Skip to main content

funder_partner: International Rice Research Institute (IRRI)

Stepping up for South Asian women

Women play an integral role in all stages of agrifood systems, yet their unpaid labor is often culturally and economically devalued and ignored. As agriculture becomes more female-oriented, women are left with a double workload of caring in the home and laboring in the fields, leaving no time for leisure. Training programs are often developed with only male farmers in mind, and women can be completely excluded when it comes to mechanization.

The Cereal Systems Initiative for South Asia (CSISA), established by the International Maize and Wheat Improvement Center (CIMMYT), and implemented jointly with the International Food Policy Research Institute (IFPRI), the International Water Management Institute (IWMI) and the International Rice Research Institute (IRRI), is empowering women to become active participants in farming, improving their abilities and confidence through training, expanded access to machinery and better crop management practices. To celebrate International Day of Rural Women, here are stories from three of the women CIMMYT has helped.

Equality in agricultural opportunities

Nisha Chaudhary and her husband Kamal were engaged in agriculture, poultry and pig farming in Nepal, but struggled to provide for their family of seven; their combined income was never sufficient for them to make ends meet.

Through the CSISA COVID-19 Response and Resilience Activity, CIMMYT introduced Chaudhary to mechanization’s advantages and supported her to connect with banks, cooperatives, and machinery dealers to access financial support to introduce agriculture machinery into the family business. She became the first farmer in her village to acquire a mini combine rice mill and offer milling services. The following month, Chaudhary received additional tutoring from the Activity, this time in business management and mill repair and maintenance.

Learning about mechanization was eye-opening for Chaudhary, particularly as the Bankatti community that she comes from uses traditional methods or travels great distances to process grains using machines hired out by other communities.

Chaudhary’s primary income is now from her milling services, offering post-harvest processing services to 100 households and earning more than $150 USD each month; after deducting expenses, she is still able to save around $50 USD every month. She has bought four more cows, increasing the number of cattle she owns from 12 to 16, and is able to make her own for her livestock, saving an additional $20 USD per month.

Giving rural women the credit they deserve

As part of its response to the pandemic, CSISA launched a COVID-19 Response Activity aimed at supporting farmers and service providers to access subsidies and collateral-free loans via the Government of Nepal Kisan Credit Card (KCC) scheme, designed to support agriculture-related businesses. Through this scheme, farmers received hands-on training in providing after-sales support to customers, as well as mentoring to learn how to operate machinery and use it to generate sales and income.

Smallholder female farmers have been subject to many hardships due to lack of access to finance. They are forced to sell produce at low prices and buy inputs at high prices, which makes them suffer financially and physically. Now, loans through appropriate intermediaries can foster rural entrepreneurship and the service delivery business model.

The KCC scheme gave Chaudhary financial security just when she needed it. Her next step, with her newfound confidence, respect of her community, and the support of a collateral-free loan from KCC, will be to launch her own poultry farm agri-business.

Eradicating discrimination in mechanization

The CSISA Mechanization and Extension Activity (CSISA-MEA) enables smallholder female farmers to discover the advantages of scale-appropriate mechanization and its benefits: increased productivity, reduced labor costs, improved financial stability and greater food security.

Rokeya Begum was a stay-at-home mother to three children in Bangladesh and aspired to give her daughter a good education. However, her husband found it difficult to sustain the family as a factory worker due to the high cost of their daughter’s education.

As a result, Begum opted to work in an agriculture machinery manufacturing workshop like her husband. She was initially hesitant to work in a male-dominated workplace but on the other hand realized that this job would mean she could pursue the dream she had for her daughter. She immediately began using her earnings to fund her daughter’s education, who is currently in high school.

Begum was part of the grinding and painting departments at M/S Uttara Metal Industries in Bogura, Bangladesh, for five years. Her weekly wage was equivalent to $12 USD – insufficient to support her family or sustain a decent quality of life.

CSISA-MEA included Begum in skills training, which proved to be a gamechanger. She participated in CIMMYT’s training on spray gun painting, as well as in fettling and grinding skills. As part of both training programs, she learnt how to handle an air compressor paint gun and painting materials, as well as different painting methods. She has also learnt more about keeping herself safe at work using personal protective equipment. “Before the training, I did not know about the health risks – now I don’t work without PPE,” she said.

Begum used to paint the traditional way with a brush, but now the owner permits her to paint with a spray gun with her increased expertise. As a result, she has been promoted from day laborer to contractual employee in painting and grinding, with a new weekly salary of $50 USD. Her confidence has grown to the extent that she is comfortable in an engineering workshop among male coworkers.

Farmer Malti Devi in her field, where she grew wheat through zero-till. (Photo: Nima Chodon/CIMMYT)

Harvesting the benefits of improved practices

Farmer and mother of six, Malti Devi has an infectious smile that hardly reveals the toil and labor of her everyday farm work in India.

She grows wheat on nearly 0.45 acres of leased land. Her husband, a barber, earns an ordinary income that is insufficient for a family of eight. Despite the challenges, Devi has managed to earn income through her efforts in the field and by working as a daily wager in nearby fields.

To support women farmers like Devi, CSISA made efforts to build relationships via on-the-ground partnerships with civil society, women’s cooperatives like JEEViKa in Bihar and Mission Shakti in Odisha, or self-help groups. The team provides in-field demonstrations, training, workshops on best practices and support with access to better seed varieties and extension services. CSISA’s integrated approaches reach these women with information and associated technology that best serves them, while being climate-smart and sustainable.

Devi expressed that due to zero-till practice encouraged by the CSISA team, she saved time in the planting season, which she devoted to working on other’s fields for extra income. “The traditional method would have left me struggling for time, on the field or at home. Practices like zero-till ensured our crop was harvested on time with reduced input costs and resources and enabled a good harvest for consumption, and we could also sell some produce.”

Devi has ensured self-sufficiency for her family through her efforts and hopes to make use of the support in better crop management on offer from CSISA for wheat and other crops.

Cover photo: Rokeya Begum has increased her workshop salary through support from CSISA. (Photo: Abdul Mumin)

Cereal Systems Initiative for South Asia (CSISA) project enters Phase 4.0

CSISA India core team discuss deliverables for CSISA Phase 4 at the planning meeting held in Vizag, India, in November 2021. (Credit: Wasim Iftikar/CIMMYT)

The eastern Indo-Gangetic plains (EIGP) have a higher density of rural poverty and food insecurity than any other region. The region’s intensive rice-wheat cropping system has large yield gaps, which are far higher than anywhere in South Asia, coupled with an increasing environmental footprint due to conventional agricultural practices.

To sustainably enhance cereal crop productivity and improve smallholder farmers’ livelihoods in Bangladesh, India, and Nepal, the Cereal Systems Initiative for South Asia (CSISA), a science-driven and impacts-oriented regional project led by the International Maize and Wheat Improvement Center (CIMMYT), was launched in 2009.

Over the years, working with public and private partners, CSISA has helped smallholder farmers increase their yield and supported widespread adoption of resource-conserving and climate-resilient farming technologies and practices. Through three phases from 2009 to 2021, the project impacted nearly 8.5 million farmers (mainly smallholders) through its research and agri-system innovation interventions.

A new three-and-a-half-year commitment in India by the Bill & Melinda Gates Foundation reinforces the project’s importance and value in reducing food insecurity and improving overall agri-food systems in the region.

“CSISA, over more than a decade, has built up a strong multi-institutional, interactive, and participatory team at all levels in the region,” said Peter Craufurd, project leader of CSISA in India. “It has developed competencies and skills that include problem-solving agronomy research, cross-cutting tools and analytics, policy reform, and capacity development to strengthen cropping systems for smallholder farmers in the region.”

Overview of CSISA Project investments with direct and indirect programs under each phase since its launch in 2009. (Credit: Timothy Krupnik/CIMMYT)

The overarching objective of CSISA 4.0 is to transform how agronomic research and extension are implemented and embedded in decision-making and policy processes, primarily in India, where CSISA has the most experience and influence. Phase 4.0 will leverage the investments made in India in the third phase and focus on institutionalizing interventions through partnerships with the national and state agricultural systems, including on-ground strategic partnerships with civil society and the private sectors. According to Craufurd, Phase 4.0 will further strengthen the pathways established and scale the impact, particularly the institutional research and development capacity and strategic partnerships thus far established in India, through its seven focussed work areas, including gender empowerment.

“We are confident of our strong partnership with the national systems led by the Indian Council of Agricultural Research (ICAR) to support Indian farmers with improved yield and productivity,” said R.K. Malik, CSISA India coordinator. “Over the last decade, CSISA has built a strong track record for agronomy at scale that can help transform agri-research delivery systems in the region. There is also the opportunity to make CSISA outputs and products portable or useable for other stakeholders addressing food insecurity in the region in the future.”

Implemented jointly with CGIAR partners the International Rice Research Institute (IRRI) and the International Food Policy Research Institute (IFPRI), the initiative has been a successful regional approach to impactful agronomy programming. The CSISA team hopes to continue supporting the smallholder farmers in the region to optimize yield and contribute to the region’s food security.

Earlier wheat planting will boost yields in eastern India

“For several years, we’ve been building dense data sets with colleagues from the Indian Agricultural Research Council, which have allowed us to unravel complex farm realities through big data analytics, and to determine what agricultural management practices really matter in smallholder systems,” said Andrew McDonald ’94, M.S. ’98, Ph.D. ’03, associate professor of soil and crop sciences in the College of Agriculture and Life Sciences. “This process has confirmed that planting dates are the foundation for climate resilience and productivity outcomes in the dominant rice-wheat cropping systems in the eastern sector in India.”

McDonald is first author of “Time Management Governs Climate Resilience and Productivity in the Coupled Rice-Wheat Cropping Systems of Eastern India,” published July 21 in Nature Food with a consortium of national and international partners, including scientists from the International Maize and Wheat Improvement Center (CIMMYT).

The research was conducted through the  Cereal Systems Initiative for South Asia (CSISA). CSISA, which is led by CIMMYT with the International Rice Research Institute and the International Food Policy Research Institute as research partners, was established in 2009 to promote durable change at scale in South Asia’s cereal-based cropping systems.

Researchers found that farmers in eastern India could increase yield by planting wheat earlier – avoiding heat stress as the crop matures – and quantified the potential gains in yields and farm revenues for the region. They also found that the intervention would not negatively impact rice productivity, a key consideration for farmers. Rice alternates with wheat on the cropping calendar, with many farmers growing rice in the wet season and wheat in the dry season.

The study also provides new recommendations for rice sowing dates and types of cultivars, to accommodate the earlier sowing of wheat.

“Farmers are not just managing single crops. They are managing a sequence of decisions,” said McDonald, who has a joint appointment in the Department of Global Development. “Taking a cropping systems approach and understanding how things cascade and interlink informs our research approach and is reflected in the recommendations that emerged from this analysis. Climate resilient wheat starts with rice.”

The research is the result of years of collaboration with international groups and government agencies in India, which have identified the Eastern Ganges Plain as the area with the most potential growth in production. The region will become essential, McDonald said, as the demand for wheat grows, and climate change makes production more difficult and unpredictable; just this year, record heat waves in March and April and food shortages caused by the war in Ukraine – both of which prompted India’s government to instate a ban on wheat exports – have highlighted the need for increased yields and more sustainable farming practices.

“In the bigger sense, this research is timely because the hazards of climate change aren’t just a hypothetical,” McDonald said. “Many of these areas are stress-prone environments, and extreme weather already constrains productivity. Identifying pragmatic strategies that help farmers navigate current extremes will establish a sound foundation for adapting to progressive climate change.”

Poverty is endemic in the Eastern Ganges Plain, and the region is dominated by small landholders, with varying practices and access to resources. The breadth and specificity of the data collected and analyzed in the study – including field and household survey data, satellite data, and dynamic crop simulations – allowed researchers to understand regional small farms’ challenges and the barriers to change.

“At the end of the day, none of this matters unless farmers opt in,” McDonald said. “There’s a spatial dimension and a household dimension to opportunity.  If we can  target approaches accordingly, then we hope to position farmers to make management changes that will benefit the entire food system.”

The study was co-authored with researchers from the Australian Department of Primary Industries and Regional Development, the International Rice Research Institute, the International Maize and Wheat Improvement Center, the International Food Policy Research Institute, the Indian Council of Agricultural Research and Bihar Agricultural University. The research was supported by the Bill and Melinda Gates Foundation and the U.S. Agency for International Development through grants to the Cereal Systems Initiative for South Asia, which is led by the International Maize and Wheat Improvement Center.

This piece by Caitlin Hayes, was originally posted on the Cornell Chronicle website.

China calls on G20 to support CGIAR to boost global food security

Representatives from the G20 Foreign Ministers’ meeting on July 7-8. (Credit: Antara Foto/Pool/Sigid Kurniawan/rwa.)

The G20 Foreign Ministers’ meeting held on July 7-8 in Bali saw Chinese State Councillor and Foreign Minister, Wang Yi, highlight support for CGIAR as part of a proposed cooperation initiative to boost global food security.

Foreign Minister Wang Yi highlighted the need to help CGIAR increase innovation and build cooperation on agricultural science and technology among countries. Addressing the meeting, Wang said the food and energy sectors are crucial for the healthy performance of the world economy and the effective implementation of the UN 2030 Agenda for Sustainable Development. 

His statement was made shortly before the signing of Letters of Intent for Cooperation between the Chinese Academy of Agricultural Sciences (CAAS) and two CGIAR Research Centers, the International Maize and Wheat Improvement Center (CIMMYT) and the International Rice Research Institute (IRRI).  

CIMMYT, IRRI and CAAS intend to establish a joint Center in Hainan to address global food security through advances in wheat and rice breeding. The collaboration aims to enhance the environmental sustainability of rice and wheat based agri-food systems, promote biodiversity conservation, combat climate change, and improve the health and welfare of growers and consumers. 

Jean Balié, Regional Director, South East Asia and Pacific, CGIAR, and Director General of IRRI said: “Our new agreement solidifies and updates a longstanding and fruitful partnership. Today we face a different and growing set of challenges to our food, land and water systems, and we welcome the opportunity to strengthen knowledge and information exchange from across CGIAR that will contribute to a transformation of global food, land and water systems.” 

CIMMYT Director General, Bram Govaerts added: “This state-of-the-art breeding center will help us develop and deploy the new nutritious, high-yielding and resilient varieties that Asian farmers need to feed and nurture the most populous region of the world sustainably or within planetary boundaries.” 

In three decades of collaboration, CAAS and CGIAR have cooperated on germplasm exchange, breeding new varieties of crops, and providing opportunities for staff collaboration, development and training. 

In wheat research, the partnership has added as much as 10.7 million tons of grain – worth $3.4 billion – to China’s national wheat output. Additionally, eight CIMMYTscientists have won the Chinese Friendship Award – the highest award for foreign experts who have made outstanding contributions to China’s economic and social progress. 

A reaffirmation of Chinese support for CGIAR comes on a tide of growing recognition that more investment is needed to tackle hunger.  

Earlier in the year the G7 Foreign Ministers’ Communiqué underlined the urgent need to address risk in global food systems citing this as a top foreign policy objective. At the same time, the G7 Agricultural Ministers Communiqué cautioned that slowing down work to address longer term goals of food systems transformation, in order to address short term food crises, will have negative consequences in the medium and long term. In this context CGIAR’s System Board Chair, Marco Ferroni, recently highlighted the need for world leaders to look at the big picture to solve the food crisis.

China to build international agricultural breeding center in Hainan

The Chinese Academy of Agricultural Sciences (CAAS), the International Maize and Wheat Improvement Center (CIMMYT) and the International Rice Research Institute (IRRI) are establishing a breeding center in Sanya, Hainan Province, China.

The international cooperation will be conducive to the exploration and utilization of germplasm resources of the research organizations, biological breeding research, technical training, and the innovation of the global seed industry.

Read more: https://english.news.cn/20220714/df773960de9f42ba898341e27cdb3f09/c.html

CGIAR Plant Health Initiative formally launched on the International Day of Plant Health

National, regional, and international partners at the CGIAR Plant Health and Rapid Response to Protect Food Security and Livelihoods Initiative launch in Nairobi, Kenya, on May 12, 2022. (Credit: Susan Otieno)

CGIAR together with national, regional, and international partners kicked off the Plant Health and Rapid Response to Protect Food Security and Livelihoods Initiative also known as the Plant Health Initiative in Nairobi, Kenya, on May 12-13, 2022. The Initiative’s inception meeting was fittingly held on the first-ever International Day of Plant Health on May 12 and was attended by over 200 participants (both in-person and virtual), representing diverse institutions.

The Plant Health Initiative targets a broad range of pests and diseases affecting cereals (especially rice, wheat and maize) and legumes such as beans, faba bean, chickpea, lentil, and groundnut; potato; sweet potato; cassava; banana; and other vegetables.

Speaking at the meeting, CGIAR Plant Health Initiative Lead and Director of Global Maize Program at the International Maize and Wheat Improvement Center (CIMMYT) noted that climate change, together with human activities and market globalization, is aggravating challenges to plant health, including outbreaks of devastating insect-pests and diseases. In addition, according to data from the African Union Partnership on Aflatoxin Control in Africa (AUC-PACA), 40 percent of commodities in local African markets exceed allowable levels of mycotoxins in food, causing adverse effects on diverse sectors, including agriculture, human health, and international trade.

“The CGIAR Plant Health Initiative is, therefore, a timely program for strengthening inter-institutional linkages for effective plant health management especially in the low- and middle-income countries in Africa, Asia, and Latin America, said Prasanna. “This calls for synergizing multi-stakeholder efforts to improve diagnostics, monitoring and surveillance, prediction and risk assessment of transboundary pests and pathogens, and implementing integrated pest and disease management in a gender-responsive and socially inclusive manner.”

Demand-driven multistakeholder approach

CGIAR Global Science Director for Resilient Agrifood Systems Martin Kropff reiterated the importance of the Initiative, and emphasized the need for a global plant health research-for-development consortium. He mentioned that all the CGIAR Initiatives, including the Plant Health Initiative, are demand-driven and will work closely with national, regional, and international partners for co-developing and deploying innovative solutions.

The chief guest at the event, Oscar Magenya, Secretary of Research and Innovation at Kenya’s Ministry of Agriculture, pointed out the need for a well-coordinated, multisectoral and multistakeholder approach to managing invasive pests and diseases. He recognized CGIAR’s contribution and partnership with the Government of Kenya through CIMMYT, especially in combating maize lethal necrosis and wheat rust in Kenya.

“As government, we invite the CGIAR Plant Health Initiative to partner with us in implementing the Migratory and Invasive Pests and Weeds Management Strategy that was launched recently [by the Kenya Government],” said Magenya.

Implications of Plant Health in Africa and globally

Zachary Kinuya, Director of Crop Health Program at the Kenya Agricultural and Livestock Research Organisation (KALRO) spoke on the importance of plant health management to African stakeholders, and observed that in addition to improved crop production, food and feed safety must be given adequate priority in Africa.

Director of the Plant Production and Protection Division at the UN Food and Agriculture Organization (FAO), Jingyuan Xia applauded CGIAR for launching the global Initiative. Through his virtual message, Xia stated that the goals of the two organizations are aligned towards supporting farmers and policy makers in making informed decisions and ultimately ending global hunger. He added that the CGIAR has strong research capacity in developing and disseminating new technologies.

CIMMYT Director General Bram Govaerts explained how negative impacts on plant health, combined with climate change effects, can lead to global production losses and food system shocks, including the potential to result in food riots and humanitarian crises. He challenged stakeholders in the meeting to resolve tomorrow’s problems today, through collective and decisive action at all levels.

Sarah M. Schmidt, Fund International Agriculture Research Advisor_GIZ Germany making a contribution during the Launch of the Plant Health Initiative. (credit Susan Otieno/CIMMYT)

The German development agency (GIZ) Fund International Agricultural Research (FIA) Advisor Sarah Schmidt said that GIZ supports the Initiative because of its interest in transformative approaches in innovations for sustainable pest and disease management. Recognizing women’s major involvement in farming in Africa, Schmidt said there is a need to empower and equip women with knowledge on plant health as this will result to greater productivity on farms in Africa. “We welcome that the Plant Health Initiative dedicated an entire crosscutting work package to equitable and inclusive scaling of innovations,” she added.

Participants at the launch were also reminded by Ravi Khetarpal, Executive Secretary of the Asia-Pacific Association of Agricultural Research Institutions (APAARI), that the Initiative is now at the critical phase of Implementation and requires diverse actors to tackle different issues in different geographies. Ravi added that biosecurity and plant health are important subjects for the Asia-Pacific region, in view of the emergence of new pests and diseases, and therefore the need to save the region from destructive pest incursions.

Other online speakers at the launch included Harold Roy Macauley, Director General of AfricaRice & CGIAR Regional Director, Eastern and Southern Africa; Nteranya Sanginga, Director General of the International Institute of Tropical Agriculture (IITA) and CGIAR Regional Director, West and Central Africa; and Joaquin Lozano, CGIAR Regional Director, Latin America & the Caribbean.

Reflecting on gender, social inclusion, and plant health

Panel discussions allowed for more in-depth discussion and recommendations for the Initiative to take forward. The panelists delved into the progress and challenges of managing plant health in the Global South, recommending a shift from a reactive to a more proactive approach, with strong public-private partnerships for sustainable outcomes and impacts.

Gender inequities in accessing the plant health innovations were also discussed. The discussion highlighted the need for participatory engagement of women and youth in developing, validating and deploying plant health innovations, a shift in attitudes and policies related to gender in agriculture, and recognition and deliberate actions for gender mainstreaming and social inclusion for attaining the Sustainable Development Goals (SDGs).

B.M. Prasanna speaking at the launch. (credit: Susan Otieno/CIMMYT)

Charting the course for the Initiative

The Plant Health Initiative Work Package Leads presented the Initiative’s five specific work packages and reiterated their priorities for the next three years.

“We are looking forward to taking bold action to bring all players together to make a difference in the fields of farmers all over the world,” said Prasanna.

The Initiative is poised to boost food security, especially in key locations through innovative and collaborative solutions.

For more information, visit the CGIAR Plant Health Initiative page or download a brief. 

Panel Discussion Presentations

“Plant Health Management in the Global South: Key Lessons Learnt So Far, and the Way Forward” moderated by Lava Kumar (IITA) with panelists: Florence Munguti [Kenya Plant Health Inspectorate (KEPHIS)], Maryben Chiatoh Kuo (African Union-Inter-African Phytosanitary Council), Roger Day (CABI) and Mark Edge (Bayer).

 “Scaling Strategy, including Gender and Social Inclusiveness of Plant Health Innovations” moderated by Nozomi Kawarazuka (CIP), with panelists Jane Kamau (IITA), Alison Watson (Grow Asia), Sarah Schmidt (GIZ), Aman Bonaventure Omondi (Alliance Bioversity-CIAT) and Nicoline de Haan (CGIAR Gender Platform)

Work Package Title and Leads

Work Package 1: Bridging Knowledge Gaps and Networks: Plant Health Threat Identification and Characterization

Lead: Monica Carvajal, Alliance of Bioversity-CIAT

Work Package 2: Risk Assessment, data management and guiding preparedness for rapid response

Lead: Lava Kumar, IITA

Work Package 3: Integrated pest and disease management

Lead: Prasanna Boddupalli, CIMMYT

Work Package 4: Tools and processes for protecting food chains from mycotoxin contamination

Lead: Alejandro Ortega-Beltran, IITA

Work Package 5: Equitable and inclusive scaling of plant health innovations to achieve impacts Co-leads:Nozomi Kawarazuka, International Potato Center (CIP), Yanyan Liu, International Food Policy Research Institute (IFPRI)

Researchers in East Africa add the Enterprise Breeding System to their work tools

Kate Dreher, Data Manager at CIMMYT, presents to scientists, technicians, data management and support teams during the training on the Enterprise Breeding System (EBS) in Nairobi, Kenya. (Photo: Susan Umazi Otieno/CIMMYT)
Kate Dreher, Data Manager at CIMMYT, presents to scientists, technicians, data management and support teams during the training on the Enterprise Breeding System (EBS) in Nairobi, Kenya. (Photo: Susan Umazi Otieno/CIMMYT)

Scientists overseeing breeding, principal technicians and data management and support staff from the International Maize and Wheat Improvement Center (CIMMYT) learned about the Enterprise Breeding System (EBS) at a training in Nairobi, Kenya, on May 4–6, 2022. This was the first in-person training on this advanced tool held in Eastern Africa.

Kate Dreher, Data Manager at CIMMYT, was the primary trainer. Dreher sought to ensure that scientists and their teams are well equipped to confidently use the EBS for their programs, including the creation and management of trials and nurseries. During the training, participants had the opportunity to test, review and give feedback on the system.

“The EBS is an online comprehensive system that brings together different types of data, including field observations and genotypic data, to harmonize processes across all teams and enable optimized decision-making in the short term and continuous learning for the long term,” Dreher said.

She explained that the EBS is more efficient than the former approach of using the Excel-based Maize Fieldbook software, even though it managed several useful processes.

The EBS is currently available to registered breeding and support team members and data managers from CIMMYT, IITA, IRRI and AfricaRice, across all geographies where related programs are implemented. Currently, the EBS is used by programs in maize, rice and wheat crops.

A more streamlined approach

“Although teams sent germplasm and phenotypic data for centralized storage in two databases (IMIS-GMS and MaizeFinder) managed by the data management team in Mexico in the past, this required curation after the data had already been generated,” Dreher said. “The EBS will enable teams to manage their germplasm and trial nursery data directly within one system.”

The EBS stores information on germplasm and linked seed inventory items. It is also designed to house and perform analyses using phenotypic and genotypic data. Users can also capture metadata about their trials and nurseries, such as basic agronomic management information and the GPS coordinates of sites where experiments are conducted.

Yoseph Beyene, Regional Maize Breeding Coordinator for Africa and Maize Breeder for Eastern Africa at CIMMYT, observed that the training gave him firsthand information on the current capabilities and use of the live version to search germplasm and seed, and the capabilities to create nurseries and trials.

“In the AGG project, we have one primary objective which focuses on implementing improved data management, experimental designs and breeding methods to accelerate genetic gain and improved breeding efficiency. Therefore, implementing EBS is one of the top priorities for AGG project,” said Yoseph, who leads the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods Project (AGG).

Lourine Bii, an Assistant Research Associate who recently joined CIMMYT and the only female research technician on the Global Maize program based in Kenya, also found the training useful. “The EBS is a fantastic system that enables an individual to create experiments. The system links a team, for instance a product development team, to get live updates on the various stages of creating an experiment, reducing back and forth by email.”

The system’s software development is ongoing. The development team continues to add and enhance features based on feedback from users.

Mining Useful Alleles for Climate Change Adaptation from CGIAR Genebanks

The Mining Useful Alleles for Climate Change Adaptation from CGIAR Genebanks project, led by the International Maize and Wheat Improvement Center (CIMMYT), is expanding the use of biodiversity held in the world’s genebanks to develop new climate-smart crop varieties for millions of small-scale farmers worldwide. It aims to identify plant accessions in genebanks that contain alleles, or gene variations, responsible for characteristics such as heat, drought or salt tolerance, and to facilitate their use in breeding climate-resilient crop varieties.

Through this project, breeders will learn how to use genebank materials more effectively and efficiently to develop climate-smart versions of important food crops, including cassava, maize, sorghum cowpea, and rice.

Building on 10 years of support to CIMMYT from the Mexican government, CGIAR Trust Fund contributors, and the UK Biotechnology and Biological Sciences Research Council, the Mining Useful Alleles for Climate Change Adaptation from CGIAR Genebanks project combines the use of cutting-edge technologies and approaches, high-performance computing, GIS mapping, and new plant breeding methods to identify and use accessions with high value for climate-adaptive breeding of varieties needed by farmers and consumers.

This project works closely with the Fast Tracking Climate Solutions from CGIAR Germplasm Banks project.

Objectives

  • Support faster and more cost-effective discovery and deployment of climate -adaptive alleles from the world’s germplasm collections
  • Test integrated approaches for five major crops (i.e., cassava, maize, sorghum, cowpea, and rice), providing a scalable model for the rapid and cost-effective discovery and deployment of climate-adaptive alleles.

Madhulika Singh

Madhulika Singh is an agricultural scientist working with CIMMYT in India.

Being the change you wanted to see as a young girl

In the traditional Indian society Madhulika Singh grew up in, girls choosing to study science, technology, engineering or mathematics (STEM) was as radical as choosing a life partner on their own.

“They say women hold up half the sky. I believe they should hold up as much and contribute equally in STEM too,” says Singh, now an agriculture specialist at the International Maize and Wheat Improvement Center (CIMMYT).

In her early teens she saw her mother, a school headmaster, comfortably navigate her career along with her domestic responsibilities without a sweat. She later saw a similar example in her sister-in-law. “I grew up thinking ‘there is so much that a woman is capable of,’ whether at home or her workplace,” Singh recalls.

This strong idea of women’s potential led her to pursue studies in science. “Many women before me, like my mother’s generation, were encouraged to take up [careers in] humanities — become a teacher, or pursue home management courses — to ensure a smooth transition once married,” Singh explains. She hoped this would change during her time and that following a career in STEM would be a matter of choice — not gender.

Singh’s goals and ambitions were very clear from the very beginning. In school, she was interested in biology, particularly plant studies and botany. Her inquisitive nature was reflected in her projects and presentations, scoring her high grades. She demonstrated a thorough understanding of plant physiology and her passion for the subject. The budding scientist always wanted to know more and to do more, which Singh feels resonates with her current research and publications.

A popular quote attributed to Mahatma Gandhi says “Be the change you want to see in the world.” When Singh chose to take up plant science in graduate school and then agriculture science for her doctorate, she became the change she had hoped to see in her home and society as a young girl. With the support from her family but a skeptical society, she went ahead and pursued a career in STEM, beginning her research on maize genotypes and conservation agriculture. In 2013 she joined CIMMYT as a physiologist.

CIMMYT researcher Madhulika Singh takes notes while talking to farmers about their rice-wheat cropping practice in Nalanda, Bihar state, India. (Photo: CIMMYT)
CIMMYT researcher Madhulika Singh takes notes while talking to farmers about their rice-wheat cropping practice in Nalanda, Bihar state, India. (Photo: CIMMYT)

Helping farmers transition to conservation agriculture

Singh currently works in her home state of Bihar for the Cereal Systems Initiative for South Asia (CSISA), led by CIMMYT. She is engaged with over ten thousand farmers from the states of Bihar and Uttar Pradesh, supporting the adoption of  conservation agriculture practices.

Farming is vital for the region, as nearly 70% of the population is engaged in agriculture and extension services. However, food and livelihoods are threatened by the small size of farms, low incomes, and comparatively low levels of agricultural mechanization, irrigation and productivity.

Singh and her colleagues have led the transition from traditional farming to sustainable intensification practices — like early wheat sowing, zero tillage and direct-seeded rice — which have helped smallholder farmers increase their yield potential substantially.

“We believe a project like CSISA, along with the government and partners, can help advance and support in realizing the full agriculture potential of these regions,” Singh explains.

Roots in the soil

Her grandparents were farmers. “To be able to care for the land that provided you nourishment and a living was always admired upon,” she says. As a crop scientist, Singh’s family acknowledges her work as an extension of the services her grandparents practiced.

Sustained by this motivation and encouragement, Singh feels reassured of her role: joining other scientists, partners and farmers to make agriculture sustainable and our communities food-secure.

“The fact that the data we generate from our experiments serve as building blocks in the generation of knowledge and help farmers optimize the cost of inputs and increase their productivity is fulfilling and enriching to me,” Singh expresses.

Apart from working to build the capacity of farmers and extension workers, Singh supports the implementation of field trials and community-based technology demonstrations. She also helps refine key agricultural innovations, through participatory testing, and optimizes cropping systems in the region.

Leading the way for for the next generation

A true representative of the STEM community, Singh is always learning and using her experience to give back to society. She has co-authored numerous books and contributed to journals, sharing her knowledge with others.

Other women leaders in STEM have inspired Singh in her professional life, including CIMMYT’s former deputy director general for research Marianne Banziger. Singh believes Banziger was trailblazing and that young girls today have many female role models in STEM that can serve as inspiration.

The change is already here and many more young women work in STEM, pursuing excellence in agriculture sciences, engineering and research studies contributing to as well as claiming “half the sky.”

Cover photo: CIMMYT researcher Madhulika Singh (center-right) stands with farmers from self-help groups in the village of Nawtanwa, West Champaran, in India’s Bihar state. CIMMYT works on gender inclusion and participation through partnerships with other organizations and self-help groups. (Photo: CIMMYT)

Explore our coverage of International Women’s Day 2022.

CIMMYT scientist receives award for weed research

Ram Kanwar Malik (center) with his team in Bihar, India, during a field visit.
Ram Kanwar Malik (center) with his team in Bihar, India, during a field visit.

Today the Weed Science Society of America (WSSA) announced the Honorary Member award for Ram Kanwar Malik, senior scientist at the International Maize and Wheat Improvement Center (CIMMYT). This award is given every year to a person who has made outstanding contributions to weed science “through their research, teaching, publishing and outreach.”

Malik’s early engagement in agricultural sustainability led to initiatives exploring herbicide resistance evolution and management, zero tillage, and other resource-conservation technologies. At the Cereal Systems Initiative for South Asia (CSISA) — a regional project led by CIMMYT — Malik and his colleagues helped promote the practice of early wheat sowing to beat terminal heat stress, resulting in increased wheat yield in India’s eastern Indo-Gangetic Plains.

“WSSA’s Honorary Member award is one of the highest recognitions bestowed by the Weed Science Society of America,” said Krishna Reddy, Chair of the WSSA 2022 Award Committee. “[The] Honorary Member is selected for meritorious service to weed science, among non-members from North America or any weed scientist from other countries. Only one person per year is awarded this membership. Dr. Malik’s significant research in weed science and his collaborative effort to deliver solutions for farmers in developing countries like India is inspirational.”

The award was presented virtually at the 2022 annual meeting of WSSA, held in Vancouver, Canada.

Transforming rice–wheat systems

<em>Phalaris minor</em> is a pernicious weed that affects crops like wheat and substantially reduces its yield potential.
Phalaris minor is a pernicious weed that affects crops like wheat and substantially reduces its yield potential.

Malik has worked extensively in the Indo-Gangetic Plains, leading many initiatives and innovations over the years, in collaboration with national and international partners. The WSSA award highlights Malik’s inspiring work in tackling herbicide resistance problems, first reported in India by his team in 1993. Malik was instrumental in developing a management solution for herbicide-resistant Phalaris minor, a pernicious weed in wheat crops. The integrated weed management system he helped develop raised wheat yield capacity significantly for farmers in the Indo-Gangetic Plains.

“The WSSA Honorary Member award reiterates the importance of agronomic management for sustained weed control strategies across cropping systems,” Malik said. “CIMMYT and partners, including the Australian Centre for International Agricultural Research (ACIAR), were the first to introduce zero tillage in wheat as part of a strategy to manage weed resistance problems in India. It is an honor that WSSA has recognized this collective work of ours,” he acknowledged.

Malik has devoted more than thirty years to transforming agricultural systems in the Indo-Gangetic Plains, working closely with farmers and partners, and building the capacity of national agricultural and research extension systems. he is a firm believer in farmers’ participation: “Large-scale adoption of sustainable agricultural practices is possible when we work together to leverage technologies which are mutually agreed by partners and meet farmers’ needs.”

Malik is a fellow of the Indian Society of Agronomy and the Indian Society of Weed Science (ISWS), which granted him the Lifetime Achievement Award. He has also received the Outstanding Achievement Award from the International Weed Science Society (IWSS) and the 2015 Derek Tribe Award from the Crawford Fund.

He remains passionate about and invested in changing the lives of farmers through better-bet agronomy and by leading innovative research at CIMMYT.

About the Weed Science Society of America (WSSA)

Founded in 1956, WSSA is a nonprofit scientific society that encourages and promotes the development of knowledge concerning weeds and their impact on the environment.

From diagnosis to action on social equity

A group of farmers involved in participatory rice breeding trials near Begnas Lake, Pokhara, Nepal. (Photo: Neil Palmer/CIAT/CCAFS)
A group of farmers involved in participatory rice breeding trials near Begnas Lake, Pokhara, Nepal. (Photo: Neil Palmer/CIAT/CCAFS)

As CGIAR develops 33 exciting new research Initiatives, it is essential for its new research portfolio to move beyond “diagnosing gender issues” and to supporting real change for greater social equity. Gender-transformative research and methodologies are needed, co-developed between scientists and a wide range of partners.

To advance this vision, gender scientists from ten CGIAR centers and key partner institutions came together from October 25 to 27, 2021, in a hybrid workshop. Some participants were in Amsterdam, hosted by KIT, and others joined online from Canada, the Philippines and everywhere in between.

The workshop emerged from gender scientists’ desire to create a supportive innovation space for CGIAR researchers to integrate gender-transformative research and methodologies into the new CGIAR Initiatives.

The organizing team calls this effort GENNOVATE 2, as it builds on GENNOVATE, the trailblazing gender research project which ran across the CGIAR between 2014 and 2018.

GENNOVATE 2 promises to help CGIAR Initiatives achieve progress in the Gender, Youth and Social Inclusion Impact Area. It will also advance change towards Sustainable Development Goals 5 and 10 on gender and other forms of inequality.

In the workshop, participants sought to:

  • Share and develop ideas, methods and approaches to operationalize gender-transformative research and methodologies. Working groups focused on an initial selection of CGIAR Initiatives, representing all the Action Areas of CGIAR:
    • ClimBeR: Building Systemic Resilience against Climate Variability and Extremes; (Systems Transformation)
    • Securing the Asian Mega-Deltas from Sea-level Rise, Flooding, Salinization and Water Insecurity (Resilient Agrifood Systems)
    • Sustainable Intensification of Mixed Farming Systems (Resilient Agrifood Systems)
    • Market Intelligence and Product Profiling (Genetic Innovation)
  • Build on the significant investments, methods, data, and results from the original GENNOVATE.
  • Conceive a community of practice for continued sharing, learning and collaboration, across and within Initiatives, to accelerate progress on gender and social equity.
Participants at the GENNOVATE 2 workshop in Amsterdam, the Netherlands, in October 2021.
Participants at the GENNOVATE 2 workshop in Amsterdam, the Netherlands, in October 2021.

Joining a vibrant community

GENNOVATE 2 is envisioned to complement the CGIAR GENDER Platform and the proposed new CGIAR gender-focused research Initiative, HER+.

“We have several gender methodology assets in CGIAR, and GENNOVATE is one of them,” said Nicoline de Haan, Director of the CGIAR GENDER Platform, opening the workshop. “We want to make sure we cultivate and grow the efforts started during GENNOVATE and move forward important lessons and practices in the new CGIAR portfolio.”

The team of scientists behind GENNOVATE 2 wants to support a vibrant community of researchers who “work out loud.” They will document and share their research methodologies, experiences and insights, in order to accelerate learning on gender issues and scale out successes more quickly.

The ultimate objectives of GENNOVATE 2 are to:

  • Develop and deepen a set of methodologies expected to directly empower women, youth, and marginalized groups in the targeted agri-food systems
  • Contribute to normative change towards increased gender equality across different scales, ranging from households to countries.
  • Generate and build an evidence base on the relationship between empowering women, youth and marginalized people, and moving towards climate-resilient and sustainable agri-food systems — and vice versa.

“An example of the added value GENNOVATE 2 can bring to CGIAR Initiatives is understanding what maintains prevailing gender norms in research sites, and also at relevant institutional and political levels,” said Anne Rietveld, gender scientist at the Alliance of Bioversity International and CIAT, and co-organizer of the workshop. “This will enable CGIAR scientists, partners and policymakers to design locally relevant gender-transformative approaches and policies for more impact. We can do this by building on our GENNOVATE 1 evidence base, adapting methods from GENNOVATE 1 and co-developing new methods in GENNOVATE 2.”

Participants at the GENNOVATE 2 workshop in Amsterdam, the Netherlands, in October 2021.
Participants at the GENNOVATE 2 workshop in Amsterdam, the Netherlands, in October 2021.

What’s next?

The workshop showed that many scientists from CGIAR and partner institutes are motivated to invest in the vision of GENNOVATE 2. Achieving impact in the Gender, Youth and Social Inclusion Impact Area will require concerted efforts and inputs from scientists on the ground.

“There is a groundswell of experience and enthusiasm that you, we, this group brings. We need answers and we can and should work together to make this a reality,” remarked Jon Hellin, Platform Leader – Sustainable Impact in Rice-based Systems at the International Rice Research Institute (IRRI), and co-lead of the ClimBeR Initiative.

The organizing team listed concrete actions to follow the workshop:

  • Developing processes and spaces for discussing methodological advancements among the gender scientists in these four Initiatives which other Initiatives can tap into, contribute to and become part of.
  • To develop these shared and integrated methodologies and approaches into a GENNOVATE 2 conceptual and methodological roadmap — to contribute to the CGIAR Gender, Youth, and Social Inclusion Impact Area and guide other Initiatives, as well as bilateral research
  • To develop a position paper articulating what can be achieved through concerted efforts to integrate gender and social equity more effectively into the Initiatives, to showcase gender-transformative research methods for further development and implementation. The aim of the position paper is to influence global science leaders and CGIAR leadership in how they include issues of social equity in the Initiatives.
  • To support these conversations, learnings and harmonization processes through setting up a community of practice, where the “practice” to be improved is the practice of advancing gender research methodologies to go from diagnosis to action. This will start with a core group of enthusiastic researchers and then will expand as it gains momentum, so that all researchers in the various Initiatives interested in social equity can contribute
  • To seek funding opportunities to support the activities outlined above.

The GENNOVATE 2 organizing team welcomes the participation of interested CGIAR Initiatives as they move forward. The organizing team will also help strengthen interactions with external resource people and research networks, in to cross-pollinate new knowledge and innovations.

If you would like to know more about GENNOVATE 2, please contact Anne Rietveld, Gender Scientist at the Alliance of Bioversity International and CIAT and Hom Gartaula, Gender and Social Inclusion Specialist at the International Maize and Wheat Improvement Center (CIMMYT).

The GENNOVATE 2 workshop was supported with funds from the CGIAR Research Programs on Roots Tubers and Bananas, Maize, and Wheat.

Workshop organizers Anne Rietveld (Alliance), Cathy Rozel Farnworth (Pandia Consulting, an independent gender researcher), Diana Lopez (WUR) and Hom Gartaula (CIMMYT) guided participants. Arwen Bailey (Alliance) served as facilitator.

Participants were: Renee Bullock (ILRI); Afrina Choudhury (WorldFish); Marlene Elias (Alliance); Gundula Fischer (IITA); Eleanor Fisher (The Nordic Africa Institute/ClimBeR); Alessandra Galie (ILRI); Elisabeth Garner (Cornell University/Market Intelligence); Nadia Guettou (Alliance); Jon Hellin (IRRI); Deepa Joshi (IWMI); Berber Kramer (IFPRI); Els Lecoutere (CGIAR GENDER Platform); Angela Meentzen (CIMMYT); Gaudiose Mujawamariya (AfricaRice); Surendran Rajaratnam (WorldFish); Bela Teeken (IITA), among others.

External experts who provided methodological inputs were: Nick Vandenbroucke of Trias talking about institutional change; Shreya Agarwal of Digital Green talking about transformative data; Katja Koegler of Oxfam Novib talking about Gender Action Learning Systems (GALS) for community-led empowerment; and Phil Otieno of Advocates for Social Change (ADSOCK) talking about masculinities and working with men.

Throwing money at the problem won’t solve world hunger

In this op-ed, Harvard Professor Gabriela Soto Laveaga stresses the importance of tackling hunger as more than a technical problem to be addressed through scientific advancement alone, praising CGIAR for its community-centered & inclusive approach to food systems amid the climate crisis.

Read more: https://www.washingtonpost.com/outlook/2021/11/22/throwing-money-problem-wont-solve-world-hunger/

It’s Rural Women’s Day, from dawn to dusk

Over 70% of rural women in India are engaged in agriculture. Women carry out a large portion of farm work, as cultivators and agricultural laborers, but in most cases they are not even counted and recognized as farmers. Millions of Indian rural women also carry the burden of domestic work, a job that is undervalued and unrecognized economically.

On the International Day of Rural Women, October 15, the focus is on their contributions to growing food and feeding families. The often invisible hands of rural women play a pivotal role in food security and sustaining rural communities.

Today, we have a glimpse at the daily life of farmer Anita Naik.

She hails from the village of Badbil, in the Mayurbhanj district of India’s Odisha state, surrounded by small hills and the lush greenery of Simlipal National Park.

Naik belongs to a tribal community that has long lived off the land, through farming and livestock rearing. Smallholder farmers like her grow rice, maize and vegetables in traditional ways — intensive labor and limited yield — to ensure food for their families.

Married at a young age, Naik has a son and a daughter. Her husband and her son are daily-wage laborers, but the uncertainty around their jobs and her husband’s chronic ill health means that she is mostly responsible for her family’s wellbeing. At 41, Naik’s age and her stoic expression belie her lifelong experience of hard work.

The small hours

Naik’s day begins just before dawn, a little past 4 a.m., with household chores. After letting out the livestock animals — goats, cows, chicken and sheep — for the day, she sweeps the house’s, the courtyard and the animal shed. She then lights the wood stove to prepare tea for herself and her family, who are slowly waking up to the sound of the crowing rooster. Helped by her young daughter, Naik feeds the animals and then washes the dirty dishes from the previous evening. Around 6:30 or 7 a.m., she starts preparing other meals.

During the lean months — the period between planting and harvesting — when farm work is not pressing, Naik works as a daily-wage worker at a fly ash brick factory nearby. She says the extra income helps her cover costs during emergencies. “[I find it] difficult to stay idle if I am not working on the farm,” she says. However, COVID-19 restrictions have affected this source of income for the family.

Once her morning chores are over, Naik works on her small plot of land next to her house. She cultivates maize and grows vegetables, primarily for household consumption.

Naik started growing maize only after joining a self-help group in 2014, which helped her and other women cultivate hybrid maize for commercial production on leased land. They were supported by the International Maize and Wheat Improvement Center (CIMMYT) through the Cereal Systems Initiative for South Asia (CSISA) maize intensification program.

Every year from June to October, Naik also work on this five-acre leased farmland, along with the other group members. She is involved from planting to harvest — and even in marketing.

“There are eleven women members in our self-help group, Biswa Jay Maa Tarini. Thanks to training, awareness and handholding by CSISA and partners, an illiterate like me is currently the president of our group,” said an emotional Anita Naik.

Anita Naik (first from left) meets with her self-help group Biswa Jay Maa Tarini in village of Badbil, in the Mayurbhanj district of India’s Odisha state. Together, they work on a five-acre lease land, where they grow maize commercially. (Photo: CIMMYT)
Anita Naik (first from left) meets with her self-help group Biswa Jay Maa Tarini in village of Badbil, in the Mayurbhanj district of India’s Odisha state. Together, they work on a five-acre lease land, where they grow maize commercially. (Photo: Nima Chodon/CIMMYT)

Not quite done yet

A little further away from her house, Naik has a small field where she grows rice with the help of her husband and son. After checking in on her maize crop on the leased land, Naik works in her paddy the rest of the day. She tends to her land diligently, intent on removing the weeds that keep springing up again and again in the monsoon season.

“It is back-breaking work, but I have to do it myself as I cannot afford to employ a laborer,” Naik laments.

Naik finally takes a break around 1 p.m. for lunch. Some days, particularly in the summer when exhaustion takes over, she takes a short nap before getting back to removing weeds in the rice fields.

She finally heads home around 4 p.m. At home, she first takes the animals back into their shed.

Around 6 p.m., she starts preparing for dinner. After dinner, she clears the kitchen and the woodstove before calling it a night and going to bed around 8 or 9 p.m.

“The day is short and so much still needs to be done at home and in the field,” Naik says after toiling from early morning until evening.

Tomorrow is a new day, but chores at home and the work in the fields continue for Naik and farmers like her.

Anita Naik lights up her wood fire stove to prepare food, at her family home in the village of Badbil, in the Mayurbhanj district of India’s Odisha state. (Photo: CIMMYT)
Anita Naik lights up her wood fire stove to prepare food, at her family home in the village of Badbil, in the Mayurbhanj district of India’s Odisha state. (Photo: Nima Chodon/CIMMYT)

Paradigm change

Traditionally farmers in and around Naik’s village cultivated paddy in their uplands for personal consumption only, leaving the land fallow for the rest of the year. Growing rice is quite taxing as paddy is a labor-intensive crop at sowing, irrigating, weeding and harvesting. With limited resources, limited knowledge and lack of appropriate machinery, yields can vary.

To make maximum use of the land all year through and move beyond personal consumption and towards commercial production, CIMMYT facilitated the adoption of maize cultivation. This turned out to be a gamechanger, transforming the livelihoods of women in the region and often making them the main breadwinner in their families.

In early 2012, through the CSISA project, CIMMYT began its sustainable intensification program in some parts of Odisha’s plateau region. During the initial phase, maize stood out as an alternative crop with a high level of acceptance, particularly among women farmers.

Soon, CIMMYT and its partners started working in four districts — Bolangir, Keonjhar, Mayurbhanj and Nuapada — to help catalyze the adoption of maize production in the region. Farmers shifted from paddy to maize in uplands. At present, maize cultivation has been adopted by 7,600 farmers in these four districts, 28% of which are women.

CIMMYT, in partnership with state, private and civil society actors, facilitated the creation of maize producers’ groups and women self-help groups. Getting together, farmers can standardize grain quality control, aggregate production and sell their produce commercially to poultry feed mills.

This intervention in a predominantly tribal region significantly impacted the socioeconomic conditions of women involved in this project. Today, women like Anita Naik have established themselves as successful maize farmers and entrepreneurs.

See our coverage of the International Day of Rural Women.
See our coverage of the International Day of Rural Women.

Cover photo: Farmer Anita Naik stands for a photograph next to her maize field. (Photo: Nima Chodon/CIMMYT)