Skip to main content

funder_partner: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)

Building towards a climate-smart agriculture future through harnessing crop modeling

Participants of the crop modeling simulation workshop in Harare, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)

Anticipating appropriate and timely responses to climate variability and change from an agricultural perspective requires forecasting and predictive capabilities. In Africa, climate-related risks and hazards continue to threaten food and nutrition security.

Crop simulation models are tools developed to assist farmers, agronomists and agro-meteorologists with insights on impacts to possible management decisions. Such tools are enablers for taking an appropriate course of action where complexity exists relating to both crop and livestock production. For example, a new variety can be introduced to Zimbabwe, but its performance will differ depending on the agroecological zones of the country and the respective treatments a farmer may apply. Applying modeling tools to assess its performance can predict yield differences and facilitate the generation of recommendations for which region is most suited to the variety, water use efficiency, and crop combinations.

Earlier this month, the International Maize and Wheat Improvement Center (CIMMYT) hosted a crop modeling simulation workshop with delegates from various African countries in Harare, Zimbabwe.

“The CGIAR Initiatives of Excellence in Agronomy (EiA) and Sustainable Intensification of Mixed Farming Systems (SI-MFS) have recognized the need to enhance modeling capacity in Africa to allow African scientists to lead in solving challenges within agricultural systems,” said CIMMYT crop scientist and coordinator of the workshop, Vimbayi Grace Petrova Chimonyo.

The workshop was facilitated by renowned global crop modeling experts to provide critical coaching support to upcoming modelers. These experts included Sue Walker, a professor at the University of the Free State, Tafadzwa Mabhaudhi, a professor at the International Water Management Institute (IWMI), KPC Rao, a lead scientist at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Dirk Raes (KU Leuven), Diego Peqeuno (CIMMYT)  and Siyabusa Mukuhlani from the International Institute of Tropical Agriculture (IITA).

Crop models are scientific presentations of statistical knowledge about how a crop will grow in interaction with its environment. They use mathematical equations representing processes within a predefined plant system and the interactions between crops and the environment. The discipline is based on the premise that agricultural system environments are complex and not homogenous. Crop models enable decision-makers to make data-driven decisions by simulating possible outcomes to changes in a system and the configuration of production systems.

“It is quite apparent that modeling skills are scarce on the African continent. This workshop is a step toward consolidating existing capacities on the continent. If we are going to be able to close the already existing food deficit gap on the continent and meet the food requirements needed by 2050, with an estimated global population of nine billion, then we need to take modeling seriously,” said Chimonyo in her opening address at the workshop.

Due to the lack of crop modeling expertise in African states, there is a gap in capacity to build relevant crop advisory tools for farmers at a local level. This leads to poor policy formulation as decisions are based on a high degree of generalizations.

“In this modern era, we need advisories that are context specific. For example, just because a maize variety achieved a certain yield in one context doesn’t mean the same variety will achieve the same yields even if the rainfall patterns are the same. Other factors come into play, such as the soil type, temperature and other related aspects affecting the yield. Crop modeling affords advisory managers some specifications necessary to achieve high yields in different environments,” said Walker.

Vimbayi Chimonyo from CIMMYT making opening remarks at the workshop. (Photo: Tawanda Hove/CIMMYT)

Speakers at the workshop focused on three models, APSIM, AquaCrop and DSSAT, and participants had the opportunity to take part in activities and ask questions face-to-face. The workshop also covered key modeling aspects such as the minimum data requirements needed to run a model, calibration and validation of models, confidence testing of results, the science involved in simulating phenological development and growth processes, water and nitrogen cycles, and the use of multi-modeling approaches.

The workshop was particularly useful for young scientists, according to Rao, allowing more experienced modelers to share their expertise. “With such an interactive platform, experienced modelers like me can demonstrate multi-modeling approaches.”

Rao presented on two main approaches. The first involved the application of different simulation models to simulate one component of a system such as crops. The second simulated the complete system by integrating various models, such as crops, livestock, and economic models, providing an opportunity to understand the synergies and trade-offs between different components of the whole farm.

Participants at the workshop expressed their satisfaction with the training provided and left with practical knowledge that they could apply in their work both in the field and in the lab.

“When I first arrived, I knew very little about modeling, but as the workshop progressed, my confidence in applying models increased. I intend to immediately apply this knowledge for the forthcoming season such that we can start making impactful contributions to the country’s food and nutrition security status,” said Birhan Abdulkadir Indris, a research officer at CIMMYT.

“I am leaving this workshop with the confidence that I will advise farmers in my circle of influence with services tailored to their needs. I have learned that crop modeling can be used for many purposes and that different models address different issues,” said Connie Madembo, a research technician at CIMMYT. “I intend to teach other fellow PhD students at the University of Zimbabwe the same things I have learnt here. As a country, we need to be at the forefront of using these models, considering Zimbabwe’s high weather variability.”

As a way forward, the trained scientists were encouraged to apply the modeling skills they had gained to address short-term problems such as yield gaps and water use efficiency and long-term challenges such as the local impacts of climate change.

“While more capacity training is required, starting somewhere is better than never starting,” said Mabhaudi.

‘Farmers now more aware about climate resilient agri’

A workshop in New Delhi on the Climate Resilient Agriculture (CRA) programme explored solar harvesting, carbon credit, crop residue management, climate resilient cultivars, millets and pulses in cropping systems, and maize drying and processing.

Arun Kumar Joshi from the Borlaug Institute for South Asia (BISA) highlighted the potential of the programme if more farmers embrace CRA technology.

New technologies and innovations are essential in helping farmers adapt to changing climate conditions and reduce reliance on greenhouse gases (GHG).

Read the original article: ‘Farmers now more aware about climate resilient agri’

CGIAR Initiative: Excellence in Agronomy

Smallholdings represent over 80% of the world’s farms, mostly located in the Global South, and supply 50% of global food. Enhanced agronomy management has a great potential to increase productivity, sustainability, efficiency and competitiveness of these smallholdings, which is characterized by low and variable yields and profitability, smallholder farming challenges include water scarcity, climate change, low resource use efficiencies and declining soil health. These result in negative impacts on food and nutrition security, equitable livelihoods and ecosystem health.  

Smallholder farmers seasonally make critical agronomic decisions regarding crop choice, planting dates and pest, disease, weed, soil fertility and water management, often based on suboptimal practices and information. Traditional agronomic research enhances our understanding of basic processes, but with limited connection to stakeholder demand and often based on outdated approaches. The development, deployment and uptake of interventions is hampered by social, economic and institutional constraints, further confounded by adherence to conventional supply-driven innovation strategies.

Objective

This Initiative aims to deliver an increase in productivity and quality per unit of input (agronomic gain) for millions of smallholder farming households in prioritized farming systems by 2030, with an emphasis on women and young farmers, showing a measurable impact on food and nutrition security, income, resource use, soil health, climate resilience and climate change mitigation.  

Activities

This objective will be achieved through:

  • Facilitating the delivery of agronomy-at-scale solutions, including development and technical/user-experience validation and the co-creation and deployment of gender- and youth-responsive solutions to smallholder farmers via scaling partners. 
  • Enabling the creation of value from big data and advanced analytics through the assembly and governance of data and tools; application of existing analytics and solutions for specific use cases; supply of information on climate impacts, inclusivity and sustainability of agronomic solutions; and national agricultural research system capacity strengthening. 
  • Driving the next generation of agronomy-at-scale innovations by addressing key knowledge gaps and facilitating innovation in agronomy research through engagement with partners. 
  • Nurturing internal efficiencies for an agile and demand-driven agronomy research and development community through internal organization and external partnerships for prioritization, demand mapping and foresight. 

Development of Smart Innovation through Research in Agriculture (DeSIRA)

The overall objective of the 5-year EU-funded DeSIRA action, led by the International Potato Center (CIP), is to improve climate change adaptation of agricultural and food systems in Malawi through research and uptake of integrated technological innovations.

CIMMYT’s role is focused on the following project outputs:

  • Identify and develop integrated technology options that effectively provide management options to contribute to reducing risks and increasing resilience and productivity of the smallholder farmers’ agrifood systems in Malawi. Towards this objective, CIMMYT will evaluate drought-tolerant and nutritious maize varieties under conservation agriculture and conventional practices, and assess the overall productivity gains from agronomic and germplasm improvements versus current farming practices.
  • Develop, test and promote robust integrated pest and disease management strategies to predict, monitor and control existing and emerging biotic threats to agriculture while minimizing risks to farmers’ health and damage to the environment. Towards this objective, CIMMYT will evaluate the effect of striga on maize performance under conservation agriculture and conventional practices; evaluate farmer methods and other alternatives to chemical sprays for the control of fall armyworm; and study the effect of time of planting for controlling fall armyworm.

A less risky business

A maize farmer in southern Ethiopia. (Photo: <a href="https://flic.kr/p/2hp5uoS">S. Samuel/CCAFS</a>)
A maize farmer in southern Ethiopia. (Photo: S. Samuel/CCAFS)

Because of unpredictable climate conditions, agricultural production in Ethiopia faces uncertainties during both the growing and harvesting seasons. The risk and uncertainty are bigger for smallholder farmers, as they can’t protect themselves from climate-related asset losses. Access to insurance schemes, climate information and other tools could help to minimize climate risks for smallholder farmers.

A new collaborative project launched in Ethiopia aims to reduce agricultural investment risk. The Capacitating African Stakeholders with Climate Advisories and Insurance Development (CASCAID-II) project builds on learnings from the CASCAID-I project in West Africa. It will target Ethiopia, Ghana and Senegal, focusing not only on smallholder farmers but on the food value chain as a whole. In a context of increasing integration of farmers into urban markets, the project will improve agricultural productivity, food security and profitability of agricultural enterprises.

The International Maize and Wheat Improvement Center (CIMMYT) will partner with the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) and the University of Florida, with the support of the CGIAR research program on Climate Change, Agriculture and Food Security (CCAFS).

Kindie Tesfaye, CIMMYT, presents an overview of climate services in Ethiopia. (Photo: Simret Yasabu /CIMMYT)
Kindie Tesfaye, CIMMYT, presents an overview of climate services in Ethiopia. (Photo: Simret Yasabu /CIMMYT)

Physical and digital tools across the value chain

In October 2019, thirty partners gathered for the CASCAID-II project launch and meeting in Addis Ababa, Ethiopia. They agreed on the project goals, a set of priority research questions and a schedule of activities for the next two years.

Partners also reviewed the tools that could be used to deliver climate advisories and agricultural insurance products, ensuring that all the actors in the value chain are engaged from the start. Team members aim to embed services in existing physical and digital (“phygital”) data infrastructures and to collect user feedback, so performance can be improved. Users will be segmented according to advanced socioeconomic and agro-ecological factors, so they can be targeted more efficiently with appropriate services and climate-smart agriculture options. The project will draw on real-time and multi-scale yield forecasting for better preparedness and decision-making.

Project partners agreed to start with the CCAFS Regional Agricultural Forecasting Tool (CRAFT) for sub-national yield forecasting in Ethiopia and to develop climate advisories and insurance services in line with the needs of the Ministry of Agriculture.

Participants of the launch of the digital agro-climate advisory platform gather for a group photo. (Photo: Semu Yemane/EIAR)
Participants of the launch of the digital agro-climate advisory platform gather for a group photo. (Photo: Semu Yemane/EIAR)

Precise data from scientists to farmers

In a related development, Ethiopia recently launched a digital agro-climate advisory platform, which offers great potential to improve farmers’ management of climate-induced risks, facilitate technology adoption and improve livelihoods.

Speaking at the platform’s launch ceremony, Eyasu Abraha, advisor to the Minister of Agriculture, thanked development partners for supporting the establishment of the platform in the timely move towards digitalization and use of precise data.

The platform incorporates location-specific climate information, as well as soil- and crop-specific best-bet agronomic management recommendations for farmers, development agents and extension officers. It automates crop-climate modeling and uses technologies such as text messaging, interactive voice response (IVRS) and smartphone apps for dissemination.

Mexico City to host Interdrought 2020

Droughts affect crop production across the world. A central challenge for researchers and policymakers is to devise technologies that lend greater resilience to agricultural production under this particular environmental stress.

Interdrought 2020 aims to facilitate the development of concepts, methods and technologies associated with plant production in water-limited environments.

The congress will take place from March 9 to 13, 2020, in Mexico City. Early-bird registration is open until October 31, 2019 and abstract submissions will be accepted until November 15, 2019.

The conference will focus on:

  • Optimizing dryland crop production – crop design
  • Water capture, transpiration, transpiration efficiency
  • Vegetative and reproductive growth
  • Breeding for water-limited environments
  • Managing cropping systems for adaptation to water-limited environments

This will be the 6th edition of Interdrought, which builds on the successful series of conferences in Montpellier (1995), Rome (2005), Shanghai (2009), Perth (2013) and Hyderabad (2017).

It will continue the philosophy of presenting, discussing and integrating results of both applied and basic research towards the development of solutions for improving crop production under drought-prone conditions.

To register, and for more information, visit www.interdrought2020.com.

If you encounter any difficulties in registration, or are interested in sponsoring the conference, please send an email to cimmyt-interdrought2020@cgiar.org.

Research, innovation, partnerships, impact

On May 15, 2019, as part of the CGIAR System Council meeting held at the ILRI campus in Addis Ababa, Ethiopia, around 200 Ethiopian and international research and development stakeholders convened for the CGIAR Agriculture Research for Development Knowledge Share Fair. This exhibition offered a rare opportunity to bring the country’s major development investors together to learn and exchange about how CGIAR investments in Ethiopia help farmers and food systems be more productive, sustainable, climate resilient, nutritious, and inclusive.

Under the title One CGIAR — greater than the sum of its parts — the event offered the opportunity to highlight close partnerships between CGIAR centers, the Ethiopian government and key partners including private companies, civil society organizations and funding partners. The fair was organized around the five global challenges from CGIAR’s business plan: planetary boundaries, sustaining food availability, promoting equality of opportunity, securing public health, and creating jobs and growth. CGIAR and its partners exhibited collaborative work documenting the successes and lessons in working through an integrated approach.

There were 36 displays in total, 5 of which were presented by CIMMYT team members. Below are the five posters presented.

How can the data revolution help deliver better agronomy to African smallholder farmers?

This sustainability display showed scalable approaches and tools to generate site-specific agronomic advice, developed through the Taking Maize Agronomy to Scale in Africa (TAMASA) project in Nigeria, Tanzania and Ethiopia.

Maize and wheat: Strategic crops to fill Ethiopia’s food basket

This poster describes how CGIAR works with Ethiopia’s research & development sector to support national food security priorities.

Addressing gender norms in Ethiopia’s wheat sector

Research shows that restrictive gender norms prevent women’s ability to innovate and become productive. This significantly impacts Ethiopia’s economy (over 1% GDP) and family welfare and food security.

Quality Protein Maize (QPM) for better nutrition in Ethiopia

With the financial support of the government of Canada, CIMMYT together with national partners tested and validated Quality Protein Maize as an alternative to protein intake among poor consumers.

Appropriate small-scale mechanization

The introduction of small-scale mechanization into the Ethiopian agriculture sector has the potential to create thousands of jobs in machinery service provision along the farming value chain.

About the CGIAR System Council

The CGIAR System Council is the strategic decision-making body of the CGIAR System that keeps under review the strategy, mission, impact and continued relevancy of the System as a whole. The Council meets face-to-face not less than twice per year and conducts business electronically between sessions. Additional meetings can be held if necessary.

Related outputs from the Share Fair 2019