Skip to main content

funder_partner: International Institute of Tropical Agriculture (IITA)

With 30,000 surveys, researchers build the go-to dataset for smallholder farms

Incompatibility of surveys did not allow big-picture analysis, so a team of CGIAR researchers began tackling the household survey interoperability problem in 2015. They invited the global research-for-development community to contribute to the open-access dataset, which today includes more than 30,000 interviews conducted in 33 countries.

Broad adoption of the standardized  may help guide international efforts to address smallholder challenges related to , food security, nutrition, , and social inclusion.

Read more here: https://phys.org/news/2020-03-surveys-go-to-dataset-smallholder-farms.html

How a disease without borders was contained

It’s been eight years since maize lethal necrosis (MLN) was first reported on the African continent. When it appeared in Kenya’s Bomet County in 2011, a sense of panic swept across the maize sector. Experts quickly realized that all maize varieties on the market were susceptible to this viral disease, which could wipe out entire maize fields.

Spearheaded by the International Maize and Wheat Improvement Center (CIMMYT), a rapid regional response involving national agriculture research systems (NARS), national plant protection organizations and seed sector partners was set up. The response involved multiple approaches: rigorous surveillance, epidemiology research, disease management across the seed value chain, and screening and fast-tracking of the MLN-tolerant maize breeding program.

Now, CIMMYT and its partners are reflecting on the tremendous impact of transboundary coalition to contain the devastating disease.

“Country reports show there are now much less incidents of MLN in the region. We have effectively contained this disease as no new country in sub-Saharan Africa reported MLN since Ethiopia in 2014. This is a great achievement of an effective public private partnership,” noted B.M. Prasanna, Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize.

He was speaking at the closure workshop for the MLN Diagnostics and Management project and the MLN Epidemiology project on October 15-17, 2019, in Nairobi, Kenya. Experts from research, plant health and seed sector organizations from eastern and southern Africa reflected on the tremendous impact of the transboundary coalition to contain MLN across the region.

“The outbreak of the disease in Uganda in 2012 was a huge challenge as all the maize varieties and hybrids on the market were susceptible. With the support of CIMMYT and other partners in the national agriculture research systems, we got access to Bazooka, a high-yielding, drought- and MLN-tolerant maize variety that has helped in containing the disease,” said Godfrey Katwere, marketing manager for NASECO.

Until now, 19 MLN-tolerant and -resistant hybrids have been released, helping to keep the disease away from farmers’ fields and to stop its spillover to non-endemic countries in sub-Saharan Africa.

CIMMYT team members check for traces of the maize chlorotic mottle virus (MCMV) in maize plants during a visit to the MLN screening facility in Naivasha, Kenya. (Photo: Joshua Masinde/CIMMYT)
CIMMYT team members check for traces of the maize chlorotic mottle virus (MCMV) in maize plants during a visit to the MLN screening facility in Naivasha, Kenya. (Photo: Joshua Masinde/CIMMYT)

Science in action

The MLN screening facility, established in Naivasha in 2013, has been key to a better understanding of the disease and to setting up MLN hybrid tolerance and resistance breeding efforts. The facility, funded by the Bill & Melinda Gates Foundation and the Syngenta Foundation for Sustainable Agriculture, has supported public and private partners to screen over 200,000 germplasm with around 300,000 rows of maize.

State-of-the-art epidemiology research has been carried out to identify how the disease could be transmitted and the best diagnostics methods along the seed value chain.

MLN is caused by the combination of the maize chlorotic mottle virus (MCMV) and any of the viruses belonging to the Potyviridae family.

As part of the project, studies showed that moist soil had higher MCMV virus loads than dry soil. The studies — conducted by Benham Lockhart of University of Minnesota and Peg Redinbaugh, a professor at Ohio State University and Research Leader and Research Plant Molecular Geneticist at USDA — indicated that MCMV can stay active in runoff water, and helped in understanding how the disease is transmitted and how to define management protocols.

“Crop debris may also act as source of MCMV inoculum but for a limited period of up to two months,” said L.M. Suresh, CIMMYT Maize Pathologist, in reference to soil transmission studies conducted by CIMMYT. “A host-free period of two months is, therefore, recommended for effective management of MLN,” he noted.

Rapid and low-cost MLN-causing virus detection methods such as immunostrips and ELISA-based tests were adopted at scale.

“After optimizing the protocols for MLN viruses’ diagnosis suitable for African systems, we transferred these technologies to [national plant protection organizations] and seed companies, not just within the endemic countries but also to the non-endemic countries in southern and west Africa, through intensive trainings,” Prasanna explained. “We created a digital MLN surveillance tool under the Open Data Kit (ODK) app for NPPOs and other stakeholders to effectively carry out MLN surveillance on the ground. The survey information is captured in real time in farmers’ and seed production fields coupled with rapid immunostrips MLN tests,” he remarked.

According to Francis Mwatuni, Project Manager of the MLN Diagnostics and Management project, this proactive and collaborative surveillance network has been an important outcome that helped curb MLN from spreading to non-endemic regions. “In 2016, we only had 625 surveillance points. By 2019, the surveillance points in all the target countries stood at 2,442, which intensified the alertness on MLN presence and how to effectively deal with it,” Mwatuni said. In total, 7,800 surveillance points were covered during the project implementation period.

Over 100 commercial seed firms have also been trained on how to produce MLN-free seed to facilitate trade within the endemic nations and to ensure the disease is not transferred to the non-endemic countries via contaminated seeds.

Participants at the MLN projects closure workshop stand for a group photo. (Photo: Joshua Masinde/CIMMYT)
Participants at the MLN projects closure workshop stand for a group photo. (Photo: Joshua Masinde/CIMMYT)

Sustaining the fight

Researchers continue to work to lessen MLN’s resurgence or new outbreaks. In 2018, incidents in all endemic countries, except Ethiopia, declined sharply. One suggested explanation for the upsurge in Ethiopia, especially in the northwestern region, was reduced use of pesticide for fall armyworm control, as compared to previous years where heavy application of these pesticides also wiped out MLN insect vectors, such as maize thrips and aphids.

At the end of the projects, partners urged for the scale-up of second-generation MLN-tolerant and -resistant varieties. They explained farmers would fully benefit from recent genetic gains of the new improved varieties and its protection against MLN.

“Despite the success registered, MLN is still a major disease requiring constant attention. We cannot rest as we redirect our energies at sustaining and building on the gains made,” said Beatrice Pallangyo, principal agricultural officer in Tanzania’s Ministry of Agriculture, Food Security and Cooperatives.

After the success containing MLN, stakeholders suggested the need to stay alert on other transboundary pests and diseases such as the tar spot complex, which could be a major threat to Africa’s food security in case of an outbreak.

Breaking Ground: Pieter Rutsaert looks to better marketing for faster adoption of climate-smart maize in Africa

Ever wondered why farmers prefer a certain maize variety over another? What crop traits different farmers value? How they make their seed selections at the market? Pieter Rutsaert, an expert in markets and value chains with the International Maize and Wheat Improvement Center (CIMMYT), analyzes the important factors that African farmers consider when purchasing maize varieties at agro-dealers and the implications for how the seed industry can better meet farmers’ needs.

Maize is the most important cereal crop in Africa, grown on over 29 million hectares of rainfed farmland and consumed daily by around 50% of the population. However, increasingly erratic weather patterns threaten the performance the maize varieties grown, putting household food security at risk.

“African smallholders typically plant maize seeds they are familiar with, but these varieties often lack the attributes to tolerate harsher weather including droughts, extreme heat or disease stress,” Rutsaert explains.

“Despite the existence of maize varieties bred to stand up to harsher weather, their intrinsic attributes alone are not enough to convince farmers to leave their preferred varieties. These stress-tolerant varieties need to be properly marketed to be competitive and increase their market share.”

With previous experience as a marketing consultant in the food industry, Rutsaert brings unique skills and approaches to CIMMYT’s Stress Tolerant Maize for Africa (STMA) project, to help businesses develop new seed distribution and marketing strategies to get climate-resilient varieties into farmers’ fields.

Pieter Rutsaert (right) discusses a research study questionnaire with consultant enumerator Victor Kitoto. (Photo: Jerome Bossuet/CIMMYT)
Pieter Rutsaert (right) discusses a research study questionnaire with consultant enumerator Victor Kitoto. (Photo: Jerome Bossuet/CIMMYT)

Market intelligence on climate-smart seed

Rutsaert sees local agro-dealers as a strategic entry point for researchers to gather information on the varying farmer interests and conditions as information about seed demand is revealed at the point of purchase.

Despite large investments to support seed systems in sub-Saharan Africa, including investments to upgrade agro-dealer capacity, there is limited evidence into how women and men take decisions on maize seed purchases to support development initiatives.

“The agro-dealer space is where farmers decide what inputs to buy. In addition to providing farmers access to inputs at competitive prices, front-line agro-dealers offer technical assistance, such as advice on input use and production practices, and short-term credit for input purchases.”

Thus, agro-dealers offer the chance to learn about farmers’ unique conditions and ensure they adopt the right variety. Gathering these insights has the potential to support locally owned small and medium enterprises that produce stress-tolerant varieties, suited for local conditions, says the marketing expert.

An agent from a seed company (right) promotes sales at an agro-dealer shop. (Photo: Pieter Rutsaert/CIMMYT)
An agent from a seed company (right) promotes sales at an agro-dealer shop. (Photo: Pieter Rutsaert/CIMMYT)

Marketing strategies for agro-dealers

Compared to multinational seed companies, local seed businesses are expected to show greater willingness to seek out traditionally underserved segments of the seed market, such as poorer farmers or those located in less-favored production regions. However, local seed producers and retailers generally lack marketing capabilities and have a limited understanding of the costs and benefits of different approaches to market their seed, Rutsaert says.

“Without effective marketing strategies responding to the needs of different clients, farmers will stick to the seeds that they know, even when this might not be the best for their situation,” he continues.

Based on the market information gathered, Rutsaert works with agro-dealers to develop retail strategies, such as targeted marketing materials, provision of in-store seed decision support, and price incentives, to help women and men farmers get the inputs that work best.

Rutsaert says he is committed to use his private sector experience to improve CIMMYT’s understanding of the seed sector and build the capacity of local agro-dealers to distribute climate-resilient maize varieties throughout the African region.

The Stress Tolerant Maize for Africa (STMA) project seeks to develop maize cultivars with tolerance and resistance to multiple stresses for farmers, and support local seed companies to produce seed of these cultivars on a large scale. STMA aims to develop a new generation of over 70 improved stress tolerant maize varieties, and facilitate the production and use of over 54,000 metric tons of certified seed. The STMA project is funded by the Bill & Melinda Gates Foundation and USAID.

Seeds of hope

Seed of drought-tolerant maize developed through long-running global and local partnerships in Africa is improving nutrition and food security in northern Uganda, a region beset by conflicts and unpredictable rainfall.

The International Maize and Wheat Improvement Center (CIMMYT) has been working with Uganda’s National Agricultural Research Organization (NARO) and local seed companies to develop and disseminate maize seed of improved stress-tolerant varieties. Under the Drought Tolerant Maize for Africa (DTMA) and the Stress Tolerant Maize for Africa (STMA) projects, farmers are now using varieties such as the UH5051 hybrid, known locally as Gagawala, meaning “get rich.”

For two decades, most of the population in northern Uganda has lived in internally displaced people’s camps and depended on food aid and other relief emergencies for their livelihoods due to the insurgency by the Lord’s Resistance Army (LRA).

Gulu, one of the affected districts, has been on a path to recovery for the past few years. With the prevailing peace, Geoffrey Ochieng’ and his wife can now safely till their 4.5 acres of land to grow maize and other staples. They are able to feed their family and sell produce to meet other household needs.

However, farmers in this region, bordering South Sudan, are facing more erratic rains and the uncertain onset of rainfall. Thanks to new drought-tolerant and disease-resistant maize varieties, the Ochieng’ family can adapt to this variable climate and secure a good maize harvest even in unreliable seasons.

Geoffrey Ochieng’, a smallholder farmer from northern Uganda. He plants the UH5051 variety on his land. (Photo: Joshua Masinde/CIMMYT)
Geoffrey Ochieng’, a smallholder farmer from northern Uganda. He plants the UH5051 variety on his land. (Photo: Joshua Masinde/CIMMYT)

Tolerance is key

“The popularity of this drought-tolerant variety among the farmers has been growing thanks to its good yield and reliability even with poor rains and its resistance to common foliar diseases like northern corn leaf blight and gray leaf spot, plus good resistance to the maize streak virus,” explained Daniel Bomet, a NARO maize breeder. “Maturing in slightly over four months, Gagawala can produce two to three maize cobs, which appeals to farmers.”

Ochieng’ has been planting UH5051 maize since 2015. Before adopting the new hybrid, Ochieng’ was growing Longe 5, a popular open-pollinated variety that is less productive and not very disease-resistant.

“What I like about UH5051 is that even with low moisture stress, it will grow and I will harvest something,” Ochieng’ said. Under optimal conditions, he harvests about 1.2 metric tons of maize grain on one acre of UH5051 hybrid.

With the old Longe 5 variety, he would only harvest 700 kg. “If the rains were delayed or it didn’t rain a lot, I would be lucky to get 400 kg per acre with the Longe 5, while I get twice as much with the hybrid,” Ochieng’ explained.

Thanks to this tolerant maize variety, he can pay his children’s school fees and provide some surplus grain to his relatives.

A worker at the Equator Seeds production plant in Gulu displays packs of UH5051 maize seed. (Photo: Joshua Masinde/CIMMYT)
A worker at the Equator Seeds production plant in Gulu displays packs of UH5051 maize seed. (Photo: Joshua Masinde/CIMMYT)

Out with the old, in with the new

“One key strategy to improve our farmers’ livelihoods in northern Uganda is to gradually replace old varieties with new varieties that can better cope with the changing climate and problematic pests and diseases,” said Godfrey Asea, the director of the National Crops Resources Research Institute (NaCRRI) at NARO. “Longe 5 for instance, has been marketed for over 14 years. It has done its part and it needs to give way to new improved varieties like UH5051.”

The Gulu-based company Equator Seeds has been at the core of the agricultural transformation in northern Uganda. From 70 metrics tons of seed produced when it started operations in 2012, the company reached an annual capacity of about 7,000 to 10,000 metric tons of certified seed of different crops in 2018. Working with dedicated out-growers such as Anthony Okello, who has a 40-acre piece of land, and 51 farmer cooperatives comprising smallholder farmers, Equator Seeds produces seed of open-pollinated hybrid maize and other crops, which reaches farmers through a network of 380 agro-dealers.

 

“80% of farmers in northern Uganda still use farm-saved or recycled seed, which we consider to be our biggest competitor,” Tonny Okello, CEO of Equator Seeds remarked. “Currently, about 60% of our sales are in maize seed. This share should increase to 70% by 2021. We plan to recruit more agro-dealers, establish more demonstration farms, mostly for the hybrids, to encourage more farmers to adopt our high yielding resilient varieties.”

The two-decade unrest discouraged seed companies from venturing into northern Uganda but now they see its huge potential. “We have received tremendous support from the government, non-governmental organizations, UN and humanitarian agencies for buying seed from us and distributing it to farmers in northern Uganda and South Sudan, to aid their recovery,” Okello said.

Godfrey Asea (right), director of the National Crops Resources Research Institute (NaCRRI), and Uganda’s National Agricultural Research Organization (NARO) maize breeder, Daniel Bomet, visit an improved maize plot at NARO’s Kigumba Station, in central Uganda. (Photo: Joshua Masinde/CIMMYT)
Godfrey Asea (right), director of the National Crops Resources Research Institute (NaCRRI), and Uganda’s National Agricultural Research Organization (NARO) maize breeder, Daniel Bomet, visit an improved maize plot at NARO’s Kigumba Station, in central Uganda. (Photo: Joshua Masinde/CIMMYT)

Social impact

The Ugandan seed sector is dynamic thanks to efficient public-private partnerships. While NARO develops and tests new parental lines and hybrids in their research facilities, they have now ventured into seed production and processing at their 2,000-acre Kigumba Farm in western Uganda through NARO Holdings, their commercial arm.

“Because the demand for improved seed is not always met, NARO Holdings started producing certified seed, but the major focus is on production of early generation seed, which is often a bottleneck for the seed sector,” Asea said.

Aniku Bernard, Farm Manager, examines a maize cob at the foundation seed farm located inside the Lugore Prison premises. (Photo: Joshua Masinde/CIMMYT)
Aniku Bernard, Farm Manager, examines a maize cob at the foundation seed farm located inside the Lugore Prison premises. (Photo: Joshua Masinde/CIMMYT)

Another innovative collaboration has been to work with the Uganda Prisons Service (UPS) establishments to produce maize seed. “When we started this collaboration with UPS, we knew they had some comparative advantages such as vast farmland, ready labor, mechanization equipment and good isolation, which are important for high-quality hybrid maize seed production,” Asea explained. The UPS facility in Lugore, Gulu, which has 978 hectares of land, produces foundation seed of UH5051.

“Prisons offer a big potential to support the growing seed industry,” he said. “Together with CIMMYT, we should build further the capacity of UPS to produce foundation and certified seeds. It provides much-needed income for the institutions. The inmates, in addition to being remunerated for farm labor, are engaged in positive outdoor impactful activities. This skill is helpful for their future reintegration in the society.”

From left to right: Winnie Nanteza, National Crops Resources Research Institute (NaCCRI) communications officer; Daniel Bomet, NARO maize breeder; Byakatonda Tanazio, Assistant Superintendent of Prisons, Lugore Prison, Gulu; Aniku Bernard, Farm Manager at Lugore Prison; and Godfrey Asea, director of NaCRRI, stand for a group photo at the foundation seed production farm inside Lugore Prison. (Photo: Joshua Masinde/CIMMYT)
From left to right: Winnie Nanteza, National Crops Resources Research Institute (NaCCRI) communications officer; Daniel Bomet, NARO maize breeder; Byakatonda Tanazio, Assistant Superintendent of Prisons, Lugore Prison, Gulu; Aniku Bernard, Farm Manager at Lugore Prison; and Godfrey Asea, director of NaCRRI, stand for a group photo at the foundation seed production farm inside Lugore Prison. (Photo: Joshua Masinde/CIMMYT)

CRP Maize Annual Report 2018

The newly released CGIAR Research Program on Maize (MAIZE) Annual Report 2018 highlights significant development outcomes and impacts through varietal release, scale-up, delivery and adoption of CIMMYT- and IITA-derived climate-resilient and nutritionally enriched maize varieties.

In 2018, national partners released 81 unique CGIAR-derived maize varieties across Africa, Asia and Latin America. Of these varieties 14 were hybrid combinations, showing that regional and multinational seed companies use MAIZE’s improved germplasm to develop and release improved maize hybrids. 20 of the released varieties are nutritionally enriched — provitamin A, quality protein maize (QPM), high-zinc — the result of the MAIZE partnership with the CGIAR Research Program on Agriculture for Nutrition and Health (A4NH; HarvestPlus).

MAIZE and partners have made great strides in 2018 combatting major pest and disease challenges such as maize lethal necrosis (MLN) and the devastating fall armyworm. MAIZE researchers found that sustainable intensification practices in combination with stress-tolerant maize led to higher yield gains during the El Niño year in Southern Africa. Meanwhile, a crop growth modelling study quantified the impact of climate change on maize and found combined drought and heat stress tolerance has a benefit at least twice that of either one alone.

Read the full report online

What farmers want

Tabitha Kamau, 29, is scrutinizing a maize demonstration plot on which 12 different varieties were planted in November 2018. “What I am looking for is a maize variety that produces a lot, even when there is scarce rainfall,” says the single mother of three, who lives in Katheini, in Kenya’s Machakos County, on a quarter of an acre of land.

Together with 350 other smallholder farmers from Katheini and neighboring villages, Kamau is assessing the maize crops and ranking them based on her preferred traits.

Like her peers when asked what makes a good maize variety, she gives high scores to drought-tolerant varieties and those that can yield large and nicely filled cobs despite the dry spell that has affected the area over the last two months.

For five years, Kamau has been planting KDV4, a drought-tolerant open pollinated variety on the family land and another piece of leased plot. This early variety matures in 100 to 110 days and is adapted to dry mid-altitude conditions.

Tabitha Kamau examines drought-tolerant KDV4 maize in her plot in the village of Kavilinguni, Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)

KDV4 was released by the Kenya Agricultural & Livestock Research Organization (KALRO) using the International Maize and Wheat Improvement Center (CIMMYT)’s germplasm. It is currently marketed by Dryland Seed Limited and Freshco Seeds, targeting farmers in the water-stressed counties of Kitui, Machakos and Makueni, in the lower eastern regions of Kenya.

The early maturing of varieties like KDV4 presents a good opportunity for its adopters, says Kamau. “If I am able to harvest in three and a half months or less, compared to four months or more for other varieties, I can sell some grain to neighbors still awaiting their harvest who want to feed their families.”

“I heard of new varieties that can germinate well and produce lots of leaves,” explains Catherine Musembi. This farmer from Kivaani looks for maize that performs well even under heat and drought. She likes maize plants with high biomass, as the foliage is used to feed the family’s three cows and two goats.

An enumerator (left) collects a farmer’s details and socioeconomic data before she participates in the evaluation of maize varieties. (Photo: Joshua Masinde/CIMMYT)
An enumerator (left) collects a farmer’s details and socioeconomic data before she participates in the evaluation of maize varieties. (Photo: Joshua Masinde/CIMMYT)

Farmers’ picks

The International Maize and Wheat Improvement Center (CIMMYT) has been undertaking participatory maize variety evaluations since 2016 in Kenya, Rwanda, Tanzania and Uganda. Every year, during the main maize growing season, researchers plant on-farm trials that can be evaluated by farmers.

Kamau and Musembi attended a selection trial in Machakos County, facilitated by a team from KALRO on February 18-19, 2019. This exercise was part of the 2018 mid-season evaluations, which were followed up by end-season assessments a month later.

Participatory farmer evaluations are used to give crucial feedback to CIMMYT’s maize breeding work. First, farmers get an opportunity to state what traits are important for them and rank them according to their importance. Then, participants evaluate varieties planted in the trial and give a score on individual trait and the overall performance for each variety planted. And they conclude the exercise by rating the best three plots.

In the drier eastern part of Kenya, farmers might be more interested in traits such as drought tolerance, early maturity and disease resistance. In central Kenya, where dairy farming is commonly practiced, a variety with more biomass could be preferred.

“Our work is to tease out the information regarding which traits contribute to a good score in the overall score,” explains Bernard Munyua, a socioeconomics research assistant at CIMMYT. Statistical analysis of the farmers’ score cards will reveal if the initial rating of criteria plays a strong role in the final overall appreciation of a variety. For instance, farmers may give high importance to height or biomass, yet it may not play a role in their ranking of best varieties.

“Such data is important for maize breeders to support future variety improvement work,” Munyua notes. “Moreover, by disaggregating the farmers opinions by region and socioeconomic attributes such as gender, education and income, we can define the priority traits by region or farmers’ socioeconomic profiles. It helps better target maize breeding work according to the needs on the ground and gives useful knowledge to seed companies for their seed marketing strategy,” he adds.

For instance, in the drier eastern part of Kenya, farmers might be more interested in traits such as drought tolerance, early maturity and disease resistance. In central Kenya, where dairy farming is commonly practiced, a variety with more biomass could be preferred. In western Kenya, they could be more interested in grain yields and cob characteristics to improve their sales after harvest.

Agnes Nthambi (left) and other farmers evaluate maize varieties developed through CIMMYT’s Stress Tolerant Maize for Africa (STMA) project. (Photo: Joshua Masinde/CIMMYT)
Agnes Nthambi (left) and other farmers evaluate maize varieties developed through CIMMYT’s Stress Tolerant Maize for Africa (STMA) project. (Photo: Joshua Masinde/CIMMYT)

Agnes Nthambi, the farmer who hosted the demonstration plot, is very positive about her participation, as she learned about some of the ideal agronomic practices as well as the performance of new varieties. “On this trial, I learned that spacing was about two times shorter than we are generally used to. Even with the more constricted spacing, the maize has performed much better than what we are used to seeing,” she says. She also learned that fertilizer is applied at the time of planting. In her case, she normally applies fertilizer much later after germination has already occurred.

Nthambi says her family cannot afford losing both the fertilizer and the seed in case the rains fail. This time, she expects a good harvest from the one-acre farm, to supplement her family’s income.

Seeds of progress

 

The maize seed sector in east and southern Africa is male-dominated. However, there are women working in this sector who are breaking social barriers and helping to improve household food security, nutrition and livelihoods by providing jobs and improved seed varieties to farmers.

Researchers from the International Maize and Wheat Improvement Center (CIMMYT) conducted interviews with women owners of seed companies in eastern and southern Africa. They shared information on their background, their motivation to start their businesses, what sets their companies apart from the competition, the innovative approaches they use to ensure smallholder farmers adopt improved seed varieties, the unique challenges they face as women in the seed sector and the potential for growth of their companies.

Research, innovation, partnerships, impact

On May 15, 2019, as part of the CGIAR System Council meeting held at the ILRI campus in Addis Ababa, Ethiopia, around 200 Ethiopian and international research and development stakeholders convened for the CGIAR Agriculture Research for Development Knowledge Share Fair. This exhibition offered a rare opportunity to bring the country’s major development investors together to learn and exchange about how CGIAR investments in Ethiopia help farmers and food systems be more productive, sustainable, climate resilient, nutritious, and inclusive.

Under the title One CGIAR — greater than the sum of its parts — the event offered the opportunity to highlight close partnerships between CGIAR centers, the Ethiopian government and key partners including private companies, civil society organizations and funding partners. The fair was organized around the five global challenges from CGIAR’s business plan: planetary boundaries, sustaining food availability, promoting equality of opportunity, securing public health, and creating jobs and growth. CGIAR and its partners exhibited collaborative work documenting the successes and lessons in working through an integrated approach.

There were 36 displays in total, 5 of which were presented by CIMMYT team members. Below are the five posters presented.

How can the data revolution help deliver better agronomy to African smallholder farmers?

This sustainability display showed scalable approaches and tools to generate site-specific agronomic advice, developed through the Taking Maize Agronomy to Scale in Africa (TAMASA) project in Nigeria, Tanzania and Ethiopia.

Maize and wheat: Strategic crops to fill Ethiopia’s food basket

This poster describes how CGIAR works with Ethiopia’s research & development sector to support national food security priorities.

Addressing gender norms in Ethiopia’s wheat sector

Research shows that restrictive gender norms prevent women’s ability to innovate and become productive. This significantly impacts Ethiopia’s economy (over 1% GDP) and family welfare and food security.

Quality Protein Maize (QPM) for better nutrition in Ethiopia

With the financial support of the government of Canada, CIMMYT together with national partners tested and validated Quality Protein Maize as an alternative to protein intake among poor consumers.

Appropriate small-scale mechanization

The introduction of small-scale mechanization into the Ethiopian agriculture sector has the potential to create thousands of jobs in machinery service provision along the farming value chain.

About the CGIAR System Council

The CGIAR System Council is the strategic decision-making body of the CGIAR System that keeps under review the strategy, mission, impact and continued relevancy of the System as a whole. The Council meets face-to-face not less than twice per year and conducts business electronically between sessions. Additional meetings can be held if necessary.

Related outputs from the Share Fair 2019

Biofortified maize and wheat can improve diets and health, new study shows

TEXCOCO, Mexico (CIMMYT) — More nutritious crop varieties developed and spread through a unique global science partnership are offering enhanced nutrition for hundreds of millions of people whose diets depend heavily on staple crops such as maize and wheat, according to a new study in the science journal Cereal Foods World.

From work begun in the late 1990s and supported by numerous national research organizations and scaling partners, more than 60 maize and wheat varieties whose grain features enhanced levels of zinc or provitamin A have been released to farmers and consumers in 19 countries of Africa, Asia, and Latin America over the last 7 years. All were developed using conventional cross-breeding.

Farmer and consumer interest has grown for some 60 maize and wheat varieties whose grain features enhanced levels of the essential micronutrients zinc and provitamin A, developed and promoted through collaborations of CIMMYT, HarvestPlus, and partners in 19 countries (Map: Sam Storr/CIMMYT).
Farmer and consumer interest has grown for some 60 maize and wheat varieties whose grain features enhanced levels of the essential micronutrients zinc and provitamin A, developed and promoted through collaborations of CIMMYT, HarvestPlus, and partners in 19 countries (Map: Sam Storr/CIMMYT).

“The varieties are spreading among smallholder farmers and households in areas where diets often lack these essential micronutrients, because people cannot afford diverse foods and depend heavily on dishes made from staple crops,” said Natalia Palacios, maize nutrition quality specialist at the International Maize and Wheat Improvement Center (CIMMYT) and co-author of the study.

More than 2 billion people worldwide suffer from “hidden hunger,” wherein they fail to obtain enough of such micronutrients from the foods they eat and suffer serious ailments including poor vision, vomiting, and diarrhea, especially in children, according to Wolfgang Pfeiffer, co-author of the study and head of research, development, delivery, and commercialization of biofortified crops at the CGIAR program known as “HarvestPlus.”

“Biofortification — the development of micronutrient-dense staple crops using traditional breeding and modern biotechnology — is a promising approach to improve nutrition, as part of an integrated, food systems strategy,” said Pfeiffer, noting that HarvestPlus, CIMMYT, and the International Institute of Tropical Agriculture (IITA) are catalyzing the creation and global spread of biofortified maize and wheat.

“Eating provitamin A maize has been shown to be as effective as taking Vitamin A supplements,” he explained, “and a 2018 study in India found that using zinc-biofortified wheat to prepare traditional foods can significantly improve children’s health.”

Six biofortified wheat varieties released in India and Pakistan feature grain with 6–12 parts per million more zinc than is found traditional wheat, as well as drought tolerance and resistance to locally important wheat diseases, said Velu Govindan, a breeder who leads CIMMYT’s work on biofortified wheat and co-authored the study.

“Through dozens of public–private partnerships and farmer participatory trials, we’re testing and promoting high-zinc wheat varieties in Afghanistan, Ethiopia, Nepal, Rwanda, and Zimbabwe,” Govindan said. “CIMMYT is also seeking funding to make high-zinc grain a core trait in all its breeding lines.”

Pfeiffer said that partners in this effort are promoting the full integration of biofortified maize and wheat varieties into research, policy, and food value chains. “Communications and raising awareness about biofortified crops are key to our work.”

For more information or interviews, contact:

Mike Listman
Communications Consultant
International Maize and Wheat Improvement Center (CIMMYT)
m.listman@cgiar.org, +52 (1595) 957 3490

Shifting to a demand-led maize improvement agenda

Partners of the Stress Tolerant Maize for Africa (STMA) project held their annual meeting May 7–9, 2019, in Lusaka, Zambia, to review the achievements of the past year and to discuss the priorities going forward. Launched in 2016, the STMA project aims to develop multiple stress-tolerant maize varieties for diverse agro-ecologies in sub-Saharan Africa, increase genetic gains for key traits preferred by the smallholders, and make these improved seeds available at scale in the target countries in partnership with local public and private seed sector partners.

The project, funded by the Bill & Melinda Gates Foundation and the United States Agency for International Development (USAID), is led by the International Maize and Wheat Improvement Center (CIMMYT), and implemented together with the International Institute for Tropical Agriculture (IITA), national agricultural research systems and seed company partners in 13 countries in sub-Saharan Africa.

The meeting was officially opened by the Deputy Director of the Zambia Agriculture Research Institute (ZARI), Monde Zulu. “Maize in Africa faces numerous challenges such as drought, heat, pests and disease. Thankfully, these challenges can be addressed through research. I would like to take this opportunity to thank CIMMYT and IITA. Your presence here is a testament of your commitment to improve the livelihoods of farmers in sub-Saharan Africa,” she said.

The International Maize and Wheat Improvement Center (CIMMYT) and its partners are working together in the fight against challenges such as drought, maize lethal necrosis and fall armyworm. The STMA project applies innovative technologies such as high-throughput phenotyping, doubled haploids, marker-assisted breeding and intensive germplasm screening to develop improved stress-tolerant maize varieties for smallholder farmers. The project team is also strengthening maize seed systems in sub-Saharan Africa through public-private partnerships.

The efforts are paying off: in 2018, 3.5 million smallholder farmers planted stress-tolerant maize varieties in 10 African countries.

The deputy director of the Zambia Agriculture Research Institute (ZARI), Monde Zulu (fourth from left), gives the opening address of the STMA Annual Meeting 2019. Left to right: Mick Mwala, University of Zambia; Tony Cavalieri, Bill & Melinda Gates Foundation; B.M. Prasanna, CIMMYT; Monde Zulu, ZARI; Mwansa Kabamba, ZARI; Cosmos Magorokosho, CIMMYT; and Abebe Menkir, IITA.
The deputy director of the Zambia Agriculture Research Institute (ZARI), Monde Zulu (fourth from left), gives the opening address of the STMA Annual Meeting 2019. Left to right: Mick Mwala, University of Zambia; Tony Cavalieri, Bill & Melinda Gates Foundation; B.M. Prasanna, CIMMYT; Monde Zulu, ZARI; Mwansa Kabamba, ZARI; Cosmos Magorokosho, CIMMYT; and Abebe Menkir, IITA.

Yielding results

CIMMYT researcher and STMA project leader Cosmos Magorokosho reminded the importance of maize in the region. “Maize is grown on over 35 million hectares in sub-Saharan Africa, and more than 208 million farmers depend on it as a staple crop. However, average maize yields in sub-Saharan Africa are among the lowest in the world.” Magorokosho pointed out that the improved maize varieties developed through the project “provide not only increased yields but also yield stability even under challenging conditions like drought, poor soil fertility, pests and diseases.”

“STMA has proved that it is possible to combine multiple stress tolerance and still get good yields,” explained B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize (MAIZE). “One of the important aspects of STMA are the partnerships which have only grown stronger through the years. We are the proud partners of national agricultural research systems and over 100 seed companies across sub-Saharan Africa.”

Keynote speaker Hambulo Ngoma of the Indaba Agricultural Policy Research Institute (IAPRI) addressed the current situation of maize in Zambia, where farmers are currently reeling from recent drought. “Maize is grown by 89% of smallholder farmers in Zambia, on 54% of the country’s cultivable land, but productivity remains low. This problem will be exacerbated by expected population growth, as the population of Zambia is projected to grow from over 17 million to 42 million by 2050,” he said.

STMA meeting participants pose for a group photo during the field visit to QualiBasic Seed. (Photo: Jennifer Johnson/CIMMYT)
STMA meeting participants pose for a group photo during the field visit to QualiBasic Seed. (Photo: Jennifer Johnson/CIMMYT)

Down to business

On May 8, participants visited three partner local seed companies to learn more about the opportunities and challenges of producing improved maize seed for smallholder farmers.

Afriseed CEO Stephanie Angomwile discussed her business strategy and passion for agriculture with participants. She expressed her gratitude for the support CIMMYT has provided to the company, including access to drought-tolerant maize varieties as well as capacity development opportunities for her staff.

Bhola Nath Verma, principal crop breeder at Zamseed, explained how climate change has a visible impact on the Zambian maize sector, as the main maize growing basket moved 500 km North due to increased drought. Verma deeply values the partnership with the STMA project, as he can source drought-tolerant breeding materials from CIMMYT and IITA, allowing him to develop early-maturing improved maize varieties that escape drought and bring much needed yield stability to farmers in Angola, Botswana, the Democratic Republic of the Congo, Tanzania and Zambia.

At QualiBasic Seed, STMA partners were given the opportunity to learn and ask questions about the company’s operations, including the seed multiplication process in Zambia and the importance of high-quality, genetically pure foundation seed for seed companies.

Emmanuel Angomwile (left) and Stephanie Angomwile (center) answer visitors’ questions at their seed company, Afriseed. (Photo: Jennifer Johnson/CIMMYT)
Emmanuel Angomwile (left) and Stephanie Angomwile (center) answer visitors’ questions at their seed company, Afriseed. (Photo: Jennifer Johnson/CIMMYT)

Young ideas

The meeting concluded with an awards ceremony for the winners of the 2019 MAIZE Youth Innovators Awards – Africa, established by MAIZE in collaboration with the Young Professionals for Agricultural Development (YPARD). These awards recognize the contributions of young women and men under 35 who are implementing innovations in African maize-based agri-food systems, including research-for-development, seed systems, agribusiness, and sustainable intensification. This is the second year of the MAIZE Youth Awards, and the first time it has been held in Africa. Winners include Hildegarde Dukunde of Rwanda and Mila Lokwa Giresse of the Democratic Republic of the Congo in the change agent category, Admire Shayanowako of the Republic of South Africa and Ismael Mayanja of Uganda in the research category, and Blessings Likagwa of Malawi in the farmer category.

Winners of the 2019 MAIZE Youth Innovators Awards – Africa receive their awards at the STMA meeting in Lusaka, Zambia. From left to right: Admire Shayanowako, Blessings Likagwa, Ismael Mayanja and Hildegarde Dukunde. Fifth awardee Mila Lokwa Giresse not pictured. (Photo: J.Bossuet/CIMMYT)
Winners of the 2019 MAIZE Youth Innovators Awards – Africa receive their awards at the STMA meeting in Lusaka, Zambia. From left to right: Admire Shayanowako, Blessings Likagwa, Ismael Mayanja and Hildegarde Dukunde. Fifth awardee Mila Lokwa Giresse not pictured. (Photo: J.Bossuet/CIMMYT)

New study identifies best agronomic practices to reduce fall armyworm damage

Foliar damage to maize leaves due to adult fall armyworm in Zimbabwe. (Photo: C. Thierfelder/CIMMYT)
Foliar damage to maize leaves due to adult fall armyworm in Zimbabwe. (Photo: C. Thierfelder/CIMMYT)

The fall armyworm, an invasive insect-pest native to the Americas, has caused significant damage to maize crops in sub-Saharan Africa since its arrival to the region in 2016. An integrated approach, including improved agronomic practices, is necessary in order to fight against the invasive caterpillar. However, little is known about the most effective agronomic practices that could control fall armyworm under typical African smallholder conditions. In addition, more information is needed on the impact of fall armyworm on maize yield in Africa, as previous studies have focused on data trials or farmer questionnaires rather than using data from farmer fields. In a new study published by researchers with the International Maize and Wheat Improvement Center (CIMMYT), investigators set out to understand the factors influencing fall armyworm damage and to quantify yield losses due to fall armyworm damage.

The study examined damage in smallholder maize fields in two districts of eastern Zimbabwe. “We estimated the yield losses due to fall armyworm damage at 11.57 percent in the study area. Extrapolated to the whole of Zimbabwe, this would amount to a loss of 200,000 tons of grain, or a value of more than $32 million using the average global price of maize of $163 per ton in 2018,” said Frederic Baudron, cropping systems agronomist at CIMMYT and main author of the study.

Practices such as infrequent weeding or planting on land that had previously been fallow were found to increase fall armyworm damage to maize — most likely because they increased the amount of fall armyworm host plants other than maize. Conversely, practices hypothesized to increase the abundance of natural enemies of fall armyworm — such as minimum and zero tillage or the application of manure and compost — were found to decrease fall armyworm damage. Intercropping with pumpkins was found to increase damage, possibly by offering a shelter to moths or facilitating plant-to-plant migration of the caterpillar. Fall armyworm damage was also higher for some maize varieties over others, pointing to the possibility of selecting for host plant resistance.

“Given the limited coverage of the study in terms of area and season, it would be interesting to replicate it all over the country through the involvement of governmental agricultural departments, so that we get the full picture around the fall armyworm problem at a larger scale,” said Mainassara Zaman-Allah, co-author of the study and abiotic stress phenotyping specialist at CIMMYT.

This study is unique in that it is the first to collect information on agronomic practices that can affect fall armyworm damage using data taken directly from smallholder farmer fields. “Many papers have been written on pest incidence-damage-yield relationships, but with researchers often having control over some of the potential sources of variation,” said Peter Chinwada, TAAT Fall Armyworm Compact Leader at the International Institute of Tropical Agriculture (IITA), another co-author of the study.

“Our study was driven by the desire to determine fall armyworm incidence-damage-yield relationships under typical African smallholder farmer conditions which are characterized by a diversity of cropping systems, planting dates and “pest management practices” that may have been adopted for purposes which have nothing to do with managing pests. Unravelling such relationships therefore requires not only institutional collaboration, but the meeting of minds of scientists from diverse disciplines.”

The results of the study suggest that several practices could be promoted to control fall armyworm in its new home of Africa. “Farmers have already been informed of the results by their extension agents; the NGO GOAL, present in Zimbabwe, shared the findings,” Baudron said. “The next step is to test some of the recommendations suggested in the paper to control fall armyworm such as good weed management, conservation agriculture, use of manure and compost, and stopping pumpkin intercropping. These approaches will need to be refined.”

This work was implemented by the International Maize and Wheat Improvement Center (CIMMYT), GOAL, and the University of Zimbabwe. It was made possible by the generous support of Irish Aid, Bakker Brothers and the CGIAR Research Program on Maize (MAIZE). Any opinions, findings, conclusion, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of Irish Aid, Bakker Brothers and MAIZE.

 

Stress Tolerant Maize for Africa (STMA)

The Stress Tolerant Maize for Africa (STMA) project aims to diminish devastating constraints in maize production across sub-Saharan Africa. The project develops improved maize varieties with resistance and tolerance to drought, low soil fertility, heat, diseases such as Maize Lethal Necrosis and pests affecting maize production areas in the region.

STMA operates in eastern (Ethiopia, Kenya, Tanzania, Uganda), southern (Malawi, South Africa, Zambia, Zimbabwe) and West Africa (Benin, Ghana, Mali, Nigeria). These countries account for nearly 72 percent of all maize area in sub-Saharan Africa and include more than 176 million people who depend on maize-based agriculture for their food security and economic well-being. Climate change effects like drought, a lack of access to resources like fertilizer and other stresses increase the risk of crop failure that negatively affects income, food security and nutrition of millions of smallholder farmers and their families.

The project will develop 70 new stress-tolerant varieties using innovative modern breeding technologies, and promote improved stress-tolerant varieties expected to increase maize productivity up to 50 percent. The project aims to produce estimated 54,000 tons of certified seed to put into the hands of more than 5.4 million smallholder farmer households by the end of 2019.

Objectives

  • Use innovative breeding tools and techniques applied for increasing the rate of genetic gain in the maize breeding pipeline.
  • Increase commercialization of improved multiple-stress-tolerant maize varieties with gender-preferred traits by the sub-Saharan African seed sector.
  • Increase seed availability and farmer uptake of stress-tolerant maize varieties in target countries.
  • Optimize investment impact through effective project oversight, monitoring, evaluation and communication.