The Drought Tolerant Maize for Africa project aims to mitigate drought and other constraints to maize production in sub-Saharan Africa, increasing maize yields by at least one ton per hectare under moderate drought and with a 20 to 30 percent increase over farmersâ current yields, benefiting up to 40 million people in 13 African countries. The project brings together farmers, research institutions, extension specialists, seed producers, farmer community organizations and non-governmental organizations. It is jointly implemented by CIMMYT and the International Institute for Tropical Agriculture, in close collaboration with national agricultural research systems in participating nations. Millions of farmers in the region are already benefiting from the outputs of this partnership, which includes support and training for African seed producers and promoting vibrant, competitive seed markets.
Achievements:
Between 2007 and 12, participants marketed or otherwise made available 60 drought tolerant hybrids and 57 open-pollinated varieties to smallholder farmers
In addition to drought tolerance, the new varieties and hybrids also possess such desirable traits as resistance to major diseases
Engage government officials in policy dialogue to help fast-track varietal releases and fosters competitive seed markets and more
widespread access to quality seed at affordable prices
Help ensure farmersâ access to the best possible products and services, coordinate various capacity-building events and
activities for maize breeders, technicians, seed producers, extension workers, non-government organizations and farmer groups
Provide technical and advisory support to 50 African undergraduate and 28 African graduate students
Expand smallholder farmersâ use of drought and other stress tolerant maize seed to benefit 30 to 40 million people and provide added grain worth $160-200 million each year in drought-affected areas of sub-Saharan Africa
Aflatoxins are harmful compounds that are produced by the fungus Aspergillus flavus, which can be found in the soil, plants and grain of a variety of legumes and cereals including maize. Toxic to humans and animals, aflatoxins are associated with liver and other types of cancer, as well as with weakened immune systems that result in increased burden of disease, micronutrient deficiencies, and stunting or underweight development in children.
Efforts to breed maize varieties with resistance to aflatoxin contamination have proven difficult and elusive. Contamination of maize grain and products with aflatoxin is especially prevalent in low- and middle-income countries where monitoring and safety standards are inconsistently implemented.
Biofortification also serves to address âhidden hunger,â or micronutrient deficiency. Over two billion people are affected globally â they consume a sufficient amount of calories but lack essential micronutrients such as vitamins and minerals. Vitamin A deficiency specifically compromises the health of millions of maize consumers around the world, including large parts of sub-Saharan Africa.
Provitamin A-enriched maize is developed by increasing the concentration of carotenoids â the precursors of vitamin A â and powerful antioxidants that play important roles in reducing the production of aflatoxin by the fungus Aspergillus flavus. The relative ease of breeding for increased concentrations of carotenoids as compared to breeding for aflatoxin resistance in maize make this finding especially significant as part of a solution to aflatoxin contamination problems.
Breeding of provitamin A-enriched maize varieties is ongoing at the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA), with the support of HarvestPlus. Several varieties trialed in sub-Saharan Africa have demonstrated their potential to benefit vitamin-deficient maize consumers.
The researchers highlight the potential in breeding maize with enhanced levels of carotenoids to yield the dual health benefits of reduced aflatoxin concentration in maize and reduced rates of vitamin A deficiency. This result is especially significant for countries where the health burdens of exposure to aflatoxin and prevalence of vitamin A deficiency converge with high rates of maize consumption.
Financial support for this study was partially provided by HarvestPlus, a global alliance of agriculture and nutrition research institutions working to increase the micronutrient density of staple food crops through biofortification. The views expressed do not necessarily reflect those of HarvestPlus. The CGIAR Research Program on Maize (MAIZE) also supported this research.
This research builds on the Ph.D. dissertation of Dr. Pattama Hannok at University of Wisconsin, Madison, WI, United States (Hannok, 2015).
Farmer Gudeye Leta harvests his local variety maize in Dalecho village, Gudeya Bila district, Ethiopia. (Photo: Peter Lowe/CIMMYT)
Ethiopia is Africaâs third largest producer of maize, after Nigeria and South Africa. Although the country produces around 6.5 million tons annually, the national average maize yield is relatively low at 3.5 tons compared to the attainable yield of 8.5 tons. This high yield gap â the difference between attainable and actual yields â can be attributed to a number of factors, including crop varieties used, farm management practices, and plant density.
The Taking Maize Agronomy to Scale (TAMASA) project aims to narrow maize yield gaps in Ethiopia, Nigeria and Tanzania through the development and scaling out of decision-support tools, which provide site-specific recommendations based on information held in crop and soil databases collected from each country. These help farmers to make decisions based on more accurate variety and fertilizer recommendations, and can contribute to improving maize production and productivity.
One such tool is Nutrient Expert, a free, interactive computer-based application. It can rapidly provide nutrient recommendations for individual farmersâ fields in the absence of soil-testing data. The tool was developed by the International Plant Nutrition Institute in collaboration with the International Maize and Wheat Improvement Center (CIMMYT), the International Institute of Tropical Agriculture (IITA), and research and extension service providers.
Nutrient Expert user interface.
In Ethiopia, regional fertilizer recommendations are widely used, but soil fertility management practices can vary greatly from village to village and even between individual farmers. This can make it difficult for farmers or extension agents to receive accurate information tailored specifically to their needs. Nutrient Expert fills this gap by incorporating information on available fertilizer blends and giving customized recommendations for individual fields or larger areas, using information on current farmer practices, field history and local conditions. It can also provide advice on improved crop management practices such as planting density and weeding, thereby helping farmers to maximize net returns on their investment in fertilizer.
Data calibration was based on the results of 700 multi-location nutrient omission trials conducted in major maize production areas in Ethiopia, Nigeria and Tanzania. These trials were designed as a diagnostic tool to establish which macro-nutrients are limiting maize growth and yield, and determine other possible constraints.
In Ethiopia, CIMMYT scientists working for the TAMASA project conducted nutrient omission trials on 88 farmer fields in Jimma, Bako and the Central Rift Valley in 2015 to produce a version of Nutrient Expert suitable for the country. Researchers trialed the app on six maize-belt districts in Oromia the following year, in which Nutrient Expert recommendations were compared with soil-test based and regional ones.
Researchers found that though the app recommended lower amounts of phosphorus and potassium fertilizer, overall maize yields were comparable to those in other test sites. In Ethiopia, this reduction in the use of NPK fertilizer resulted in an investment saving of roughly 80 dollars per hectare.
Results from Nutrient Expert trials in Ethiopia, Nigeria and Tanzania showed improved yields, fertilizer-use efficiency and increased profits, and the app has since been successfully adapted for use in developing fertilizer recommendations that address a wide variety of soil and climatic conditions in each of the target countries.
The World Bankâs 2016 Digital Dividends report states that we are currently âin the midst of the greatest information and communications revolution in human history.â This shifting digital landscape has significant implications for the ways in which stakeholders in the agricultural sector generate, access and use data. Amidst Africaâs burgeoning technology scene, CIMMYTâs TAMASA project demonstrates the transformative power of harnessing ICTs for agricultural development.
Learn more about different versions of Nutrient Expert and download the free software here.
TAMASA is a five-year project (2014-2019) funded by the Bill & Melinda Gates Foundation, seeking to improve productivity and profitability for small-scale maize farmers in Ethiopia, Nigeria and Tanzania. Read more about the project here.
Big Data is transforming the way scientists conduct agricultural research and helping smallholder farmers receive useful information in real time. Experts and partners of the CGIAR Platform for Big Data in Agriculture are meeting on October 3-5, 2018, in Nairobi, Kenya, to share their views on how to harness this data revolution for greater food and nutrition security.
NAIROBI (Kenya) â Agronomic researchers face several challenges and limitations related to data. To provide accurate predictions and useful advice to smallholder farmers, scientists need to collect many types of on-farm data; for example, field size, area devoted to each crop, inputs used, agronomic practices followed, incidence of pests and diseases, and yield.
These pieces of data are expensive to obtain by traditional survey methods, such as sending out enumerators to ask farmers a long list of questions. Available data is often restricted to a particular geographical area and may not capture key factors of production variability, like local soil characteristics, fertilizer timing or crop rotations.
As a result, such datasets cannot deliver yield predictions at scale, one of the main expectations of Big Data. Digital advisory apps may be part of the solution, as they use crowdsourcing to routinize data collection on key agronomic variables.
The Taking Maize Agronomy to Scale in Africa (TAMASA) project has been researching the use of mobile apps to provide site-specific agronomic advice to farmers through agro-dealers, extension workers and other service providers.
At CIMMYT, one of the research questions we were interested in was âWhy are plant population densities in farmers fields usually well below recommended rates?â From surveys and yield estimates based on crop-cut samples at harvest in Ethiopia, Nigeria and Tanzania, we observed that yields were correlated with plant density.
What was making some farmers not use enough seeds for their fields? One possible reason could be that farmers may not know the size of their maize field. In other cases, farmers and agro-dealers may not know how many seeds are in one packet, as companies rarely indicate it and the weight of each seed variety is different. Or perhaps farmers may not know what plant population density is best to use. Seed packets sometimes suggest a sowing rate but this advice is rather generic and assumes that farmers apply recommended fertilizer rates. However, farmersâ field conditions differ, as does their capacity to invest in expensive fertilizers.
To help farmers overcome these challenges, we developed a simple app, Maize-Seed-Area. It enables farmers, agro-dealers and extension workers to measure the size of a maize field and to identify its key characteristics. Then, using that data, the app can generate advice on plant spacing and density, calculate how much seed to buy, and provide information on seed varieties available at markets nearby.
View of the interface of the Maize-Seed-Area app on mobile phones and tablets. (Photo: CIMMYT)
Maize-Seed-Area is developed using the Open Data Kit (ODK) format, which allows to collect data offline and to submit it when internet connection becomes available. In this case, the app is also used to deliver information to the end users.
Advisory apps usually require some input data from farmers, so advice can be tailored to their particular circumstances. For example, they might need to provide data on the slope of their field, previous crops or fertilizer use. Some additional information may be collected through the app, such as previous seed variety use. All this data entered by the user, which should be kept to a minimum, is routinely captured by the app and retrieved later.
Hello, Big Data!
As the app user community grows, datasets on farmer practices and outcomes grow as well. In this case, we can observe trends in real time, for instance on the popularity of different maize varieties.
In a pilot in western Kenya, in collaboration with Precision Agriculture for Development (PAD), some 100 agro-dealers and extension workers used the app to give advice to about 2,900 farmers. Most of the advice was on the amount of seed to buy for a given area and on the characteristics of different varieties.
Data showed that the previous year farmers grew a wide range of varieties, but that three of them were dominant: DK8031, Duma43 and WH505.
Preferred variety of maize for sample farmers in western Kenya (Bungoma, Busia, Kakamega and Siaya counties), February-March 2018.
A phone survey among some 300 of the farmers who received advice found that most of them anticipated to do things differently in the future, ranging from asking for advice again (37 percent), growing a different maize variety (31 percent), buying a different quantity of seed (19 percent), using different plant spacing (18 percent) or using more fertilizer (16 percent).
Most of the agro-dealers and extension workers have kept the app for future use.
The dataset was collected in a short period of time, just two months, and was available as soon as app users got online.
The Maize-Seed-Area pilot shows that advisory apps, when used widely, are a major source of new Big Data on agronomic practices and farmer preferences. They also help to make data collection easier and cheaper.
TAMASA is supported by the Bill and Melinda Gates Foundation and is implemented by the International Maize and Wheat Improvement Center (CIMMYT), the International Institute of Tropical Agriculture (IITA), the International Plant Nutrition Institute (IPNI) and Africa Soil Information Service (AfSIS).
NAIROBI (Kenya) â As the invasion of the voracious fall armyworm threatens to cause US$3-6 billion in annual damage to maize and other African food staples, 35 organizations announced today the formation of a global coalition of research for development (R4D) partners, focused on developing technical solutions and a shared vision of how farmers should fight against this pest. After causing extensive crop damage in Africa, the presence of the fall armyworm was recently confirmed in India.
The new Fall Armyworm R4D International Consortium will serve to develop and implement a unified plan to fight this plant pest on the ground. Focusing on applied research, the consortium joins other global efforts and coordinates with international bodies working against this pest. The Fall Armyworm R4D International Consortium will be co-led by the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA).
âThis pest caught us all by surprise and it continues eating away at maize and other crops that are important for the food security and livelihoods of African farmers. We can no longer afford to work in isolation,â said the Director General of CIMMYT, Martin Kropff. âMany organizations in the public and private sector are working intensively on different approaches,â he added, âbut farmers are not interested in half solutions. They want to have integrated solutions, supported by strong science, which work effectively and sustainably.â
Consortium members will coordinate efforts to pursue a wide range of options for fighting fall armyworm, with a strong emphasis on integrated pest management, which includes host plant resistance, environmentally safer chemical pesticides, biological and cultural control methods, and agronomic management.
The Deputy Director General for Partnerships for Delivery at IITA, Kenton Dashiell, said that efforts are underway to identify and validate biopesticides, or âvery safe products that donât harm the environment or people but kill the pest.â In some areas, Dashiell explained, farmers may need to consider temporarily switching to a food crop that is not susceptible to armyworm.
A fall armyworm on a damaged leaf in Nigeria, 2017. (Photo: G. Goergen/IITA)
The Vice President of Program Development and Innovation at the Alliance for a Green Revolution in Africa (AGRA), Joe DeVries, said his organization is serving as a bridge between scientists and farmers. AGRA is developing a network of âvillage-based advisersâ across 15 countries who will be connected to farmers via a âprivate sector-ledâ extension system to help farmers deal with fall armyworm infestations. AGRA and its partners already have trained more than 1,000 advisers and expect to add several thousand more who can âquickly bring to farmers the latest knowledge about the best methods of control.â
The Chief Scientist at the Bureau of Food Security of the United States Agency for International Development (USAID), Rob Bertram, expressed his excitement about the formation of the consortium, both for its immediate relevance for fighting fall armyworm and as a forerunner of âmore resilientâ agriculture systems in Africa, which is likely to see similar threats in the future. CIMMYT and USAID, together with global experts, developed an integrated pest management guide to fight fall armyworm, available in English, French and Portuguese.
The Director General of Development at the Center for Agriculture and Biosciences (CABI), Dennis Rangi, noted that the ability for people to more rapidly travel around the world is also making it easier for plant pests to hop from continent to continent. âToday we are focusing on the fall armyworm, tomorrow it could be something different,â he said.
The members of the Fall Armyworm R4D International Consortium will hold their first face-to-face meeting on October 29-31, 2018, in Addis Ababa, Ethiopia. This international conference will be organized by CIMMYT, IITA, AGRA, CABI, FAO, icipe, FAO, USAID and the African Union Commission.
The technical coordinators of the consortium are B.M. Prasanna, Director of the CGIAR Research Program MAIZE and Global Maize Program at CIMMYT, and May-Guri Saethre, Deputy Director General of Research for Development at IITA.
PARTNERS OF THE FALL ARMYWORM R4D INTERNATIONAL CONSORTIUM
Leads:
International Maize and Wheat Improvement Center (CIMMYT)
International Institute of Tropical Agriculture (IITA)
Members:
African Agricultural Technology Foundation (AATF)
Agricultural Research Service (ARS) of the United States Department of Agriculture (USDA)
Alliance for a Green Revolution in Africa (AGRA)
Bayer
Bill & Melinda Gates Foundation
Biorisk Management Facility (BIMAF)
Brazilian Agricultural Research Corporation (Embrapa)
Center for Agriculture and Biosciences (CABI)
Corteva
CropLife International
Deutsche Gesellschaft fĂŒr Internationale Zusammenarbeit (GIZ)
Food and Agriculture Organization of the United Nations (FAO)
Forum for Agricultural Research in Africa (FARA)
International Centre of Insect Physiology and Ecology (icipe)
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)
Lancaster University
Leibniz Institute DSMZ (German Collection of Microorganisms and Cell Cultures)
Michigan State University (MSU)
Mississippi State University (MSU)
North-West University (NWU)
Norwegian Institute of Bioeconomy Research (NIBIO)
Oregon State University (OSU)
Rothamsted Research
Syngenta
UK Department for International Development (DFID)
United States Agency for International Development (USAID)
University of Bonn
University of Florida (UFL)
University of Greenwich
Virginia Polytechnic Institute and State University (Virginia Tech)
Wageningen University and Research (WUR)
West and Central African Council for Agricultural Research (CORAF/WECARD)
World Agroforestry Centre (ICRAF)
MEDIA CONTACTS
For more information, please contact:
GeneviĂšve Renard, Head of Communication, CIMMYT g.renard@cgiar.org, +52 (55) 5804 2004, ext. 2019.
Katherine Lopez, Head of Communication, IITA k.lopez@cgiar.org, +234 0700800, ext. 2770