Asia. (Photo: B.M. Prasanna/CIMMYT)
Establishing global networks
The value of a data-driven approach was emphasized at a session organized by the Global Burden of Crop Loss on October 14 exploring evidence-based systems to tackle food security. This session was a side event of the UN Food and Agriculture Organization (FAO) Science and Innovation Forum, which this year focused on highlighting the centrality of science, technology and innovations for agrifood systems transformation.
Prasanna Boddupalli, One CGIAR Plant Health Initiative Lead and Director of CIMMYTâs Global Maize Program, explained how the Initiative will bridge knowledge gaps, build risk assessment and rapid response capability, improve integrated pest and disease management, design and deploy tools to prevent contamination of food chains, and promote gender-equitable and socially inclusive innovations for plant health.
With six devastating plant epidemics in Africa alone during the last decade and an increased number of climate change-induced droughts and floods, Boddupalli proposed a revitalized strategy using the objectives of the Plant Health Initiative.
Built on a foundation of partnerships, there are more than 80 national, regional, and international organizations involved in the Initiative across 40 countries in the Global South, in addition to the CGIAR research centers. Through this rapidly expanding collaboration, the focus will be on establishing regional diagnostic and surveillance networks and implementing Integrated Pest Management (IPM) and integrated mycotoxin management.
To address the need for evidence-based policy recommendations, Boddupalli explained the purpose of the Plant Health Innovation Platforms in Africa, Asia and Latin America, leveraging the partnersâ research sites. Combining innovations from the CGIAR system, national partners and the private sector, these platforms will enable the co-creation and validation of pest and disease management packages, with the aim of significantly improving adoption of effective and affordable plant health innovations by smallholder farmers.
Removing the barriers for data sharing
The Plant Health Initiative team has recently collected and collated information from national partners and the private sector on actions needed to remove constraints on sharing pest and disease surveillance data. Potential solutions include improved training of national partners, joint research projects, pre-defined processes for data sharing, and focusing on work that meets national and regional priorities.
These approaches will inform the sharing of data collected through the Initiative. For example, researchers are gathering surveillance data on 15 crop pests affecting seven different plants in 25 countries, with the expectation of collecting more than 44,000 samples from 2,100 sites in 2022 alone, with plans for sharing the results with partner institutions.
Boddupalli also emphasized the importance of ramping up remote sensing and drone usage, wherever feasible, for diagnostics and surveillance. However, the current gaps in accessing data and computing facilities in the Global South need to be addressed to make this a reality.
âThe OneCGIAR Plant Health Initiative and the Global Burden of Crop Loss project have excellent complementarity,â said Boddupalli. Both have an opportunity to generate and share robust data on crop loss due to existing and emerging crop pests and diseases and use this data to drive effective policy change on plant health management.â
About the Global Burden of Crop Loss:
The Global Burden of Crop Loss initiative is modelled after the Global Burden of Disease initiative in human health, which has transformed health policy and research, over the last 25 years through better use of data.Â
The initiative aims to have a similar impact in agriculture, providing evidence to enable the global plant health community to generate actionable information and lead to a dramatic reduction in crop loss, resulting in increased food security and trade.
About the Centre for Agriculture and Bioscience International (CABI):
CABI is an international, inter-governmental, not-for-profit organization that improves peopleâs lives worldwide by providing information and applying scientific expertise to solve problems in agriculture and the environment.
Their approach involves putting information, skills and tools into people’s hands. CABI’s 49 Member Countries guide and influence their work which is delivered by scientific staff based in their global network of centers.
The Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub is one of the ways in which Feed the Future, the U.S. governmentâs global food security and hunger initiative led by USAID, is taking immediate action to help cushion the blow of high fuel and fertilizer prices on farmers. Itâs a two-year rapid response effort that connects farmers to innovative tools and information they need to manage the high costs and input supply disruptions over the next several cropping seasons.
AID-I provides targeted assistance to up to three million African smallholder farmers by improving soil health and fertilizer management; strengthening local seed systems; connecting farmers to financial products and services; and delivering extension and advisory services. AID-I Delivery Hubs focus on areas where the need and potential is greatest: Malawi, Tanzania, and Zambia.
The Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub is establishing agile, networked rural innovation hubs to enhance the adaptation of technology, co-ownership, and sustainable inputs and outputs for value chains development. The project is fostering diversification through the scaling of productive and resilient agronomic practices and seed systems for cereals, legumes, vegetables and feed/fodder products, and strengthens rural-urban linkages to enable national capacity for cross-network management.
It is being implemented in close consultation with One CGIAR programs and integrates both CGIAR and non-CGIAR innovation partners to support scaling by last-mile delivery partners.
This work contributes to six of the United Nations Sustainable Development Goals (SDGs):
Zero Hunger
Good Health and Well-Being for People
Gender Equality
Decent Work and Economic Growth
Responsible Consumption and Production
Climate Action.
What are the project’s primary objectives?
Improve soil health and fertilizer management to grow more, more profitably and with less waste.
Strengthen local seed systems so agribusinesses can reach smallholder farmer customers with a diversity of crop seeds, including climate-resilient and more nutritious varieties.
Connect to financial products and services designed to overcome the unique needs smallholder farmers and small and medium agribusinesses face; and,
Deliver extension and advisory services on good agricultural practices, soil and water management practices, and post-harvest storage solutions so smallholder farmers and small and medium agribusiness owners are more productive and keep more of what they grow.
VideoÂ
Deputy Assistant Administrator, USAID Resilience Environment and Food Security Bureau, Ann Vaughan, visits an AID-I demonstration plot of drought-tolerant maize varieties in Zambia.
The largest real-world test of grains that grow year after year without replanting is showing promise for saving money, helping the environment, and reducing labor in China.
Initial trials with perennial rice as part of the Sustainable Agrifood Systems (SAS) program by the International Maize and Wheat Improvement Center (CIMMYT) suggest the crop could be a game changer for agriculture and food security.
The next phase of the research will determine whether farmers wish to adopt Perennial Rice 23 (PR23), which has been developed by breeding an Asian variety of rice with a wild, perennial relative from Nigeria.
Mustafa Alisarli, Bolu Abant Izzet Baysal University rector, is awarded for hosting this symposium by the representative of the Turkish Ministry of Agriculture and Forestry, General Directorate of Agricultural Research and Policies (GDAR), Dr Suat Kaymak.
The International Maize and Wheat Improvement Center (CIMMYT) coordinated the VIII International Cereal Nematode Symposium between September 26-29, in collaboration with the Turkish Ministry of Agriculture and Forestry, the General Directorate of Agricultural Research and Policies and Bolu Abant Izzet Baysal University.
As many as 828 million people struggle with hunger due to food shortages worldwide, while 345 million are facing acute food insecurity â a crisis underpinning discussions at this symposium in Turkey focused on controlling nematodes and soil-borne pathogens causing reduced wheat yields in semi-arid regions.
A major staple, healthy wheat crops are vital for food security because the grain provides about a fifth of calories and proteins in the human diet worldwide.
Seeking resources to feed a rapidly increasing world population is a key part of tackling global hunger, said Mustafa Alisarli, the rector of Turkeyâs Bolu Abant Izzet Baysal University in his address to the 150 delegates attending the VIII International Cereal Nematode Symposium in the countryâs province of Bolu.
Suat Kaymak, Head of the Plant Protection Department, on behalf of the director general of the General Directorate of Agricultural Research and Policies (GDAR), delivered an opening speech, emphasizing the urgent need to support the CIMMYT Soil-borne Pathogens (SBP) research. He stated that the SBP plays a crucial role in reducing the negative impact of nematodes and pathogens on wheat yield and ultimately improves food security. Therefore, the GDAR is supporting the SBP program by building a central soil-borne pathogens headquarters and a genebank in Ankara.
Discussions during the five-day conference were focused on strategies to improve resilience to the Cereal Cyst Nematodes (Heterodera spp.) and Root Lesion Nematodes (Pratylenchus spp.), which cause root-health degradation, and reduce moisture uptake needed for proper development of wheat.
Richard Smiley, a professor emeritus at Oregon State University, summarized his research on nematode diseases. He has studied nematodes and pathogenic fungi that invade wheat and barley roots in the Pacific Northwest of the United States for 40 years. âThe grain yield gap â actual versus potential yield â in semiarid rainfed agriculture cannot be significantly reduced until water and nutrient uptake constraints caused by nematodes and Fusarium crown rot are overcome,â he said.
Experts also assessed patterns of global distribution, exchanging ideas on ways to boost international collaboration on research to curtail economic losses related to nematode and pathogen infestations.
A special session on soil-borne plant pathogenic fungi drew attention to the broad spectrum of diseases causing root rot, stem rot, crown rot and vascular wilts of wheat.
Soil-borne fungal and nematode parasites co-exist in the same ecological niche in cereal-crop field ecosystems, simultaneously attacking root systems and plant crowns thereby reducing the uptake of nutrients, especially under conditions of soil moisture stress.
Limited genetic and chemical control options exist to curtail the damage and spread of these soil-borne problems which is a challenge exacerbated by both synergistic and antagonistic interactions between nematodes and fungi.
Nematodes, by direct alteration of plant cells and consequent biochemical changes, can predispose wheat to invasion by soil borne pathogens. Some root rotting fungi can increase damage due to nematode parasites.
Integrated managementFor a holistic approach to addressing the challenge, the entire biotic community in the soil must be considered, said Hans Braun, former director of the Global Wheat Program at CIMMYT.
Braun presented efficient cereal breeding as a method for better soil-borne pathogen management. His insights highlighted the complexity of root-health problems across the region, throughout Central Asia, West Asia and North Africa (CWANA).
Richard A. Sikora, Professor emeritus and former Chairman of the Institute of Plant Protection at the University of Bonn, stated that the broad spectrum of nematode and pathogen species causing root-health problems in CWANA requires site-specific approaches for effective crop health management. Sikora added that no single technology will solve the complex root-health problems affecting wheat in the semi-arid regions. To solve all nematode and pathogen problems, all components of integrated management will be needed to improve wheat yields in the climate stressed semi-arid regions of CWANA.
Building on this theme, Timothy Paulitz, research plant pathologist at the United States Department of Agriculture Agricultural Research Service (USDA-ARS), presented on the relationship between soil biodiversity and wheat health and attempts to identify the bacterial and fungal drivers of wheat yield loss. Paulitz, who has researched soil-borne pathogens of wheat for more than 20 years stated that, âWe need to understand how the complex soil biotic ecosystem impacts pathogens, nutrient uptake and efficiency and tolerance to abiotic stresses.â
Julie Nicol, former soil-borne pathologist at CIMMYT, who now coordinates the Germplasm Exchange (CAIGE) project between CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA) at the University of Sydneyâs Plant Breeding Institute, pointed out the power of collaboration and interdisciplinary expertise in both breeding and plant pathology. The CAIGE project clearly demonstrates how valuable sources of multiple soil-borne pathogen resistance in high-yielding adapted wheat backgrounds have been identified by the CIMMYT Turkey program, she said. Validated by Australian pathologists, related information is stored in a database and is available for use by Australian and international breeding communities.
Economic losses
Root-rotting fungi and cereal nematodes are particularly problematic in rainfed systems where post-anthesis drought stress is common. Other disruptive diseases in the same family include dryland crown and the foot rot complex, which are caused mainly by the pathogens Fusarium culmorum and F. pseudograminearum.
The root lesion nematode Pratylenchus thornei can cause yield losses in wheat from 38 to 85 percent in Australia and from 12 to 37 percent in Mexico. In southern Australia, grain losses caused by Pratylenchus neglectus ranged from 16 to 23 percent and from 56 to 74 percent in some areas.
The cereal cyst nematodes (Heterodera spp.) with serious economic consequences for wheat include Heterodera avenae, H. filipjevi and H. latipons. Yield losses due to H. avenae range from 15 to 20 percent in Pakistan, 40 to 92 percent in Saudi Arabia, and 23 to 50 percent in Australia.
In Turkey, Heterodera filipjevi has caused up to 50 percent crop losses in the Central Anatolia Plateau and Heterodera avenae has caused up to 24 percent crop losses in the Eastern Mediterranean.
The genus Fusarium which includes more than a hundred species, is a globally recognized plant pathogenic fungal complex that causes significant damage to wheat on a global scale.
In wheat, Fusarium spp. cause crown-, foot-, and root- rot as well as head blight. Yield losses from Fusarium crown-rot have been as high as 35 percent in the Pacific Northwest of America and 25 to 58 percent in Australia, adding up losses annually of $13 million and $400 million respectively, due to reduced grain yield and quality. The true extent of damage in CWANA needs to be determined.
Abdelfattah Dababat, CIMMYTâs Turkey representative and leader of the soil-borne pathogens research team said, âThere are examples internationally, where plant pathologists, plant breeders and agronomists have worked collaboratively and successfully developed control strategies to limit the impact of soil borne pathogens on wheat.â He mentioned the example of the development and widespread deployment of cereal cyst nematode resistant cereals in Australia that has led to innovative approaches and long-term control of this devastating pathogen.
Dababat, who coordinated the symposium for CIMMYT, explained that, âThrough this symposium, scientists had the opportunity to present their research results and to develop collaborations to facilitate the development of on-farm strategies for control of these intractable soil borne pathogens in their countries.â
Paulitz stated further that soil-borne diseases have world-wide impacts even in higher input wheat systems of the United States. âThe germplasm provided by CIMMYT and other international collaborators is critical for breeding programs in the Pacific Northwest, as these diseases cannot be managed by chemical or cultural techniques,â he added.
Closing ceremony of the International Cereal Nematode Symposium. From left to right; Hans Braun, Brigitte Slaats, Richard Sikora, Grant Hollaway, Mesut Keser, Zahra Maafi, Richard Smiley, Mustafa Imren, Fatih Ozdemir, Amer Dababat. (Photo: CIMMYT)
Road ahead
Delegates gained a greater understanding of the scale of distribution of cereal cyst nematodes and soil borne pathogens in wheat production systems throughout West Asia, North Africa, parts of Central Asia, Northern India, and China.
After more than 20 years of study, researchers have recognized the benefits of planting wheat varieties that are more resistant. This means placing major emphasis on host resistance through validation and integration of resistant sources using traditional and molecular methods by incorporating them into wheat germplasm for global wheat production systems, particularly those dependent on rainfed or supplementary irrigation systems.
Sikora stated that more has to be done to improve Integrated Pest Management (IPM), taking into consideration all tools wherever resistant is not available. Crop rotations for example have shown some promise in helping to mitigate the spread and impact of these diseases.
âIn order to develop new disease-resistant products featuring resilience to changing environmental stress factors and higher nutritional values, modern biotechnology interventions have also been explored,â Alisarli said.
Brigitte Slaats and Matthias Gaberthueel, who represent Swiss agrichemicals and seeds group Syngenta, introduced TYMIRIUMÂź technology, a new solution for nematode and crown rot management in cereals. âSyngenta is committed to developing novel seed-applied solutions to effectively control early soil borne diseases and pests,â Slaats said.
It was widely recognized at the event that providing training for scientists from the Global North and South is critical. Turkey, Austria, China, Morocco, and India have all hosted workshops, which were effective in identifying the global status of the problem of cereal nematodes and forming networks and partnerships to continue working on these challenges.
Shelves filled with maize seed samples make up the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center at CIMMYT’s El BatĂĄn headquarters, Mexico. (Photo: Xochiquetzal Fonseca/CIMMYT)
Fast Tracking Climate Solutions from CGIAR Genebank Collections is expanding CGIARâs and other organizationsâ crop improvement research. This initiative is key to developing new crop varieties adapted to the stresses of climate change, including disruptions caused by drought, heat and flooding. Through this ambitious research program, scientists have already developed critical traits using the genebanks, strengthening the identification of high-value genetic diversity from germplasm collections and more efficiently leveraging this diversity to develop new varieties of climate-resilient crops.
Join virtually to learn more about this programâs pioneering research, the value of collaboration in this research and opportunities to engage further.
WHEN: November 11, 2022, from 11 a.m. to 12 p.m. EST
RSVP: Please register for the webinar to receive call-in information. This event is free and open to the public.
AIM for Climate is a joint initiative by the United States and United Arab Emirates seeking to address climate change and global hunger. The initiative brings together partners to increase investment in climate-smart agriculture and food systems innovation. Specifically, AIM for Climate is advancing research through Innovation Sprints. As an AIM for Climate Knowledge Partner and an Innovation Sprint Partner, FFAR has two other Innovation Sprints in addition to the genebanking project: AgMission and the Greener Cattle Initiative.
For more information, contact Jamie Nickel, communications & legislative affairs associate, at jnickel@foundationfar.org.
About the Foundation for Food & Agriculture Research
The Foundation for Food & Agriculture Research (FFAR) builds public-private partnerships to fund bold research addressing big food and agriculture challenges. FFAR was established in the 2014 Farm Bill to increase public agriculture research investments, fill knowledge gaps and complement USDAâs research agenda. FFARâs model matches federal funding from Congress with private funding, delivering a powerful return on taxpayer investment. Through collaboration and partnerships, FFAR advances actionable science benefiting farmers, consumers and the environment.
Cover photo: Shelves filled with maize seed samples make up the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center at CIMMYT’s El BatĂĄn headquarters, Mexico. (Photo: Xochiquetzal Fonseca/CIMMYT)
AGG is a collaborative project led by the International Maize and Wheat Improvement Center (CIMMYT) bringing together global partners to advance the development of higher-yielding varieties.
This field day was organized by the Crops Research Institute at Ghana’s Council for Scientific and Industrial Research (CSIR-SARI), the International Institute of Tropical Agriculture (IITA) and the department of agriculture.
During the event, researchers aimed to encourage farmer adoption by familiarizing them with the stress-tolerant hybrids and emphasizing the high and stable grain yields.
The conflict between Russia and Ukraine undoubtedly impacts food security, as these two countries are responsible for more than a quarter of wheat traded globally. Developing countries that rely heavily on wheat imports are most at risk from this supply disruption.
Set against an existing backdrop of food insecurity and increasing poverty, the conflict exacerbates present challenges. The United Nations Food and Agriculture Organization (FAO) predicts that a further 11 to 19 million people will be experiencing chronic hunger by 2023, on top of the existing 193 million people facing food insecurity, and at least 47 countries are expected to fall short of the Zero Hunger target, one of the UN Sustainable Development Goals (SDGs).
In a study at the International Maize and Wheat Improvement Center (CIMMYT), scientists theorized that the domestic price of wheat is determined by the international price. Their hypothesis also supposed that wheat production is constant and that no significant change in wheat consumption habits is expected in the foreseeable future.
Schematic diagram on the relationship between export-import price, producer price, and wheat consumption.
Scientists discovered that a 1 percent decrease in the global wheat trade could increase the producersâ price by 1.1 percent in the countries sampled. Furthermore, a 1 percent increase in the producersâ price could reduce annual per capita wheat consumption by 0.59 percent, daily calorie intake by 0.54 percent and protein intake by 0.64 percent. A 50% reduction in Russian and Ukrainian wheat exports could increase prices by 15 percent, leading to an 8% reduction in wheat consumption and dietary energy intake.
Rising costs of staple foods such as wheat can lead to violence and social unrest, as witnessed in 2007-11. It is therefore vital to ensure that import-dependent, resource-poor countries are supported to address their precarious food security. Steady public funding, investment in research, and enhanced production in wheat-growing nations can play an integral role in achieving a solution. In the long-term, closing the yield gap through research and investment, particularly in Africa, will lead towards self-sufficiency in wheat in Africa, contributing towards overall food security across the continent.