Dryland Crops, formerly known as the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project, aims to improve the livelihoods of small-scale producers and consumers of sorghum, millet, groundnut, cowpea and bean. Project partners focus on improving the breeding and seed systems of these crops in their key geographies in Burkina Faso, Ethiopia, Ghana, Mali, Nigeria, Tanzania and Uganda. Other crops receiving growing attention in the project include finger millet, pigeon pea and chickpea.
Although significant adoption of improved seed of dryland cereals and legume crops in Africa has been reported, its overall use remains low. There is a growing interest in these crops, particularly because of their resilience to climate-change; however, the seed sector is constrained by lack of product information, dearth of knowledge of the size and scale of the business opportunity, and inadequate access to early generation seed.
Dryland Crops will address these constraints by contributing to the establishment of robust systems that:
Enable networks to work synergistically across countries with common challenges and opportunities.
Support national agricultural research systems to access research, professional development and infrastructure-building opportunities.
Increase the quantity and quality of data substantiating varietal superiority and the demand for seed and grain of improved varieties.
Boost the availability of early generation seed and strengthen links between the research system and private- and public-sector actors.
The aspiration is to codevelop, validate by co-implementation, and continuously improve with partners research-to-farm-to-consumer models that achieve positive impacts on farmers’ livelihoods and consumers’ wellbeing.
The Alliance of Bioversity and CIAT and IITA will lead initiatives for common bean and cowpea, respectively. For sorghum, pearl millet and groundnut breeding, CIMMYT will design programs that support crop improvement networks, including CGIAR and national agricultural research systems, and incorporate best approaches, principles, and tools, particularly those availed through the Excellence in Breeding (EiB) platform.
The project is committed to gender equity as a guiding principle, considering the critical role women play in choosing legume and cereal varieties and seed sources. Women seed entrepreneurs and women-led seed companies will garner special attention for capacity development. Partnerships with actors through the value chain, platforms and demonstrations will ensure women have equal access to improved technologies.
The previous phase of the AVISA project was led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).
CGIAR turned 50 in 2021. To mark this anniversary, two independent and highly reputed experts have authored a history of CGIAR maize research from 1970 to 2020.
The authors, Derek Byerlee and Greg Edmeades, focused on four major issues running through the five decades of CGIAR maize research: the diversity of maize-growing target environments, the role of the public and private sectors in maize research in the tropics, the approaches adopted in reaching smallholder farmers in stress-prone rainfed tropical environments with improved technologies, and the need for maintaining strong financial support for international maize research efforts under the CGIAR.
The work of the International Maize and Wheat Improvement Center (CIMMYT), the International Institute of Tropical Agriculture (IITA) and the CGIAR Research Program on Maize (MAIZE) and its partners features prominently in this account. The authors also reviewed the history of maize policy research undertaken by the International Food Policy Research Institute (IFPRI).
The authors bring a unique perspective to the challenging task of tracing the evolution of maize research in CGIAR as both “insiders” and “outsiders.” While they worked as CIMMYT researchers in the 1990s, and later on as reviewers of various projects/programs, both are currently unaffiliated with CIMMYT. Byerlee is affiliated with the School of Foreign Service at Georgetown University, Washington DC, USA, and Edmeades is an independent scholar based in New Zealand.
“A clear-eyed and unbiased appreciation of our past — both successes and missteps — can only enrich our efforts, make better progress, and effectively meet the challenges of the present and the future,” wrote B.M. Prasanna, director of CIMMYT’s Global Maize Program and of the CGIAR Research Program MAIZE , in the foreword.
According to Prasanna, “The challenges to the maize-dependent smallholders in the tropics are far from over. Optimal, stable and long-term investment in international maize improvement efforts is critical.”
Disclaimer: The CGIAR Research Program MAIZE supported only the review, formatting, and online publication of this document. The findings and conclusions are completely of the authors, and do not necessarily represent the institutional views of CIMMYT, IITA, IFPRI or CGIAR and its partners.
In 2020, faced with the extraordinary challenges posed by the COVID-19 pandemic, MAIZE continued its mission to strengthen maize-based agri-food systems while improving the food security and livelihoods of the most vulnerable, especially resource-constrained smallholder farmers and their families.
MAIZE and its partners made great advances in the development of improved stress-tolerant maize varieties, the battle against fall armyworm (including the announcement of three first-generation fall armyworm-tolerant maize hybrids), testing and promoting of conservation agriculture and sustainable intensification, and in deepening our grasp of how to best empower women in the quest for gender equality and social inclusion in maize-based agri-food systems.
Led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Institute of Tropical Agriculture (IITA) as its main CGIAR Consortium partner, MAIZE focuses on increasing maize production for the 900 million poor consumers for whom maize is a staple food in Africa, South Asia and Latin America.
Musa Hasani Mtambo and his family in their conservation agriculture plot in Hai, Tanzania. (Photo: Peter Lowe/CIMMYT)
Between 1995-2015, nearly 60% of all maize varieties released in 18 African countries were CGIAR-related. At the end of this period, in 2015, almost half of the maize area in these countries grew CGIAR-related maize varieties. All that was accomplished through modest, maximum yearly investment of about $30 million, which showed high returns: in 2015, the aggregate yearly economic benefits for using CGIAR-related maize varieties released after 1994 were estimated to be between $660 million and $1.05 billion.
Since its introduction to Africa in the 16th century, maize has become one of the most important food crops in the continent.
It accounts for almost a third of the calories consumed in sub-Saharan Africa. And it’s grown on over 38 million hectares in the region, mostly by rainfall-dependent smallholder farmers.
Climate change poses an existential threat to the millions who depend on the crop for their livelihood or for their next meal. Already 65% of the maize growing areas in sub-Saharan Africa face some level of drought stress.
Long-term commitment
Through the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA), CGIAR has been working alongside countless regional partners since 1980s to develop and deploy climate-smart maize varieties in Africa.
This work builds on various investments including Drought-Tolerant Maize for Africa (DTMA) and Stress Tolerant Maize for Africa (STMA). Support for this game-changing work has generated massive impacts for smallholder farmers, maize consumers, and seed markets in the region. Throughout, the determination to strengthen the climate resilience of maize agri-food systems in Africa has remained the same.
To understand the impact of their work — and how to build on it in the coming years — researchers at CIMMYT and IITA took a deep dive into two decades’ worth of this work across 18 countries in sub-Saharan Africa. These findings add to our understanding of the impact of work that today benefits an estimated 8.6 million farmers in the region.
Big challenges remain. But with the right partnerships, know-how and resources we can have an outsize impact on meeting those challenges head on.
The overall objective of the 5-year EU-funded DeSIRA action, led by the International Potato Center (CIP), is to improve climate change adaptation of agricultural and food systems in Malawi through research and uptake of integrated technological innovations.
CIMMYT’s role is focused on the following project outputs:
Identify and develop integrated technology options that effectively provide management options to contribute to reducing risks and increasing resilience and productivity of the smallholder farmers’ agrifood systems in Malawi. Towards this objective, CIMMYT will evaluate drought-tolerant and nutritious maize varieties under conservation agriculture and conventional practices, and assess the overall productivity gains from agronomic and germplasm improvements versus current farming practices.
Develop, test and promote robust integrated pest and disease management strategies to predict, monitor and control existing and emerging biotic threats to agriculture while minimizing risks to farmers’ health and damage to the environment. Towards this objective, CIMMYT will evaluate the effect of striga on maize performance under conservation agriculture and conventional practices; evaluate farmer methods and other alternatives to chemical sprays for the control of fall armyworm; and study the effect of time of planting for controlling fall armyworm.
Seed viability test at the CIMMYT genebank. (Photo: Alfonso Cortés/CIMMYT)
The conservation of plant genetic diversity through germplasm conservation is a key component of global climate-change adaptation efforts. Germplasm banks like the maize and wheat collections at the International Maize and Wheat Improvement Center (CIMMYT) may hold the genetic resources needed for the climate-adaptive crops of today and tomorrow.
But how do we ensure that these important backups are themselves healthy and not potential vectors of pest and disease transmission?
“Germplasm refers to the source plants of either specific cultivars or of unique genes or traits that can be used by breeders for improved cultivars,” program moderator and head of the Health and Quarantine Unit at the International Potato Center (CIP) Jan Kreuze explained to the event’s 622 participants. “If the source plant is not healthy, whatever you multiply or use it for will be unhealthy.”
According to keynote speaker Saafa Kumari, head of the Germplasm Health Unit at the International Center for Agricultural Research in the Dry Areas (ICARDA), we know of 1.3 thousand pests and pathogens that infect crops, causing approximately $530 billion in damages annually. The most damaging among these tend to be those that are introduced into new environments.
Closing the gap, strengthening the safety net
The CGIAR has an enormous leadership role to play in this area. According to Kumari, approximately 85% of international germplasm distribution is from CGIAR programs. Indeed, in the context of important gaps in the international regulation and standards for germplasm health specifically, the practices and standards of CGIAR’s Germplasm Health Units represent an important starting point.
“Germplasm health approaches are not necessarily the same as seed and plant health approaches generally,” said Ravi Khaterpal, executive secretary for the Asia-Pacific Association of Agricultural Research Institutions (APAARI). “Best practices are needed, such as CGIAR’s GreenPass.”
In addition to stronger and more coherent international coordination and regulation, more research is needed to help source countries test genetic material before it is distributed, according to Francois Petter, assistant director for the European and Mediterranean Plant Protection Organization (EPPO). Head of the CGIAR Genebank Platform Charlotte Lusty also pointed out the needed for better monitoring of accessions in storage. “We need efficient, speedy processes to ensure collections remain healthy,” she said.
Of course, any regulatory and technological strategy must remain sensitive to existing and varied social and gender relations. We must account for cultural processes linked to germplasm movement, said Vivian Polar, Gender and Innovation Senior Specialist with the CGIAR Research Program on Roots, Tubers and Bananas (RTB). Germplasm moves through people, she said, adding that on the ground “women and men move material via different mechanisms.”
“The cultural practices associated with seed have to be understood in depth in order to inform policies and address gender- and culture-related barriers” to strengthening germplasm health, Polar said.
The event was co-organized by researchers at CIP and the International Institute of Tropical Agriculture (IITA).
The overall webinar series is hosted by CIMMYT, CIP, the International Food Policy Research Institute (IFPRI), IITA, and the International Rice Research Institute (IRRI). It is sponsored by the CGIAR Research Program on Agriculture for Nutrition (A4NH), the CGIAR Gender Platform and the CGIAR Research Program on Roots, Tubers and Bananas (RTB).
The third of the four webinars on plant health, which will be hosted by CIMMYT, is scheduled for March 10 and will focus on integrated pest and disease management.
Global thought leader, philanthropist and one of the International Maize and Wheat Improvement Center (CIMMYT) and CGIAR’s most vocal and generous supporters, Bill Gates, wrote a book about climate change and is now taking it around the world on a virtual book tour to share a message of urgency and hope.
With How to Avoid a Climate Disaster, Gates sets out a holistic and well-researched plan for how the world can get to zero greenhouse gas emissions in time to avoid a climate catastrophe. Part of this plan is to green everything from how we make things, move around, keep cool and stay warm, while also considering how we grow things and what can be done to innovate agriculture to lower its environmental impact.
Interviewed by actor and producer Rashida Jones, Gates explained his passion for action against climate change: “Avoiding a climate disaster will be one of the greatest challenges us humans have taken on. Greater than landing on the moon, greater than eradicating smallpox, even greater than putting a computer on every desk.”
“The world needs many breakthroughs. We need to get from 51 billion tons [of greenhouse gases] to zero while still meeting the planet’s basic needs. That means we need to transform the way we do almost everything.”
Bill Gates (left) talks to Rashida Jones during one of the events to present his new book.
Innovations in agriculture
When a book tour event attendee asked about the role of agriculture research in improving farmers’ livelihoods, Gates linked today’s challenge to that of the Green Revolution more than half a century ago. “There’s nothing more impactful to reduce the impacts of climate change than working on help for farmers. What we can do this time is even bigger than that. […] The most unfunded thing in this whole area is the seed research that has so much potential,” he said.
One such innovation and one of Gates’ favorite examples of CGIAR’s work is featured in Chapter 9 of his climate book – “Adapting to a warmer world” – and has been the source of generous funding from the Bill & Melinda Gates Foundation: drought-tolerant maize. “[…] as weather patterns have become more erratic, farmers are at greater risk of having smaller maize harvests, and sometimes no harvest at all. So, experts at CGIAR developed dozens of new maize varieties that could withstand drought conditions, each adapted to grow in specific regions of Africa. At first, many smallholder farmers were afraid to try new crop varieties. Understandably so. If you’re eking out a living, you won’t be eager to take a risk on seeds you’ve never planted before, because if they die, you have nothing to fall back on. But as experts worked with local farmers and seed dealers to explain the benefits of these new varieties, more and more people adopted them,” writes Gates.
We at CIMMYT are very proud and humbled by this mention as in collaboration with countless partners, CIMMYT and the International Institute of Tropical Agriculture (IITA) developed and promoted these varieties across 13 countries in sub-Saharan Africa and contributed to lifting millions of people above the poverty line across the continent.
For example, in Zimbabwe, farmers who used drought-tolerant maize varieties in dry years were able to harvest up to 600 kilograms more maize per hectare — enough for nine months for an average family of six — than farmers who sowed conventional varieties.
The world as we know it is over and, finally, humanity’s fight against climate change is becoming more and more mainstream. CIMMYT and its scientists, staff, partners and farmers across the globe are working hard to contribute to a transformation that responds to the climate challenge. We have a unique opportunity to make a difference. It is in this context that CGIAR has launched an ambitious new 10-year strategy that echoes Gates’s hopes for a better environment and food security for the generations to come. Let’s make sure that it ticks the boxes of smallholder farmers’ checklists.
Nancy Wawira stands among ripening maize cobs of high yielding, drought-tolerant maize varieties on a demonstration farm in Embu County, Kenya. Involving young people like Wawira helps to accelerate the adoption of improved stress-tolerant maize varieties. (Photo: Joshua Masinde/CIMMYT)
Since the 1980s, the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA) have spearheaded the development and deployment of climate-smart maize in Africa.
This game-changing work has generated massive impacts for smallholder farmers, maize consumers, and seed markets in the region. It also offers a blueprint for CGIAR’s new 2030 Research and Innovation Strategy, which proposes a systems transformation approach for food, land and water systems that puts climate change at the center of its mission.
Over the course of the 10-year run of the first iteration of this collaborative work on climate-adaptive maize, the Drought Tolerant Maize for Africa (DTMA) project, CIMMYT and IITA partnered with dozens of national, regional, and private sector partners throughout sub-Saharan Africa to release around 160 affordable maize varieties. This month, CGIAR recognizes climate-smart maize as one of the standout 50 innovations to have emerged from the institution’s first half-century of work.
Game changer
Maize’s importance as a food crop in sub-Saharan Africa is hard to overstate. So are the climate change-driven challenges it faces.
It accounts for almost one third of the region’s caloric intake. It is grown on over 38 million hectares, primarily under rainfed conditions. Around 40% of this area faces occasional drought stress. Another 25% suffers frequent drought and crop losses reaching 50%.
Drought-tolerant maize stabilized production under drought-stress conditions. Recent studies show that farmers growing drought-tolerant maize varieties in dry years produced over a half ton more maize per hectare than those growing conventional varieties — enough maize to support a family of six for nine months.
Such drastic results fed increased demand for improved, climate-adaptive maize seed in sub-Saharan Africa, thus strengthening local commercial seed markets and helping drought-tolerant maize varieties reach an increasing share of climate-vulnerable farmers.
Today, approximately 8.6 million farmers have benefitted from CIMMYT- and IITA-derived climate-adaptive maize varieties in sub-Saharan Africa. Millions have risen above the poverty line.
In addition to drought-tolerance, CIMMYT- and IITA-derived climate-adaptive maize varieties have been developed to tolerate multiple climate-driven stresses and to provide improved nutritional outcomes through biofortification with essential nutrients such as provitamin A and zinc.
The task ahead
In his recently published book, How to Avoid a Climate Catastrophe, Bill Gates says “no other organization has done more than CGIAR to ensure that families — especially the poorest — have nutritious food to eat. And no other organization is in a better position to create the innovations that will help poor farmers adapt to climate change in the years ahead.”
CGIAR’s new strategic orientation is an important step towards making good on that potential. CIMMYT and IITA’s longstanding work on climate-smart maize offers an important blueprint for the kinds of bold, comprehensive, and collaborative research for development initiatives such a strategy could empower.
As CIMMYT and IITA directors general Martin Kropff and Nteranya Sanginga note in a recent op-ed, “The global battle against climate change and all its interconnected impacts requires a multisectoral approach to formulate comprehensive responses.”
In an op-ed, Martin Kropff, Director General of CIMMYT, and Nteranya Sanginga, Director General of the International Institute of Tropical Agriculture (IITA), discuss how higher-yielding, stress-tolerant maize varieties can not only help smallholder farmers combat climatic variabilities and diseases, but also effectively diversify their farms.
Evidence of enormity and immediacy of the challenges climate change poses for life on earth seems to pour in daily. But important gaps in our knowledge of all the downstream effects of this complex process remain. And the global response to these challenges is still far from adequate to the job ahead. Bold, multi-stakeholder, multidisciplinary action is urgent.
In addition to exploring the important challenges climate changes poses for plant health, the event explored the implications for the wellbeing and livelihoods of smallholder farming communities in low- and middle- income countries, paying special attention to the gender dimension of both the challenges and proposed solutions.
The event was co-organized by researchers at the International Rice Research Institute (IRRI) and the International Centre of Insect Physiology and Ecology (icipe).
The overall webinar series is hosted by the International Maize and Wheat Improvement Center (CIMMYT), the International Potato Center (CIP), the International Food Policy Research Institute (IFPRI), the International Institute of Tropical Agriculture (IITA) and the International Rice Research Institute (IRRI). It is sponsored by the CGIAR Research Program on Agriculture for Nutrition (A4NH), the CGIAR Gender Platform and the CGIAR Research Program on Roots, Tubers and Bananas (RTB).
This is important
The stakes for the conversation were forcefully articulated by Shenggen Fan, chair professor and dean of the Academy of Global Food Economics and Policy at China Agricultural University and member of the CGIAR System Board. “Because of diseases and pests, we lose about 20-40% of our food crops. Can you imagine how much food we have lost? How many people we could feed with that lost food? Climate change will make this even worse,” Fan said.
Such impacts, of course, will not be evenly felt across geographic and social divides, notably gender. According to Jemimah Njuki, director for Africa at IFPRI, gender and household relationships shape how people respond to and are impacted by climate change. “One of the things we have evidence of is that in times of crises, women’s assets are often first to be sold and it takes even longer for them to be recovered,” Njuki said.
The desert locust has been around since biblical times. Climate change has contributed to its reemergence as a major pest. (Photo: David Nunn)
Shifting risks
When it comes to understanding the impact of climate change on plant health “one of our big challenges is to understand where risk will change,” said Karen Garrett, preeminent professor of plant pathology at the University of Florida,
This point was powerfully exemplified by Henri Tonnang, head of Data Management, Modelling and Geo-information Unit at icipe, who referred to the “unprecedented and massive outbreak” of desert locusts in 2020. The pest — known since biblical times — has reemerged as a major threat due to extreme weather events driven by sea level rise.
Researchers highlighted exciting advancements in mapping, modelling and big data techniques that can help us understand these evolving risks. At the same time, they stressed the need to strengthen cooperation not only among the research community, but among all the stakeholders for any given research agenda.
“The international research community needs to transform the way it does research,” said Ana María Loboguerrero, research director for Climate Action at the Alliance of Bioversity International and CIAT. “We’re working in a very fragmented way, sometime inefficiently and with duplications, sometimes acting under silos… It is difficult to deliver end-to-end sustainable and scalable solutions.”
Time for a new strategy
Such injunctions are timely and reaffirm CGIAR’s new strategic orientation. According to Sonja Vermeulen, the event moderator and the director of programs for the CGIAR System Management Organization, this strategy recognizes that stand-alone solutions — however brilliant — aren’t enough to make food systems resilient. We need whole system solutions that consider plants, animals, ecosystems and people together.
Echoing Fan’s earlier rallying cry, Vermeulen said, “This is important. Unless we do something fast and ambitious, we are not going to meet the Sustainable Development Goals.”
Cover photo: All farmers are susceptible to extreme weather events, and many are already feeling the effects of climate change. (Photo: N. Palmer/CIAT)
A handful of improved maize seed from the drought-tolerant variety TAN 250, developed and registered for sale in Tanzania through CIMMYT’s Drought Tolerant Maize for Africa (DTMA) project, in partnership with Tanzanian seed company Tanseed International Limited. It is based on material from CIMMYT-Zimbabwe, CIMMYT-Mexico, and Tanzania. (Photo: Anne Wangalachi/CIMMYT)
The CGIAR Research Program on Maize (MAIZE) “uniquely fills a gap at the global and regional level, positioning it to continue catalyzing good science across borders,” according to a new report.
In addition to the exceptional quality of the program’s scientific inputs and the overall quality of its outputs, the reviewers note the program’s capacity to mobilize “stakeholders, resources and knowledge to rapidly deliver valuable solutions for a critical need.” The review authors specifically note MAIZE’s efforts towards halting the spread of maize lethal necrosis (MLN).
While, like all CGIAR Research Programs, MAIZE is due to conclude at the end of 2021, much of the program’s pioneering work will continue under new guises, such as the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project.
MAIZE — led by CIMMYT in partnership with the International Institute of Tropical Agriculture (IITA) — spearheads international, multi-stakeholder research for development to improve the livelihoods and food security of poor maize producers and consumers. It simultaneously seeks to strengthen the sustainability of maize-based agri-food systems. The program focuses on maize production in low- to middle-income countries — accounting for approximately two-thirds of global maize production — where the crop is “key to the food security and livelihoods of millions of poor famers,” according to the report.
“MAIZE provides a very robust platform for collaboration with our national partners, including private companies, community seed produces and other stakeholders. Through projects such as Drought Tolerant Maize for Africa (DTMA) and STMA, research has been able to provide innovative solutions to challenges that smallholder farmers face in their daily lives, such as drought, poor soils, and pests and diseases,” says Nteranya Sanginga, IITA’s Director General.
The review concludes that MAIZE “good management and governance practice are a strong foundation for the remainder of [the program’s] running.” The reviewers also recommend that the “excellent,” participatory application of theory of change thinking in the second phase of MAIZE be mainstreamed at the CGIAR system level moving forward. Key recommendations for the program’s final phase include:
Building on MAIZE’s “strong network of partners” by deepening these relationships into “multidirectional partnerships.”
Building on existing cross-cutting work on capacity development, climate change, gender and youth.
Diversifying and expanding MAIZE’s knowledge dissemination efforts to more deeply engage with include multiple and non-scientific audiences.
Scientists are calling for accelerated adoption of new hybrid maize varieties with resistance to maize lethal necrosis (MLN) disease in sub-Saharan Africa. In combination with recommended integrated pest management practices, adopting these new varieties is an important step towards safeguarding smallholder farmers against this devastating viral disease.
A new publication in Virus Research shows that these second-generation MLN-resistant hybrids developed by the International Maize and Wheat Improvement Center (CIMMYT) offer better yields and increased resilience against MLN and other stresses. The report warns that the disease remains a key threat to food security in eastern Africa and that, should containment efforts slacken, it could yet spread to new regions in sub-Saharan Africa.
The publication was co-authored by researchers at the International Maize and Wheat Improvement Center (CIMMYT), Kenya Agricultural and Livestock Research Organization (KALRO), the Alliance for a Green Revolution in Africa (AGRA), the African Agricultural Technology Foundation (AATF) and Aarhus University in Denmark.
CIMMYT technician Janet Kimunye (right) shows visitors a plant with MLN symptoms at the MLN screening facility in Naivasha, Kenya. (Photo: CIMMYT)
Stemming the panic
The first reported outbreak of MLN in Bomet County, Kenya in 2011 threw the maize sector into a panic. The disease caused up to 100% yield loss. Nearly all elite commercial maize varieties on the market at the time were susceptible, whether under natural of artificial conditions. Since 2012, CIMMYT, in partnership with KALRO, national plant protection organizations and commercial seed companies, has led multi-stakeholder, multi-disciplinary efforts to curb MLN’s spread across sub-Saharan Africa. Other partners in this endeavor include the International Institute of Tropical Agriculture (IITA), non-government organizations such as AGRA and AATF, and advanced research institutions in the United States and Europe.
In 2013 CIMMYT established an MLN screening facility in Naivasha. Researchers developed an MLN-severity scale, ranging from 1 to 9, to compare varieties’ resistance or susceptibility to the disease. A score of 1 represents a highly resistant variety with no visible symptoms of the disease, while a score of 9 signifies extreme susceptibility. Trials at this facility demonstrated that some of CIMMYT’s pre-commercial hybrids exhibited moderate MLN-tolerance, with a score of 5 on the MLN-severity scale. CIMMYT then provided seed and detailed information to partners for evaluation under accelerated National Performance Trials (NPTs) for varietal release and commercialization in Kenya, Tanzania and Uganda.
Between 2013 and 2014, four CIMMYT-derived MLN-tolerant hybrid varieties were released by public and private sector partners in East Africa. With an average MLN severity score of 5-6, these varieties outperformed commercial MLN-sensitive hybrids, which averaged MLN severity scores above 7. Later, CIMMYT breeders developed second-generation MLN-resistant hybrids with MLN severity scores of 3–4. These second-generation hybrids were evaluated under national performance trials. This led to the release of several hybrids, especially in Kenya, over the course of a five-year period starting in 2013. They were earmarked for commercialization in East Africa beginning in 2020.
Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)
Widespread adoption critical
The last known outbreak of MLN was reported in 2014 in Ethiopia, marking an important break in the virus’s spread across the continent. Up to that point, the virus had affected the Democratic Republic of the Congo, Kenya, Rwanda, Tanzania and Uganda. However, much remains to be done to minimize the possibility of future outbreaks.
“Due to its complex and multi-faceted nature, effectively combating the incidence, spread and adverse effects of MLN in Africa requires vigorous and well-coordinated efforts by multiple institutions,” said B.M. Prasanna, primary author of the report and director of the Global Maize Program at CIMMYT and of the CGIAR Research Program on Maize (MAIZE). Prasanna also warns that most commercial maize varieties being cultivated in eastern Africa are still MLN-susceptible. They also serve as “reservoirs” for MLN-causing viruses, especially the maize chlorotic mottle virus (MCMV), which combines with other viruses from the Potyviridae family to cause MLN.
“This is why it is very important to adopt an integrated disease management approach, which encompasses extensive adoption of improved MLN-resistant maize varieties, especially second-generation, not just in MLN-prevalent countries but also in the non-endemic ones in sub-Saharan Africa,” Prasanna noted.
The report outlines other important prevention and control measures including: the production and exchange of “clean” commercial maize seed with no contamination by MLN-causing viruses; avoiding maize monocultures and continuous maize cropping; practicing maize crop rotation with compatible crops, especially legumes, which do not serve as hosts for MCMV; and continued MLN disease monitoring and surveillance.
L.M. Suresh (center-right), Maize Pathologist at CIMMYT and Head of the MLN Screening Facility, facilitates a training on MLN with national partners. (Photo: CIMMYT)
Noteworthy wins
In addition to the development of MLN-resistant varieties, the fight against MLN has delivered important wins for both farmers and their families and for seed companies. In the early years of the outbreak, most local and regional seed companies did not understand the disease well enough to produce MLN-pathogen free seed. Since then, CIMMYT and its partners developed standard operating procedures and checklists for MLN pathogen-free seed production along the seed value chain. Today over 30 seed companies in Ethiopia, Kenya, Uganda, Rwanda and Tanzania are implementing these protocols on a voluntary basis.
“MLN represents a good example where a successful, large-scale surveillance system for an emerging transboundary disease has been developed as part of a rapid response mechanism led by a CGIAR center,” Prasanna said.
Yet, he noted, significant effort and resources are still required to keep the maize fields of endemic countries free of MLN-causing viruses. Sustaining these efforts is critical to the “food security, income and livelihoods of resource-poor smallholder farmers.
To keep up with the disease’s changing dynamics, CIMMYT and its partners are moving ahead with novel techniques to achieve MLN resistance more quickly and cheaply. Some of these innovative techniques include genomic selection, molecular markers, marker-assisted backcrossing, and gene editing. These techniques will be instrumental in developing elite hybrids equipped not only to resist MLN but also to tolerate rapidly changing climatic conditions.
Cover photo: Researchers and visitors listen to explanations during a tour of infected maize fields at the MLN screening facility in Naivasha, Kenya. (Photo: CIMMYT)
As one of the pioneer homegrown seed companies in Uganda, Farm Inputs Care Centre (FICA) has become one of the leading players in the seed sector value chain. Since its inception in 1999, it has played a significant role in variety development and maintenance, seed production, and processing, packaging and marketing.
The close linkages it has maintained with partners such as National Agriculture Research Organization (NARO)’s National Crops Resources Research Institute (NaCCRI) and the International Maize and Wheat Improvement Center (CIMMYT) have seen it acquire new hybrids for commercialization and production of early generation seed.
A FICA representative stands in front of a demonstration plot for one of the organization’s stress-tolerant maize varieties in Uganda. (Photo: Mosisa Worku/CIMMYT)
A unique opportunity for collaboration
Recurrent plant threats such as drought, pests and diseases — alongside the perpetual need to develop and foster better performing varieties in changing climatic conditions — has required partners to intensify efforts to tackle these challenges to bolster smallholders’ resilience. The Drought Tolerant Maize for Africa (DTMA) project, for instance, ushered in the partnership between CIMMYT, FICA, national agriculture research systems, and other partners to develop and scale up well-adapted, drought-tolerant maize varieties among farmers in Uganda and elsewhere in sub-Saharan Africa.
“One of the unique features of the collaboration is that besides CIMMYT, there was a multi-stakeholder platform that would convene key seed sector players to discuss issues affecting the industry. Ultimately, this benefitted the farmers,” says FICA’s Chief Executive Officer Narcis Tumushabe.
This partnership continued during the Stress Tolerant Maize for Africa (STMA) initiative — which ran from 2016 to2020 — and now, in the Accelerating Genetic Gains in Maize and Wheat (AGG) project, which launched in July 2020 with the ambition of fast-tracking the development of climate-resilient, higher-yielding, demand-driven, gender-responsive and nutritious maize and wheat varieties.
Tumushabe is happy that the hybrids delivered in the DTMA and STMA projects proved worthwhile against multiple stresses in farmers’ fields, offering reliable yields even in challenging conditions like drought or other stresses. Because of the diverse ecological zones in Uganda, it was essential to test the hybrids FICA accessed through the CIMMYT-NARO partnership across different ecological zones, ahead of commercialization. This has given farmers opportunities to choose the varieties that are suitable in their environment. The five varieties FICA chose to promote include Longe 9H — which produces about 700 metric tons annually — and WE 2114, WE 2115, WE 3106 and UH 5355, which cumulatively produce about 1,300 tons annually.
The WE 3106 variety has a strong stem and produces big cobs and Tumushabe notes that some livestock farmers prefer this variety as a good forage source for their livestock. Large-scale commercial farmers prefer WE 2114 due to the positioning of the ears at a uniform height, which makes it easy for harvesting using combine harvesters.
Additionally, FICA breeders have also developed impactful combination hybrids using CIMMYT and FICA lines and the company looks to double its annual production of certified stress-tolerant maize seed to 4,000 metric tons in the next five years. Currently, it enlists about 800 contract seed growers to support its seed multiplication efforts.
A FICA employee walks through a seed production field growing hybrid maize variety WE2114 in Masindi, Uganda. (Photo: Mosisa Worku/CIMMYT)
Surmounting monumental challenges for varietal turnover
Promoting new seed varieties, especially in a highly competitive market, is no mean task. With the seed delivery systems in sub-Saharan Africa mainly driven by the supply side, seed companies end up multiplying only the popular varieties that are already in high demand, explains Mosisa Worku Regasa, a seed systems specialist at CIMMYT.
“Consequently, these companies become reluctant to multiply new seed varieties due to deficient demand, thereby slowing down the rate of varietal turnover,” says Mosisa. “There is, however, a growing push for a demand-driven system.”
“Some avenues for cultivating a demand-led environment include investing a great deal of resources to better understand farmers’ preferences or product profiles, setting up numerous demonstration plots for newer, better-performing varieties closer to the farmers locations in addition to investing in other marketing and promotional activities.”
Still, the seed sector must confront other dynamics such as farmers that are captive of old albeit popular varieties.
“There are cases where, depending on the stage of a seed company’s development, the number of products that one can deliver in the right quality and appropriate maintenance level has to be limited or realistically managed,” Tumushabe explains.
“The seed company also ought to be sure that the new variety will be superior to existing varieties under farmers’ conditions. That is why one may find little excitement if the genetic gain of a new crop variety is not significantly high compared to the already known and available crop variety. This may make one wonder why an old variety continues to persist in the market.”
To create awareness and sustain the demand for its seed, FICA has established demonstration farms to showcase the performance of its stress-resilient maize varieties among farmers and engaged agro-dealers as last mile seed merchants. It is also during field days held at demonstration farms where the company obtains feedback on how to improve its breeding program, particularly from women smallholder farmers. Such efforts have helped raise the company’s share of stress-tolerant maize seed production to 70% of the total maize seed it produces, which indicates good progress in variety replacement.
Maize and wheat fields at the El Batán experimental station. (Photo: CIMMYT/Alfonso Cortés)
The first meetings of the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) wheat and maize science and technical steering committees — WSC and MSC, respectively — took place virtually on 25th and 28th September.
Researchers from the International Maize and Wheat Improvement Center (CIMMYT) sit on both committees. In the WSC they are joined by wheat experts from national agricultural research systems (NARS) in Bangladesh, Ethiopia, Kenya, India, and Nepal; and from Angus Wheat Consultants, the Foreign, Commonwealth & Development Office (FCDO), HarvestPlus, Kansas State University and the Roslin Institute.
Similarly, the MSC includes maize experts from NARS in Ethiopia, Ghana, Kenya and Zambia; and from Corteva, the Foundation for Food and Agriculture Research (FFAR), the International Institute for Tropical Agriculture (IITA), SeedCo, Syngenta, the University of Queensland, and the US Agency for International Development (USAID).
During the meetings, attendees discussed scientific challenges and opportunities for AGG, and developed specific recommendations pertaining to key topics including breeding and testing scheme optimization, effective engagement with partners and capacity development in the time of COVID-19, and seed systems and gender intentionality.
Discussion groups noted, for example, the need to address family structure in yield trials, to strengthen collaboration with national partners, and to develop effective regional on-farm testing strategies. Interestingly, most of the recommendations are applicable and valuable for both crop teams, and this is a clear example of the synergies we expect from combining maize and wheat within the AGG project.
All the recommendations will be further analyzed by the AGG teams during coming months, and project activities will be adjusted or implemented as appropriate. A brief report will be submitted to the respective STSCs prior to the second meetings of these committees, likely in late March 2021.
Fall armyworm continues to cause havoc in Africa. Farmers in Somalia have not been spared since this unwelcome guest showed up in the country over three years ago. As part of the mitigation measures, the Somali Agriculture Technical Group (SATG) in partnership with the International Maize and Wheat Improvement Center (CIMMYT) and the International Committee of the Red Cross (ICRC) recently conducted online trainings on fall armyworm management for sustainable crop protection. The online trainings, targeting national agriculture stakeholders in the country, took place on August 25 and September 30, 2020, with nearly 250 participants attending both webinars.
“This is the first of our efforts to reach out to our partners in Somalia, especially the Somali Agriculture Technical Group and the national agricultural research system, to increase the awareness on the integrated pest management approaches that can help combat this highly destructive pest,” said B.M. Prasanna, Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize (MAIZE).
“This training was designed to help participants to gain a better understanding about fall armyworm, how to identify it, how to monitor and scout for it, how to effectively implement a management strategy that is environmentally and ecologically benign, in order to protect the food security and livelihoods of farmers and their families,” Prasanna said.
An integrated pest management strategy for sustainable control of fall armyworm should consider various interventions, including regular scouting and monitoring of the pest in the fields, host plant resistance, biological and biorational control, agroecological management, and use of environmentally safer pesticides and good agronomic practices tailored for the socio-cultural and economic contexts of the farmers. Ultimately, the purpose of a functional integrated pest management approach is to suppress pest population by applying techniques that minimize human and environmental harm, while protecting the crops from economic damage.
“I am happy to see the expertise from high levels of research at CIMMYT, icipe, IITA, universities, SATG and the humanitarian sector coming together to tackle and solve problems linked to food production and consumption. I believe that such important trainings have great value for Somalia, and should be further strengthened and encouraged,” said Abdalla Togola from the ICRC.
B.M. Prasanna, Director of CIMMYT Global Maize Program and the CGIAR Research Program MAIZE, presents at the online training on integrated pest management-based fall armyworm control. (Photo: Joshua Masinde/CIMMYT)
Hussein Haji, the Executive Director of Somali Agriculture Technical Group speaks at the fall armyworm online training on integrated pest management-based fall armyworm control. (Photo: Joshua Masinde/CIMMYT)
Professor Dan McGrath of Oregon State University, USA, delivering a training on integrated pest management-based fall armyworm control. (Photo: Joshua Masinde/CIMMYT)
John Karonga, an agronomist at the International Committee of the Red Cross (ICRC) speaks at the online training on integrated pest management-based fall armyworm control. (Photo: Joshua Masinde/CIMMYT)
Hussein Haji, the Executive Director of SATG was optimistic that the training would go a long way to empower farmers in Somalia, through their cooperatives, and could lead to better ways of tackling challenges such as fall armyworm, already made worse by other stresses like drought and desert locusts.
“Through our extension workers, we hope this information will trickle down to our cooperatives, who produce mainly maize and sorghum seed in Somalia,” he added.
This comes on the back of a partnership between the ICRC and SATG to implement activities intended to improve food production among rural communities in six regions of Somalia. The partnership would enhance quality seed production with a focus on maize and sorghum, the major staple crops in the country.
Besides Prasanna, the key resource persons included Dan McGrath (Professor Emeritus, Oregon State University, USA), Joseph Huesing (CIMMYT Consultant on integrated pest management) and Georg Goergen (Entomologist, International Institute of Tropical Agriculture), Frederic Baudron (CIMMYT Systems Agronomist), Anani Bruce (CIMMYT Entomologist), Yoseph Beyene (CIMMYT Regional Breeding Coordinator for Africa) and Saliou Niassy (Head of Agricultural Technology Transfer Unit, International Center of Insect Physiology and Ecology).
The fall armyworm, a voracious caterpillar officially reported for the first time in Africa in Nigeria in 2016, remains a serious pest with devastating consequences on millions of farmers’ food and livelihood security. The pest has spread quickly throughout sub-Saharan Africa, primarily attacking maize and sorghum, two main staple crops in the region. The Food and Agriculture Organization of the United Nations (FAO) estimates up to 18 million tons of maize are lost to the pest annually, at an estimated economic loss of $4.6 billion.
To reduce the losses, experts have been recommending a toolbox of integrated pest management (IPM) practices to minimize the damage on smallholder farmers’ fields. Scientists at CIMMYT are also working intensively to develop improved maize varieties with native genetic resistance to this devastating insect pest.
Cover photo: Kowthar Abdirahman Afyare studies agriculture at the Somali National University. (Photo: AMISOM Public Information)